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Abstract: A novel Graphene oxide/Laponite RD/Chitosan ternary composite was synthe-
sized by sol-gel method and freeze-drying method. The Laponite RD was silanized by 3-
aminopropyltriethoxysilane (APTES). Graphene oxide (GO) was prepared by an improved Hummers
method. Under the acidic conditions, self-assembly recombination was realized by electrostatic
interaction between modified Laponite RD and GO. The results from Fourier transform infrared
spectroscopy, X-ray diffraction, and scanning electron microscopy confirmed that the modified
Laponite RD was successfully compounded with GO, and the composite is laminated and stacked.
The results from BET (Brunauer–Emmett–Teller) methods found that the BET-specific surface area of
the hybrid aerogel significantly increased with the increase of the doping content of the composite,
and the specific surface area of the aerogel composite with 20% doping content reached 81 m2/g. The
structure of aerogel is porous, and there are numerous holes in the interior, which is closely related
to adsorption properties. Thermogravimetric analysis (TG) test was used to explore the change of
thermal properties of hybrid aerogel materials, and it was found that the addition of composite
increased the initial decomposition temperature and thermal stability of hybrid aerogel. Finally, the
potential applications of aerogel were tested, such as methylene blue adsorption and CO2 adsorption.

Keywords: Graphene oxide/Laponite RD/Chitosan; composites adsorption CO2

1. Introduction

The discharge of flue gas and wastewater has become a global concern, because many
of the colored dyes in the wastewater are not biodegradable, and excessive emissions of
flue air such as carbon dioxide will lead to serious climate change [1–4]. Many localities
across China are grappling with extensive groundwater contamination by persistent pol-
lutants. Therefore, the need for the removal of these toxic dyes is urgent from the health
point of view. To solve the problem, several strategies have been developed. So far, the
methods that can effectively selectively capture CO2 from the flue gas mainly include
membrane separation and filtration technology and liquid amine washing technology. As
for the colorful dyes, the coping strategies are chemical oxidation, membrane filtration,
ion exchange and adsorption [5–7]. However, most of these strategies are costly and un-
sustainable. Among them, adsorption has potential application prospect due to its high
efficiency, economic feasibility and convenient operation. Aerogel is a kind of nanomaterial
with special structure that has many special physical and chemical properties and has
potential application prospect in many aspects such as catalyst loading, medical biomateri-
als, selective adsorption materials and filtration materials [8–10]. Aerogel materials have
great prospect in selective adsorption because of their low density, high porosity and high
specific surface area, which can be used as adsorbent matrix and then loaded with specific
groups [11].
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He’s team synthesized a solid amine adsorbent prepared by molecular imprinting,
and the adsorption performance of CO2 has been explored. CO2 pre-adsorbed on PEI
(polyethyleneimine) could occupy the reactive sites of amino groups and act as a template
for imprinting in the cross-linking process [2]. The imino groups formed from the cross-
linking reaction between glutaraldehyde and PEI could be reduced by NaBH4 to form
CO2-adsorbable amino groups. The adsorption results indicated that CO2 imprinting
and reduction of imino groups by NaBH4 endowed the adsorbent with a higher CO2
adsorption capacity.

Harris and McNeil synthesized one localized hydrogel based on cellulose nanofibers
and wood pulp [1]. They developed a rapid, locally formed hydrogel that adsorbs dye
during gelation. These hydrogels are derived from cellulose—a renewable, nontoxic, and
biodegradable resource. Methylene blue can be adsorbed in large quantities within a
few seconds; the maximum adsorption amount can be up to 340 ± 40 mg methylene
blue cellulose.

In our laboratory, a class of novel Graphene oxide/Laponite RD/Chitosan ternary
composite had been synthesized by sol-gel method and freeze-drying method. There are a
lot of oxygen-containing active groups on the surface of GO such as epoxy carboxyl and
hydroxyl [12,13]. Moreover, the existence of surface polar functional groups enables them
to have large specific surface area and high particle exchange capacity and can react with
many functional molecules and chemical groups with specific chemical and biological
properties to prepare nanopolymer composite materials, thus effectively improving the
comprehensive properties of materials such as thermal, electrical and mechanical proper-
ties [14,15]. Chitosan (CT) is a kind of important environmentally friendly natural polymer.
It is widely used in medicine, food, water treatment and adsorption. A nanoclay similar to
Kaolin, Laponite RD is one of natural inorganic material. Because of its strong absorbability,
ion-exchangeability and expansibility, it has good adsorption performance for various types
of pollutants in water, so it has broad application prospect in environmental control [16].

