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Abstract: Duchenne muscular dystrophy (DMD) is an autosomal dominant, X-linked 

neuromuscular disorder caused by mutations in dystrophin, one of the largest genes known to 

date. Dystrophin gene mutations are generally transmitted from the mother to male offspring 

and can occur throughout the coding length of the gene. The majority of the methodologies 

aimed at treating the disorder have focused on restoring a shorter, although partially functional, 

dystrophin protein. The approach has the potential of converting a severe DMD phenotype 

into a milder form of the disease known as Becker muscular dystrophy. Others have focused 

on ameliorating the disease by targeting secondary pathologies such as inflammation or loss 

of regeneration. Of great potential is the development of strategies that are capable of restor-

ing full-length dystrophin expression due to their ability to produce a normal, fully functional 

protein. Among these strategies, the use of read-through compounds (RTCs) that could be 

administered orally represents an ideal option. Gentamicin has been previously tested in clini-

cal trials for DMD with limited or no success, and its use in the clinic has been dismissed due 

to issues of toxicity and lack of clear benefits to patients. More recently, new RTCs have been 

identified and tested in animal models for DMD. This review will focus on one of those RTCs 

known as ataluren that has now completed Phase III clinical studies for DMD and at providing 

an overview of the different stages that have led to its clinical development for the disease. The 

impact that this new drug may have on DMD and its future perspectives will also be described, 

with an emphasis on the importance of further assessing the clinical benefits of this molecule 

in patients as it becomes available on the market in different countries.

Keywords: nonsense mutations, premature termination codons, PTC, nonsense-mediated decay, 
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Introduction
Neuromuscular diseases are a group of heterogeneous disorders that affect muscle, 

neuromuscular junctions, and motor neurons. To date, over 40 genes have been linked 

to several forms of these disorders, and genetic defects can be either acquired or 

inherited. The majority of these diseases manifest early in life and lead to progressive 

deterioration of functions. Mutations in the dystrophin gene are associated with two 

distinct pathologies: Duchenne muscular dystrophy (DMD) and Becker muscular 

dystrophy (BMD).1,2

The dystrophin gene is one of the largest genes identified to date, spanning approxi-

mately 2.5 Mb on chromosome X. The incidence of DMD is approximately 1 in every 

3,500 males, while in BMD, the incidence is much lower and has been estimated to 

be 1 in every 10,000 patients. Mutations in DMD can occur throughout the length 
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of the gene and are prevalently characterized by large dele-

tions and single point mutations. Duplications, insertions, 

and small deletions have also been reported, although at a 

lower frequency.

Among the diseases caused by mutations in the dystrophin 

gene, DMD is the most severe and usually manifests within 

the first 3–5 years of the patient’s life. It is caused by muta-

tions of the dystrophin gene that disrupt the reading frame of 

the mRNA coding sequence, which leads to complete absence 

of dystrophin expression in skeletal and cardiac muscles. 

The disease is characterized by progressive muscle weak-

ness that affects the trunk first and then the lower and upper 

extremities, ultimately leading to wheelchair dependency by 

the age of 14. In BMD patients, dystrophin gene mutations 

are generally associated with large deletions of the gene, 

which result in the expression of a shorter, but still in-frame 

transcript that leads to the production of a partially functional 

dystrophin protein. A few cases have also been reported that 

are characterized by nonsense mutations that result in signifi-

cant levels of altered exon splicing of the dystrophin mRNA 

and that lead to reduced levels of dystrophin protein or to 

the expression of shorter forms of the protein.3–6 Although 

varying from patient to patient, the prognosis in BMD is less 

severe than that of DMD, and affected individuals generally 

live well into their middle age or later. The most common 

causes of death in DMD and BMD patients are respiratory 

and heart failure.

Therapeutic potentials of 
approaches to DMD
Treatment options for DMD have been widely explored over 

the past 30 years. Corticosteroids are considered standard 

care for DMD patients and have demonstrated evident bene-

fits to patients, but are associated with strong side effects.7–10 

Several approaches aimed at restoring dystrophin expression 

have already reached the clinic with promising results. They 

range from gene replacement through the use of viral11–15 

and nonviral approaches16–18 to manipulation of splicing 

through the use of antisense oligonucleotides that act by 

redirecting splicing of the dystrophin mRNA and that allow 

the expression of shorter BMD-like dystrophin isoforms.19–30 

Other strategies are focused on compensating for the loss of 

dystrophin by upregulating utrophin, a homologue of dys-

trophin,31–36 with promising results in humans.37,38 Additional 

strategies for DMD aim at ameliorating the pathology by 

increasing muscle strength,39–41 reducing muscle fibrosis,42–44 

and decreasing inflammation.45–50 Although promising, these 

strategies can only improve the quality of life of patients and 

delay disease progression.

To date, the assessment of the benefits achieved by a 

therapy over the risks associated with the use of a new drug 

has been based, primarily, on the opinions of experts in the 

field and on the reviews of the clinical data obtained pre- and 

postapproval of new drugs. Similarly, the benefit–risk assess-

ment in DMD is considered to be a complex issue, and the 

information regarding potential treatments for the disease 

available to the US Food and Drug Administration (FDA) 

and other regulatory agencies worldwide is very limited. The 

identification of new approaches that are now reaching the 

clinic has evidenced the need to address this very important 

problem and to revise laws and regulations that control 

the entry into market of new drugs for DMD. The efforts 

undertaken thus far by caregivers, advocates, academic 

researchers, and pharmaceutical drug developers have been 

pivotal in addressing some of the key issues that surround 

the evaluation of new therapeutics, especially in the context 

of clinical expectations to be achieved for DMD. Currently, 

it is clear that a cure for DMD, defined as a treatment that 

would completely restore health in patients, is still out of 

reach. This is primarily due to the complexity of the disease, 

the vast area of muscle tissue that needs to be treated, and the 

lack of approaches that can efficiently target each individual 

fiber within the large number of muscles that compose the 

human body. However, the whole scientific community agrees 

that approaches that could significantly delay the progression 

of the disease would represent a tremendous achievement. 

This opinion is also shared by patients and caregivers as 

stated in recently published surveys.51–53 Importantly, these 

surveys have clearly demonstrated the willingness of patients 

and caregivers to accept significant risks and side effects in 

return for slowing or stabilizing the progression of the disease 

even in the absence of survival benefits, an increased risk of 

death, or additional serious disability. The FDA is currently 

considering including DMD into the Patient-Focused Drug 

Development Initiative,54 which would ultimately allow fami-

lies, researchers, and sponsors to ease some of the regulatory 

requirements needed for approval.

Pharmacological approaches 
targeting nonsense mutations
In recent years, great emphasis has been placed on the discov-

ery of approaches, especially pharmacological treatments that 

could be used to restore normal, full-length dystrophin due 

to their potential to reverse the course and clinical outcome 
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Figure 1  Read-through activity in eukaryotic cells mediated by read-through compounds (RTCs).
Notes: The synthesis of proteins is catalyzed in the ribosome by selecting aminoacylated tRNAs based on the sequence of the mRNA and by covalently linking the amino 
acids into a polypeptide chain. During the elongation phase of protein synthesis, each amino acid is added in the nascent polypeptide through the A site of the ribosome 
by positioning the correct aminoacyl-tRNA containing the correct anticodon next to the peptidyl-tRNA positioned in the P site. Amino acids added sequentially exit 
the ribosome through the E site. Stop codons are recognized by specific RFs that catalyze the cleavage of the polypeptide. In the presence of a PTC, the nascent polypeptide 
chain is truncated and is therefore nonfunctional. RTCs are thought to interfere with the RF and/or to promote binding of a suppressor tRNA at the A site. The result is the 
misincorporation of an amino acid at the position occupied by the PTC and the expression of full-length protein. Termination of protein synthesis at normal stop codon is 
regulated by additional factors that ensure proper termination of the protein and has been shown not to be affected by the RTC.
Abbreviations: tRNAs, transfer RNAs; RF, release factors; PTC, premature termination codon; RTCs, read-through compounds.

of the disease. Read-through (RT) of nonsense mutations 

represents an ideal approach to DMD due to its ability to 

bypass the premature stop codon and to act on virtually any 

region of the dystrophin gene independently of the loca-

tion in which the mutation resides (Figure 1). Furthermore, 

according to the Human Gene Mutation Database,55 nonsense 

mutations leading to premature termination codons (PTCs) 

are responsible for up to 30% of inherited genetic disorders 

and account for approximately 12% of all mutations listed in 

the database.56 This highlights the broad spectrum of applica-

tion that any approach aimed at suppressing these types of 

mutations may have in medicine. Among those, cystic fibrosis 

(CF), DMD, ataxia telangiectasia (A-T), hemophilia, retinal 

degeneration, and several forms of lysosomal storage diseases 

are, perhaps, the most known and those for which data from 

animal or human cells models are available. Other forms of 

genetic disorders are also amenable to suppression of non-

sense mutations as described in detail in a recent review.57 

The majority are rare or ultra-rare disorders and, although 

difficult to determine accurately, recent analyses suggest that 

about 30 million people in the United States (US) and circa 

300 million people worldwide would benefit from drugs that 

suppress nonsense mutations.58 It has been estimated that the 

market size for an RT drug would reach $1 billion by the year 

2019, and so it is highly attractive to companies.59

Aminoglycosides and 
nonaminoglycoside antibiotics for 
the treatment of DMD
The ability of certain antibiotics to suppress PTCs in 