In the present work, breaking away from the limitation of conventional CO2 adsorbent,
a new ternary composite aerogel was synthesized to be used as adsorbent (Scheme 1). Mod-
ified Laponite RD and GO were synthesized with Chitosan by electrostatic self-assembly.
Aerogel-type solid amine adsorbent has both physical adsorption and chemical adsorption
and has excellent adsorption performance [17–19]. The adsorption capacity of aerogel
was researched. TG test and SEM were carried out to evaluate their applications in the
adsorption field. This work will help explore the adsorption mechanism of Chitosan-
based aerogels.
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2. Experimental Section
2.1. Materials

Laponite RD was purchased from Rockwood Lithium. 3-aminopropyl triethoxysi-
lane (APTES), hydrochloric acid (37 wt%), methylbenzene, acetic acid and ethanol were
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Commercial
grade chitosan was purchased from Geao Chemical Technologies Co., Ltd. (Wuhan, China).
The degree of deacetylation of CT was 95%. Glutaraldehyde was purchased from Fuchen
Chemical Reagent Factory (Tianjin, China). Graphene oxide (GO) was prepared in the
laboratory using an improved Hummers method (which can be found in supporting in-
formation). Other chemical reagents from commercial sources in China were of analytical
grade and used without further purifications.

2.2. Preparation of the Modified Laponite RD

Laponite RD powders were dispersed into the methylbenzene with stirring for 5 min
and sonicating for 30 min. Then, we added 2 mL APTES to the solution with oil bath
110 ◦C for 24 h. The reactants were separated in a centrifuge at high speed to obtain the
organically modified Laponite RD, which was washed three times with methylbenzene
and ethanol successively to remove the excess APTES. The product was dried in an electric
vacuum drying oven at 40 ◦C to obtain APTES-modified Laponite RD and was named
AP–RD.

2.3. Preparation of the GO/Laponite RD/Chitosan Composite Material

The 500 mL 1 g/L AP–RD aqueous solution and 500 mL 1 g/L GO aqueous solution
were successively configured. Then, the AP–RD aqueous solution was slowly poured
into GO aqueous solution and sonicated for 10 min. The mixed solution was stirred
mechanically for 1 h at a rotational speed of 500 r/min; then, 5% diluted hydrochloric
acid was added to the solution, the pH of the solution was adjusted to about 2 and the
solution was left to stand. After 12 h of settlement, the solution was centrifuged at a speed
of 8000 r/min to obtain the precipitation. A large amount of deionized water and multiple
centrifugations were used to wash the precipitation to neutral. Finally, the resulting solution
was concentrated and quenched in liquid nitrogen, then dried in the freeze dryer for 3 days
to obtain tan AP–RD/GO compound, which was ground for use (Figure 1).
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Figure 1. Pictures of solution of AP–RD, GO and AP–RD/GO.

When the pH value of aqueous solution is 2, the AP–RD changes from negative to
positive due to the interaction between proton and -NH2, and Zeta potential is 11.9 mV.
The surface of GO was electronegative due to the presence of carboxyl groups, and Zeta
potential was −20.9 mV (Table 1).
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Table 1. Average particle size, PDI and Zeta potential of Laponite RD, AP–RD and GO.

Samples Z-Average (d·nm) PDI Zeta Potential (mV) *

Laponite RD 236 0.804 2.7
AP–RD 264 0.852 11.9

GO 1955 0.791 −20.9
* Refers to the Zeta potential of the substance when the pH of the solution is 2. PDI refers to the particle
dispersion index.