eukaryotic cells has been known since the early 1990s.60–65 

Several pivotal studies have demonstrated that antibiotics 

like gentamicin and G418 can interfere with the region of the 

ribosome that monitors codon–anticodon interactions with 

near-cognate aminoacyl-transfer RNA (tRNA) or suppressor 

tRNAs (Figure 1). This interaction leads to the substitution 

of the PTC with a different amino acid. In prokaryotic cells, 

like bacteria, the affinity of the aminoglycoside with the 16S 

rRNA subunit is very strong, inducing a conformational 

change that is similar to that occurring upon cognate tRNA 

binding. The interference leads to extensive misreading at 

both sense and nonsense codons, which ultimately results 

in aberrant expression profiles and cell death. In eukaryotic 

cells, the difference in structure in the 18S rRNA subunit, 

the homologous of the bacteria 16S rRNA, renders the 

affinity of aminoglycoside much weaker, resulting in a 
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 significantly lower frequency of misincorporation at PTC 

sites.  Importantly, the substitution of the stop codon with an 

amino acid in eukaryotic cells appears to be restricted to PTC 

as read-through of normal stop codons has never been seen in 

these cells with any of the antibiotics tested thus far.66–69 This 

specificity and selectivity is likely to be due to the presence 

of a complex transcription machinery composed of different 

proteins and regulatory factors that control normal termina-

tion of protein synthesis and that ensures that the protein is 

terminated at its normal stop codon.

The type of stop codon being targeted influences the 

efficiency and fidelity of the read-through activity of amino-

glycosides. The UAA (ochre) codon is the most difficult to 

suppress, followed by the UAG (amber), and finally, the 

UGA (opal) termination codons.70 Similarly, suppression 

of the PTC appears to be influenced by the specific nucleic 

acid immediately following the stop codon71 as well as the 

sequence surrounding it.72

Studies conducted to demonstrate the efficacy of amino-

glycoside compounds to restore dystrophin expression have 

utilized the mdx mouse model for DMD. In this naturally 

occurring strain, a G-to-T transversion in exon 23 of the 

dystrophin gene converts a GAA codon into a UAA, thus 

resulting in premature termination of protein synthesis and 

absence of dystrophin expression in skeletal muscle.73 The 

muscle pathology in mdx is similar to that of DMD patients 

and presents with increased susceptibility to muscle damage, 

large areas of degeneration, and inflammation, but a life span 

that is close to that of normal mice. These characteristics 

render this mouse particularly suitable in studies aimed at 

determining the efficacy of approaches capable of restoring 

dystrophin expression, especially those targeting nonsense 

mutations.

Barton-Davies et al63 were the first ones to demonstrate 

the ability of gentamicin to target and restore full-length 

dystrophin expression in mdx mice both in vitro and in 

vivo. Mice dosed systemically for 14 days showed improved 

muscle strength and increased membrane stability, suggesting 

that the administration of the compound for short periods of 

time was sufficient to ameliorate muscle pathology. Results 

have been confirmed independently in mdx mice dosed for up 

to 12 weeks, further prompting the testing of this compound 

in DMD patients.74

Clinical trials in DMD using gentamicin have shown 

controversial results, with little or no dystrophin expression 

detected following administration of the drug to patients.75–77 

Ultimately, its use in the clinic was dismissed due to the 

long-term side effects, particularly the nephrotoxicity and 

ototoxicity, associated with its use, especially over  prolonged 

periods of time. Nonetheless, these studies have served as 

proof of concept for the possibility of using small molecules 

to suppress PTCs in patients with DMD. More recently, new 

derivatives of aminoglycosides with reduced toxicity have 

been synthesized and evaluated in an in vitro luciferase-based 

assay for their ability to read-through nonsense mutations 

in the DMD gene.78 However, their ability to restore dys-

trophin expression in vivo in animal models still remains 

unknown.

Several other antibiotics with RT ability have been 

identified in the recent years and evaluated for their ability 

to suppress nonsense mutations in multiple in vitro and 

in vivo PTC models as, reviewed by others.57 Negamycin 

is the only nonaminoglycoside antibiotic to have been 

evaluated as a possible candidate for DMD.79 A 4-week 

study in mdx receiving the compound systemically showed 

clear expression of dystrophin in tibialis anterior as well 

as heart muscles (the only two muscles analyzed) isolated 

from treated mice, suggesting that negamycin may have 

important therapeutic value for the treatment of this dis-

order. Structure–activity relationship studies of this com-

pound have recently been conducted to further improve 

its  efficacy.80 However, a direct comparison between the 

activity of these new compounds to that of other antibiotics 

or known RTCs have not been performed yet, and therefore, 

their potential as valid therapeutic candidates for DMD or 

other genetic disorders caused by nonsense mutations has 

yet to be determined.

Among the compounds that have shown great promise for 

the treatment of DMD is RTC13, a novel nonaminoglycoside 

RTC identified using a protein transcription/translation–

enzyme-linked immunosorbent assay, using A-T as a genetic 

disease model. RTC13 was shown to efficiently restore 

full-length dystrophin in mdx in vitro as well as in vivo.81,82 

Furthermore, new compounds were identified using SRA 

studies, several of which are currently under investigation 

for their ability to suppress PTC in animal models for the 

disease.83 These compounds are likely to further enrich the 

pool of RTCs that can be moved forward into clinical testing 

for the treatment of DMD and other diseases alike.

Discovery and evaluation of 
ataluren (PTC124)
Two luciferase-based high-throughput screens of nearly 

800,000 low-molecular-weight compounds were performed 

by PTC Therapeutics and used to identify nonaminoglycoside 

compounds capable of promoting ribosomal read-through of 
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PTCs.84 Comprehensive medicinal chemistry studies have 

led to the identification of PTC124, also known as ataluren, 

which was shown to efficiently restore dystrophin expres-

sion in human cells isolated from a DMD patient and the 

mdx mouse.84 Importantly, muscle strength was significantly 

restored following systemic administration of ataluren in 

mdx mice for up to 4 weeks of continuous dosing, further 

emphasizing the therapeutic relevance of the compound for 

the treatment of DMD.

However, shortly after the publication of these findings, 

the validity of the screen utilized for the identification of 

PTC124 was challenged by reports demonstrating the ability 

of the compound to bind the luciferase protein. This binding 

was shown to increase the stability of the protein, result-

ing in a significant increase in luciferase activity that was 

independent of its ability to read-through PTCs.85,86 These 

results have fueled debates on whether the compound had 

any activity at all, which was in part supported by an inde-

pendent study conducted using different reporter systems, 

all of which showed no detectable levels of read-through 

activity mediated by PTC124.87 Moreover, the inability of 

PTC124 to suppress nonsense mutations in several mouse 

and human models of relevant diseases has further contrib-

uted to the critiques and skepticisms surrounding the efficacy 

of this molecule for the treatment of nonsense mutations.88–90 

These findings are in contrast to those reported by many 

other groups that have shown the activity of the compound 

in several models, including reports demonstrating low, 

although detectable, rescue of protein expression in vitro 

and in vivo.78,81,82,89,91–96

The differences in the ability of ataluren to suppress 

premature stop codons known to be associated with specific 

genetic disorders may be dependent on several factors. The 

sensitivity of the assays being utilized to assess the efficacy 

of the compound may have been, at least in part, responsible 

for the apparent lack of activity detected in some models. 

Furthermore, factors like mRNA stability and its susceptibil-

ity to degradation by the nonsense-mediated decay pathway 

are likely to have played a crucial role in the differences in 

activity observed. Indeed, it is well recognized that these fac-

tors can vary largely depending on the gene being analyzed, 

restricting the activity of an RTC to a limited window of 

opportunity in time during which the compound can inter-

act with the rRNA. Other factors, like protein stability and 

normal rate of turnover of the protein being restored by the 

RTC, are crucial aspects that impact its abundance into a cell. 

In fact, proteins with a long half-life are more likely to accu-

mulate in a cell following treatment with an RTC compared 

to products that have a rapid turnover and, therefore, should 

be easier to detect using standard biochemical assays. Thus, 

it is plausible to assume that effects detected following treat-

ment may vary widely from model to model and that certain 

genetic defects may be more amenable to treatments with 

RTCs than others. Nonetheless, the results obtained thus far 

have clearly evidenced limitations in the efficacy of ataluren 

and have demonstrated the need of identifying new RTCs with 

improved activity. Despite those limitations, the encouraging 

data obtained in the mdx84 and animal models for CF91 were 

highly encouraging and have warranted further evaluation of 

the potential of ataluren for the treatment of those disorders 

and its advancement into clinical testing.