We took a certain amount of solid AP–RD/GO composites and 1.00 g CT dissolved in
70 mL deionized water and added 1% volume of acetic acid; then, the solution underwent
300~1000 r/min fully stirring and sonicating for 10 min. An appropriate amount of
glutaraldehyde (150 µL glutaraldehyde diluted to 1 mL) was added and stirred evenly.
After standing for 2 days, it was frozen in liquid nitrogen and dried in a freeze dryer for
3~4 days to obtain GO/AP–RD/Chitosan composite materials with 5–40% doping amount,
respectively.

2.4. Characterization

Nanometer particle size potential analyzer (Nano ZS90) was used to explore the
particle size and Zeta potential. The GO, AP–RD and Laponite RD were dispersed in an
aqueous solution for nanometer size analysis and Zeta potential analysis. The volume was
10 mL. The precision for nanometer size analysis is ±2%, and the precision for Zeta potential
analysis is 0.12 µm·cm/V·s. To understand the AP–RD/GO/Chitosan composite behavior,
Fourier transform infrared spectroscopy (FT-IR) was carried out on Nicolet AVATAR360
with KBr tablet method, and the wave number was in the range of 4000–400 cm−1. In order
to further clarify the fibrous aggregates of chitosan in the solution, visualized nanofibers
were observed by using scanning electron microscopy (SEM). SEM observations of the inner
structure of chitosan aerogel were made on a Hitachi S-4000 microscope. XRD measurement
was carried out on an XRD diffractometer (AXS-D8-Focus). The XRD patterns with Cu Kα

radiation (λ = 0.15406 nm) at 40 kV and 40 mA were recorded in the region of 2θ from 5◦ to
45◦. The samples were ground into powder and dried in a vacuum oven at 60 ◦C for 48 h.
The specific surface area analyzer is an instrument to calculate the specific surface area and
pore diameter by measuring the adsorption capacity of the sample to the gas in a fixed
specification sample tube. The BET-specific surface area and BJH median pore width were
calculated by the standard Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda
(BJH) methods. To investigate the adsorption capacity of the samples, specific surface
area and pore size analysis were performed on a specific surface area analyzer (V-Sorb
2800P, Beijing). The thermal stability of the sample was analyzed using a comprehensive
thermal analyzer (STA 409 PC). In nitrogen atmosphere, the temperature rises from 30 ◦C
to 500 ◦C at a rate of 10 ◦C/min. Zeta potential of GO and AP–RD was determined by a
Zeta potentiometer, and the compound mechanism was explored.

2.5. In Methylene Blue and CO2 Adsorption Studies

Using V-SORB 2800P high performance automatic specific surface area and pore size
tester, the modified hybrid aerogel (AP–RD/GO–CT (20%)), which has the maximum
BET-specific surface area, was subjected to adsorption experiments under the experimental
conditions of 298 k and CO2 with He.

According to Lambert–Beer’s law, at low concentrations, absorbance is proportional
to the concentration of the absorbent. Therefore, the absorbance of the adsorbed solution
can be measured after dilution, and then the concentration of the adsorbed solution can be
calculated according to the equation of the standard curve, so as to calculate the adsorption
amount and removal rate. In this paper, methylene blue solutions with concentrations of
1, 2, 3, 4, 6, 7, 8 × 10−6 g/mL were prepared. The absorbance was measured by UV-vis
spectrophotometer, and the standard curve was drawn. The equation is:

A = 0.1552C R2 = 0.997 (1)
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where R2 stand for the degree of fitting. It indicates that the degree of fitting is high. Ad-
sorption experiments for methylene blue were carried out at 298 k. The initial concentration
of the methylene blue solution is 100 mg/L, and the dosage of adsorbent was 50 mg. The
reaction took 6 h to reach equilibrium.

3. Results and Discussion
3.1. Study on Modified Laponite RD and GO

Conventional Laponite RD is hard to combine with GO. However, the surface of the
modified Laponite RD is positively charged [20–22]. The mechanism of modification has
been given in Figure 2. The average particle size of Laponite RD is 236.7 nm (Table 1),
and the surface is weakly positive. After being modified by the silane coupling agent, the
particle size is increased to 264.6 nm due to the grafting of organic groups on the surface,
and the particle dispersion index (PDI) of the particles is slightly increased. When pH = 2,
the surface of modified Laponite RD is positively charged at 11.9 mV, while the surface of
GO is negatively charged due to the presence of oxygen-containing groups such as carboxyl
groups. Therefore, when the pH value of the solution is adjusted to 2, the positive property
on the surface of modified Laponite RD and the negative property on the surface of GO can
be effectively utilized, and electrostatic self-assembly can be effectively realized through
the interaction of heterogeneous charges, so as to realize the successful combination of
AP–RD and GO. In addition, the hydroxyl group on the surface of RD and the carboxyl
group, epoxy group and phenolic hydroxyl group abundant on the surface of GO can also
be related through van der Waals force and hydrogen bond [23–25].