Clinical development of ataluren
Preclinical safety studies in rats and dogs that received 

PTC124 orally for 28 days showed no adverse effects on 

neurological, pulmonary, or cardiovascular functions, not 

even at high doses.91 Phase I single- and multiple-dose 

studies in healthy volunteers were used to determine the 

pharmacokinetics and safety of ataluren and to identify 

the ideal dosing schedule necessary to achieve optimal 

target plasma concentrations for subsequent studies in CF 

and DMD patients.97 Studies were conducted in a total of 

62 subjects, age 18–30 years, who were randomized into 

two groups. Single-dose escalating studies were performed 

in 18 subjects who received PTC124 at a concentration of 

3, 10, 30, 100, 150, and 200 mg/kg. Side effects included 

headache, dizziness, nausea, vomiting, diarrhea, and/or 

abdominal pain and were reported in all subjects receiving 

PTC124 at the doses of 150 and 200 mg/kg. Side effects 

progressively decreased in a concentration-dependent man-

ner in healthy volunteers who received the lower doses. 

Serum chemistry results showed an increase in alanine 

aminotransferase (ALT) and aspartate aminotransferase 

(AST), suggesting possible liver toxicity of the drug, at 

least in the higher doses utilized.

The multiple-dose study conducted in Phase I trial was 

performed in 30 healthy volunteers. Subjects were random-

ized into four groups, each receiving the compound every 

12 hours at doses of 10, 20, 30, and 50 mg/kg, respectively, 

and for up to 7 days. Increases in serum transaminase 

 values, primarily ALT and AST, were noted in approximately 

30%–50% of the subjects who received the compound, inde-

pendently of the doses being administered, confirming the 

presence of possible liver toxicity of the drug. Importantly, 

analyses on peripheral blood mononuclear cells and plasma 

failed to show signs of read-through of normal stop codons, 
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validating the results previously obtained using in vitro 

 systems and those achieved in animal models.84

The safety data obtained in healthy volunteers prompted 

the initiation of Phase IIa clinical trials in CF and DMD 

patients. The initial results of the two clinical trials con-

ducted by independent groups in CF patients were slightly 

discordant. In fact, one study reported statistically significant 

improvement in epithelial electrophysiological abnormalities 

caused by the absence of expression of the CF transmembrane 

conductance regulator in some of the patients treated,98 while 

the other showed no significant effects.57 In DMD patients, 

the Phase IIa clinical trial was conducted over a 28-day 

period of active administration of the compound. Subjects 

were randomized into three groups that received ataluren 

three times a day, following breakfast, lunch, and dinner at 

a dose of respectively 4, 4, 8 mg/kg/d (group 1: low dose), 

10, 10, 20 mg/kg/d (group 2: medium dose), and 20, 20, 40 

mg/kg/d (group 3: high dose). No side effects were noted at 

any of the doses administered, although the plasma levels of 

ataluren were lower than those detected in adults in Phase I 

studies. Expression of dystrophin was observed in some of the 

muscle biopsies isolated from boys treated with the low and 

medium doses, but not in any of the samples isolated from 

patients who received the high dose. Following treatment, 

serum creatinine kinase (CK), a marker of muscle integrity, 

AST, and ALT levels, which are known to be elevated in DMD 

patients as a result of the disease, decreased significantly, but 

changes in muscle strength and timed functions were small 

and not statistically significant.99

A Phase IIb trial was conducted in 2008 to evaluate the 

safety and efficacy of ataluren in DMD/BMD boys with 

nonsense mutations.100 A total of 174 patients, aged 9–20 

years, were randomized into three groups of approximately 

60 patients per group that received either placebo, ataluren 

at a dose of 10, 10, 20 mg/kg, or ataluren at doses of 20, 20, 

40 mg/kg orally three times daily after meals and for up to 

48 weeks. The primary end point was change in 6-minute 

walk test (6MWT), a widely used method to assess efficacy 

of therapeutic interventions in clinical trials for DMD boys. 

This test has been used to quantify ambulatory function in 

DMD boys who are not yet wheelchair dependent and relies 

on measuring the distance in meters covered during a period 

of 6 minutes. The 6MWT is strictly dependent on the state 

of progression of the disease, and therefore, values can vary 

from patient to patient, especially in relation to age.101–103 

However, because a clear decline in motor function can be 

detected over a period of several weeks, each patient can 

be used as his own control, and changes in motor function 

observed following treatment with a potential drug or other 

therapeutic interventions can be compared to that obtained 

at baseline, prior to treatment. As such, this test is currently 

considered the gold standard in the field for all the clinical 

trials in DMD and is generally used as a primary outcome 

measure for all studies aimed at determining efficacy of a 

potential therapy in this population. Importantly, it has been 

established that in DMD, as well as other patients affected by 

neuromuscular disorders, a 30 m difference in 6MWT should 

be considered the minimal clinically important difference 

to allow for an intervention to be considered therapeutically 

relevant. Similar ranges have also been considered meaning-

ful for several other drugs that have received approval for 

marketing in multiple inherited conditions.104–107 Secondary 

outcome measures included decreases in CK levels, expres-

sion of dystrophin in biopsies obtained from biceps muscles, 

heart rate, and additional motor function tests.100

The initial results released at the conclusion of the Phase IIb  

study were disappointing, as they showed no statistically 

significant differences in the 6MWT among the patients 

who received ataluren compared to DMD boys treated with 

placebo. Even more disappointing was the clear presence of 

a bell-shaped or U-shaped curve response in patients who 

underwent active treatment with the drug. In particular, 

patients treated with the higher dose showed a decline in 

walking distance comparable to that achieved in the placebo 

group. The post hoc analysis was able to show significant 

effects among different subgroups of patients who received 

the lower dose, but not in patients treated with the higher 

dose.100 On average, at the end of the study, subjects who 

received ataluren at a dose of 10, 10, 20 mg/kg were shown 

to be able to cover more distance than boys who received 

placebo. Of those, patients who were able to walk more than 

350 m at baseline and who received the lower dose of ataluren 

showed the greatest difference, with an average of 68.2 more 

meters covered over placebo-dosed patients. All other second-

ary outcome measures failed to provide significant improve-

ments in patients receiving active treatment compared to 

those in the placebo-control group. Similarly, no dystrophin 

expression was detected in any of the muscle biopsies, further 

limiting the evidence of efficacy of the drug.

The reasons for the apparent lack of efficacy in patients 

who received the higher dose are not clear and have not 

been investigated in detail. However, several hypotheses 

that could explain the inhibitory effects observed in patients 

receiving the higher dose have been suggested. Among 
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those, the more plausible appears to be related to possible 

interference of the RTC with normal processes of protein 

translation and protein synthesis as a result of off-target 

effects. Importantly, the effects observed do not appear 

to be confined to ataluren alone, since a dose-dependent 

inhibition of read-through activity has been observed in 

vitro as well as in vivo using a number of different RTCs 

including gentamicin.108–110

The ability of ataluren to delay disease progression in 

DMD patients was assessed in a Phase III study, which has 

recently concluded (PTC Therapeutics press release).111 The 

study enrolled over 220 patients in 53 sites across 18 coun-

tries. Most of the subjects who were enrolled in the Phase 

IIb study also participated in the trial. Patients between the 

ages of 7 and 16 years were randomized into two groups of 

approximately 110 subjects per group. Each group received 

either placebo or ataluren at a dose identical to that previ-

ously shown to have meaningful effects in Phase IIb trials 

and consisting of three daily doses of 10, 10, and 20 mg/kg of 

drug administered after breakfast, lunch, and dinner, respec-

tively. The study was conducted for a period of 48 weeks 

and was subsequently extended to an open-label extension 

study in which all subjects were allowed to receive ataluren 

at the dose of 10, 10, and 20 mg/kg as described above for 

an additional 50 weeks. The primary end point was change 

from baseline in the 6MWT. The results of the initial double-

blind study have been recently released and have confirmed 

those obtained in the Phase IIb study.100 Overall, in the whole 

population that received ataluren, the benefit in the 6MWT 

was only of 15 m, which was not statistically significant 

compared to the group that received placebo. Analyses of 

data from subgroups of patients demonstrated a significant 

delay in loss of ambulation in subjects who, at baseline, were 

able to walk over 300 m in the 6MWT, consistent with the 

results obtained in Phase IIb studies. Secondary outcome 

measures included additional tests of muscle function, CK 

levels, and cardiac evaluation. Whether the benefits obtained 

in some of the patients will be shown to have been sustained 

throughout the duration of the extension study and to what 

extent the effects achieved have been beneficial to patients 

remain unknown as a detailed analysis of all the end points 

is currently in progress. Importantly, the study also included 

additional tertiary end points that were introduced to assess 

their sensitivity and ability to detect improvement in muscle 

or motor function following treatment. If proven sufficiently 

sensitive, these new tests may provide new and improved 

methods to assess the efficacy of therapeutic interventions 

in DMD patients and could become an integral part of future 

clinical trials for these patients.

Approval of ataluren in DMD/BMD
Requesting an approval for the use of any drug worldwide 

requires the filing of different applications in each country for 

which approval is sought. The US and Europe (EU) are the 

two main regulatory agencies in the world that control how 

drugs are moved into the market. In the US, the progression 

to drug approval following the filing of an investigational 

new drug application and testing in human subjects can be a 

lengthy and time-consuming process. The results of clinical 

trials need to be compiled in a new drug application (NDA), 

which is subjected to extensive scrutiny by the FDA. In the 

EU, approval of new drugs is usually requested through the 

European Medicines Agency (EMA), a centralized system 

that makes a determination for all the states that are mem-

bers of the European community. The data presented to both 

agencies need to demonstrate not only the safety of the drug 

for which approval is requested but also, and foremost, its 

efficacy.