We silanized Laponite RD with APTES and prepared GO from natural squamous
graphite, preparing for the later synthesis of the composite of them. The results from the
XRD indicated that alkylation modification did not change the structural characteristics
of Laponite RD. -NH2 on APTES was successfully grafted to the surface of Laponite RD,
and Laponite RD was successfully modified by covalent bond (Figure 2). After organic
modification, the particle size of Laponite RD increased slightly, and the surface showed
obvious positive electrical properties (Table 1).

Wide-angle X-ray diffraction was carried out to prove the existence of AP–RD and
GO in composites. By comparing curves (a) and (b) in the Figure 3, Laponite RD was
modified by APTES before and after maintaining crystal structure, and obvious diffraction
peaks appeared at 12.6◦, 19.8◦ and 23.7◦, corresponding to (001), (020) and (002) crystal
face, respectively. The inter-reticular distance is 0.7020 nm, 0.4483 nm and 0.3751 nm,
respectively. The difference lies in that the diffraction peak of Laponite RD modified by
APTES is somewhat weakened; this may be due to the modification of the APTES, which
reduces the Laponite RD molecule order degree. The (001) crystal plane (2 theta = 10.9◦)
d = 0.8116 nm in curve (c) is the characteristic diffraction peak of GO, which also appears
in curve (d). The 10.9◦ diffraction peak in curve (d) proves the existence of GO in the
AP–RD–GO composite material, and the diffraction peak at 12.6◦, 19.8◦ and 23.7◦ proves
the existence of Laponite RD in the AP–RD/GO composite material, indicating that the
modified Laponite RD was successfully synthesized with GO, and some crystal structures
of both were maintained in the composite material.

Figure 4 indicates that the absorption peak at 3693 cm−1 and 3620 cm−1 was derived
from the stretching vibration peak of Al-OH in RD, while the absorption peak at 910 cm−1

was attributed to the bending vibration peak of Al-OH [26,27]. In contrast to curve (a), curve
(b) shows APTES modification in the infrared spectra and a generally consistent curve. The
main difference is that 1470 cm−1 and 2935 cm−1 of the characteristic absorption peaks
respectively belonged to methylene -CH2 stretching vibration and bending vibration peak,
and 1566 cm−1 and 3430 cm−1 of the absorption peaks belonged to -NH2 expansion and
bending vibration peak, respectively, [28–30] showing that APTES on -NH2 successfully
grafted to the surface of RD. Laponite RD was successfully modified by covalent bond. In
the infrared spectrum of curve (c), a large number of stretching vibration characteristic
peaks of -OH appear in 3621–3406 cm−1, absorption peaks at 1726 cm−1, 1621 cm−1 and
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1054 cm−1 are respectively attributed to the stretching vibration peaks of C=O, C=C and
C-O bonds of GO, and the characteristic peak of GO epoxy group is at 1100 cm−1 [31–33],
indicating the successful preparation of GO with rich chemical groups. Curve (d) is the
infrared spectrum of RD/GO complex, and the characteristic peaks in both curve (b)
and (c) appear in curve (d), indicating that RD and GO were successfully recombined.
This is because the silane coupling agent APTES is successfully grafted to the surface of
Laponite RD through hydrolysis, so as to effectively modify the surface of Laponite RD
with negative charge.
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3.2. Construction and Structure of the GO/AP–RD/Chitosan Composite

To investigate the BET-specific surface area, BJH adsorption cumulative volume and
BJH median pore width of Chitosan aerogels doped with different compounds, different
doping contents were set as the control group. Table 2 is the result of the experiment.
BET-specific surface area of the aerogel as AP–RD/GO content showed a trend of increase.
It reached the highest when the doping amount was 20%. This could be the Chitosan
molecular chain on the presence of large amounts of free amino and carboxyl. Those
pairs of groups can be combined with AP–RD/GO composites surface hydroxyl and other
groups easily through ion exchange and van der Waals force of adsorption on the surface
of the inner and outer layers of AP–RD/GO composites, so that the BET-specific surface
area of the composite material increased, but, after excessive compounds with Chitosan
caused the clogging in structure, BET-specific surface area decreased.