Because DMD and BMD are both rare and life-threatening 

conditions for which unmet needs for treatment exist, they 

are considered orphan diseases and, therefore, companies or 

sponsors that are working on the development of treatments 

for these disorders are eligible to receive incentives from 

governments, including the US through the FDA, under the 

Orphan Drug Act, and the EMA. Incentives include scien-

tific advice and protocol assistance to the applicant during 

the development of the medicine, as well as more frequent 

consultations on various issues related to the requirements 

needed to be met prior to receiving approval. Most impor-

tantly, orphan designation confers the drug under investiga-

tion to qualify for fast track status, which uses pathways that 

are intended to speed up the drug approval process. When 

completed successfully and based on the recommendations 

and decisions of specific designated committees, the process 

could ultimately lead to what is known in the US as an “accel-

erated approval”, or in EU as a “conditional approval”.

Despite the incentives, the process of requesting and 

obtaining approval is among the most tedious and one that 

has proven to be difficult for ataluren. PTC Therapeutics 

submitted an NDA to the FDA in 2011, but approval was 

refused based, primarily, on the lack of statistical significance 

obtained in the Phase IIb trial. A formal dispute resolu-

tion request was filed immediately after by the company 

requesting to be allowed to resubmit the NDA with the 
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updated meta-analysis conducted on the specific subgroups 

of patients and which showed significant effects in the 

population that received the lower dose. Despite the new 

results, the FDA reaffirmed the appropriateness of its earlier 

decision and rejected the possibility of filing a second NDA, 

but allowed for the decision to be reconsidered following 

the completion of the Phase III clinical trial. Currently, the 

company is finalizing the data analysis of the trial and is 

expected to file an NDA for marketing approval from the 

FDA within the year.

Similarly, the request to approve ataluren in EU has seen 

a series of initial rejections. In January 2014, the Commit-

tee for Medicinal Products for Human Use (CHMP) at the 

EMA that oversees applications seeking approval adopted a 

negative opinion, recommending the refusal of the granting 

of the conditional marketing authorization for ataluren for 

the treatment of DMD and BMD. Once again, the principal 

reason was based on the apparent lack of efficacy of the 

results obtained in Phase IIb studies. Additional concerns 

included weaknesses identified in the pharmacology data, 

particularly a lack of relevant data on the pharmacodynamic 

effects of ataluren in humans, reinforcing the uncertainties 

raised on its mechanism of action and the dose–response 

relationship seen in Phase IIb trials. After appeal, the 

CHMP Committee, although still considered the results 

not to be sufficiently robust due to the variability in the 

primary efficacy data, opted to accept the conclusions made 

by the company and obtained from the post hoc analyses 

supporting the efficacy of the drug in specific subgroups of 

patients. The CHMP concluded that the results derived from 

the Phase IIb studies may be considered clinically relevant 

and recommended conditional marketing authorization 

for ataluren in August 2014. The approval represents a 

huge milestone for the neuromuscular field since this new 

compound has become the first drug to be approved for the 

treatment of diseases caused by mutations in the dystrophin 

gene. Under the terms of the conditional approval, authori-

zation will be granted for 1 year and renewal is subjected 

to yearly revision of all the clinical safety data available 

postapproval, as well as those generated from the Phase 

III studies. The CHMP opinion on ataluren has been sent 

to the European Commission for adoption of a decision on 

a marketing authorization for all EU. Germany has been 

the first European country to provide ataluren to qualifying 

DMD and BMD patients.

Currently, PTC Therapeutics is expected to submit the 

results of the study to the EMA in hopes of receiving final 

approval for the drug in EU. Ataluren will be available to 

patients under the trade name of Translarna.

Impact of administering Translarna 
to BMD and DMD patients on 
societal burden
According to the most recent analyses performed in the US 

and EU, the costs of standards of care for a patient with DMD 

is significantly higher than the mean per-capita health expen-

diture and, although they differ from country to country, they 

range between US$100,000 and US$120,000 (or Interna-

tional dollars) per year. These costs reflect the expenses paid 

by health care providers, as well as out-of-pocket expenses 

paid by each patient’s family.112–114 The approval and com-

mercialization of ataluren will bring the costs of standard of 

care for qualifying patients to approximately $400,000 per 

year for each of the patients receiving the drug. In fact, the 

current list price of Translarna is about US$3,000 per gram 

of drug, which translates to approximately US$300,000 per 

year of treatment for each DMD patient. The list price reflects 

the needs of the company or companies that own the rights 

for the sale of the drug and their investors to recuperate the 

funds invested to develop the product and to receive revenues 

from its selling. Although high, these costs are justified by 

the limited number of patients who qualify for treatment and 

are within those estimated for other drugs that are currently 

approaching the market for the same disease. Nonetheless, 

these increases in health care costs have already generated 

concerns and criticisms by politicians in the US and in EU. 