Table 2. The BET-specific surface area, BJH adsorption cumulative volume and BJH median pore
width of Chitosan aerogels doped with different compounds. CT represents the Chitosan.

Sample BET-Specific Surface
Area (m2/g)

BJH Adsorption
Cumulative Volume

(cm3/g)

BJH Median Pore
Width (nm)

AP–RD/GO–CT (5%) 47 0.13 2.32
AP–RD/GO–CT (10%) 66 0.19 2.80
AP–RD/GO–CT (15%) 75 0.20 2.22
AP–RD/GO–CT (20%) 81 0.28 2.33
AP–RD/GO–CT (25%) 78 0.24 2.45
AP–RD/GO–CT (30%) 70 0.24 2.61

Information related to porous properties of the aerogels was obtained from their
respective nitrogen adsorption isotherms recorded at 77 K. The BET-specific surface area,
BJH adsorption cumulative volume and BJH median pore width are listed in Table 2.
Moreover, the results (Figure 5) from N2 and He adsorption–desorption curve of aerogel
indicate that it is a typical type IV H3 adsorption desorption isotherm published by IUPAC,
and there is a hysteresis loop phenomenon. It indicates that the sample has a typical
flap-like grain slot cavity structure, and capillary condensation occurs [34,35]. The results
from SEM (Figure 6) also prove aerogel has a loose, porous structure. In the low-pressure
section (P/P0 = 0–0.01), the isotherm exhibits a sharp adsorption trend, indicating the
presence of micropores in the aerogel. After the pressure increases (P/P0 = 0.1–0.9), the
adsorption capacity increases gradually and is accompanied by a hysteresis loop. At this
stage, the change in the adsorption capacity can be used as a basis for measuring the
aperture. The adsorption isotherm did not increase significantly under 0.1–0.9 relative
pressure, while the adsorption capacity increased sharply under greater than 0.9 relative
pressure, indicating that a large number of mesoporous structures existed in the hybrid
aerogel [36]. To summarize, the pore structure of aerogels is essentially hierarchical, with
pore sizes ranging from microporous to mesoporous. The aperture is between 0 and 50 nm,
high porosity, and the combination of compounds with Chitosan is relatively strong, and
the complex fully embedded into the Chitosan base surface. The composite is almost
invisible on the SEM (Figure 6a,b), and this structure is conducive to dye such as adsorbate
in its adsorbent inside, so as to improve the adsorption ability of aerogel.
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To determine the stability of the Chitosan gel in different temperature, thermogravi-
metric analysis was carried out to investigate the weightlessness. Figure 7 shows the effects
of the doping amount of the RD/GO. There are mainly two decomposition temperatures
in the range of room temperature up to 500 ◦C. The first weight loss stage occurred in the
range of room temperature to 100 ◦C, mainly due to the evaporation of residual water
on the surface or inside of the sample. The second weight loss occurred in the range
of 300~400 ◦C, mainly due to the decomposition of Chitosan and the fracture of aerogel
molecular chains. It can be seen in Sample ABCDE curves (F can be seen in supporting
information Figure S1) that, with the increase of the complex doping content, the second
phase of the initial temperature increased; this may be because of the complex formed,
and the Chitosan molecular chain enhanced, even interpenetrating the network structure.
Moreover, GO, itself, has excellent thermal properties. The synergistic effect of the two
improved the thermal stability of hybrid aerogels. The temperature in the flue environment
where the adsorbent is used is generally not more than 120 ◦C. Therefore, this kind of
composite material has a certain application prospect.
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3.3. Adsorption Properties of Aerogels

Methylene blue was used as the adsorption object to test the adsorption property of
the sample (AP–RD/GO–CT (20%)), which has the maximum BET-specific surface area.
Methylene blue (C16H18CIN3S) is one of the most common cationic organic dyes [37,38].
It is widely used in chemical indicators, dyes, biological dyes and pharmaceuticals. Ac-
cording to Lambert–Beer’s law, at low concentrations, absorbance is proportional to the
concentration of the absorbent [39–41]. Therefore, the absorbance of the adsorbed solution
can be measured after dilution, and then the concentration of the adsorbed solution can be
calculated according to the equation of the standard curve, so as to calculate the adsorption
amount. The equation is A = 0.1552C (Figure 8).
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It can be seen from Figure 9 that the adsorption capacity of the sample (AP–RD/GO–
CT (20%)) reached 296 mg/g at t = 5 min. The adsorption capacity increased rapidly with
time in the early stage, reached 80% of the maximum adsorption capacity at 50 min, and
increased relatively slowly after 70 min, reaching the maximum adsorption capacity of
436.2 mg/g at T = 220 min.
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The adsorption process of CO2 was carried out at 298 K and from 0 up to 0.1 MPa.
The adsorption capacity of hybrid modified aerogel (AP–RD/GO–CT (20%)), which has
the maximum BET-specific surface area, was tested (Figure 10). The gravimetric capture
of CO2 for sample (AP–RD/GO–CT (20%)) is 78.9 mg/g at 298 K and 0.1 MPa. It is
generally accepted that CO2 capture capacity is determined by numerous factors such as
surface area, pore size and pore function, etc., each of which carries different weights at
different pressures and temperatures. It is an essential strategy to form a strong interaction
between the polymer network and CO2. Moreover, if its surface is CO2 - philic, such a
polymer porous material will exhibit more efficient CO2 absorption capacity [42]. The
chemical functionalization of porous material with polar groups (such as nitrogen-rich
groups, oxygen-rich groups and inorganic ions) can enhance the average dipole–quadruple
interactions with CO2, thus improving the CO2 capture capacity [43]. In this work, the
amino group in chitosan and various polar groups in GO can also improve the adsorption
capacity of CO2. At low pressures in Figure 10, the interaction between CO2 and pore
surface plays a leading role in CO2 capture. The CO2 adsorption isotherm of the aerogels
rises sharply in low pressure range, indicating that the amino present in aerogels have
favorable binding energy with CO2 molecules. When the pressure increased to 0.1 MPa,
the effect of functionalization to CO2 capture gradually weakened. In the meantime, the
effect of BET surface area gradually increased. This is also the reason for selecting sample
AP–RD/GO–CT (20%).
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4. Conclusions

A novel ternary composite gel was synthesized. The system composed of the modified
Laponite RD, chitosan and GO. The properties of modified Laponite RD and GO complex
were investigated. The results from the XRD and FT-IR indicated that Laponite RD was
successfully synthesized with GO, and some of their crystal structure was maintained in
the composite. The characterization of the chitosan/Laponite RD/GO composite aerogel
showed that the specific surface area and pore volume of aerogel demonstrated an increas-
ing trend with the increase of Laponite RD/GO content, reaching the maximum at 20%,
and the average pore size remained basically unchanged. SEM photographs were used
to observe that the hybrid aerogels showed obvious loose and porous structure with a
large number of holes on the surface and in the interior. TG test was used to study the
thermal properties of hybrid aerogel materials, and it was found that the addition of com-
posites increased the initial decomposition temperature of hybrid aerogel and enhanced its
thermal stability.

The adsorption test of methylene blue and CO2 on the modified hybrid aerogel ma-
terial showed that the initial adsorption capacity of methylene blue reached 436 mg/g
at 220 min, and the adsorption capacity of CO2 reached 78.9 mg/g. Compared with the
available adsorbents, this adsorbent has several advantages such as low cost of raw mate-
rials, environmental friendliness and relatively high adsorption capacity. To summarize,
we successfully prepared GO/Laponite RD/Chitosan composite materials by sol-gel and
freeze-drying methods. Its application in the adsorption of dyes as well as CO2 separation
and adsorption has a certain practical significance and has a good industrial application
prospect.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14123224/s1, Figure S1: TG curve of hybrid aerogel with doping amount 30% (F).
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