The National Health System in the United Kingdom (UK) has 

refused to provide funding of Translarna for DMD, leading to 

a huge setback for the British families who were awaiting the 

availability of the drug in Britain. The decision is extremely 

disappointing considering that only between 100 and 200 

patients in the UK are eligible for treatment with Translarna, 

and therefore, the overall increase in health care costs to 

the British Government would only be minimal. Following 

several debates between the company, family advocates, and 

academicians, the British Government is now considering 

revising its position if the drug can be provided at a lower 

cost. An alternative approach to contain the costs of health 

care for DMD patients with nonsense mutation is to allow 

the use of a generic drug. However, such a drug will not be 

available for at least several more years due to the patent 

that protects the rights of manufacturing the compound, 

rendering this option highly unlikely. It will be interesting 

now to see whether the request made to lower the price will 
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be accepted and what other alternatives will be proposed to 

ensure that patients who can benefit from the drug receive 

the best standard of care available. However, it needs to be 

emphasized that limiting the revenues obtained for new 

drugs that target rare diseases may prove to be a mistake, as 

this could ultimately discourage companies from pursuing 

the development of new pharmaceutical products targeting 

those disorders.

Concluding remarks
The identification and commercialization of ataluren has 

offered new hope for the treatment of many disorders caused 

by nonsense mutations and, in particular, DMD. The efforts 

made by private foundations, patients and their caregivers, 

and other nonprofit organizations have clearly demonstrated 

the impact that the community can have on the advancement 

of strategies to treat rare disorders like DMD. These efforts, 

combined with the incentives offered by government agencies 

to pharmaceutical companies, have enabled the establish-

ment of strong research and development activities within 

industry sectors. Ataluren is the result of just one of those 

efforts. Importantly, its approval by the EMA, and possibly 

in the near future by the FDA, will prompt its testing in 

other genetic disorders caused by nonsense mutations, thus 

allowing for the establishment of its beneficial effects in 

other diseases. The impact that this small molecule has on 

the Duchenne community goes beyond its perspective thera-

peutic applicability. From a patient’s perspective and that of 

their caregivers, having the first approved drug developed to 

specifically target the disease represents a huge conquest and 

pay-off for their hard work and dedication demonstrated to 

generate awareness for this rare disorder. This is likely to be 

just the first of many steps forward that the patients and their 

families will witness in the near future toward the optimiza-

tion of an effective therapy for the disease. From a scientific 

perspective, the use of a drug specifically designed to restore 

full-length dystrophin expression will enable to better under-

stand the impact that a therapeutic application may have on 

disease progression and to correlate low, although detectable 

effects, with improvements on both quality of life and life 

expectancy of qualifying individuals. Furthermore, its use 

in patients may enable the establishment of some of the key 

parameters needed to consider a therapeutic application clini-

cally relevant. For instance, it may enable the correlation of 

the amount of muscle mass preserved in patients who undergo 

treatment for prolonged periods of time with the overall delay 

in loss of muscle function detected in those patients and its 

impact on secondary pathologies that arise as a result of the 

disease. Finally, even if the levels of dystrophin protein being 

restored by ataluren remain low, they may be sufficient to 

reduce phenotypic variances often observed among patients, 

allowing the identification of new factors or genetic modifiers 

that play active roles in the disease process.115,116

In conclusion, although the results obtained in clinical 

trials clearly demonstrate that ataluren may not be able to 

reverse the disease pathology in patients, its use in the clinic 

is likely to have an impact on disease progression. DMD boys 

who undergo active treatment at very early stages, immedi-

ately followed their diagnosis, are likely to benefit the most 

by RTCs. However, it is too early to be able to predict the 

extent of the benefits achieved on both life expectancy and 

its quality. Side effects will have to be evaluated in detail 

over prolonged periods of administration and throughout 

the lifetime of the patients to ensure its safety. Ultimately, 

developing new compounds with improved read-through 

activity is critical to maximize beneficial effects to patients. 

Nonetheless, the introduction of ataluren in the market rep-

resents an important milestone in the field that needs to be 

regarded as a tremendous achievement.
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