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)yroid disease has now become the second largest disease in the endocrine field; SPECT imaging is particularly important for the
clinical diagnosis of thyroid diseases. However, there is little research on the application of SPECT images in the computer-aided
diagnosis of thyroid diseases based on machine learning methods. A convolutional neural network with optimization-based
computer-aided diagnosis of thyroid diseases using SPECT images is developed. )ree categories of diseases are considered, and
they are Graves’ disease, Hashimoto disease, and subacute thyroiditis. A modified DenseNet architecture of convolutional neural
network is employed, and the training method is improved. )e architecture is modified by adding the trainable weight pa-
rameters to each skip connection in DenseNet. And the training method is improved by optimizing the learning rate with flower
pollination algorithm for network training. Experimental results demonstrate that the proposed method of convolutional neural
network is efficient for the diagnosis of thyroid diseases with SPECT images, and it has superior performance than other
CNN methods.

1. Introduction

)e thyroid gland is one of the important organs of the
human body. It produces the thyroid hormone which is vital
to control the body’s metabolism. )yroxine and tri-
iodothyronine are two active thyroid hormones that have
important effects on protein production, body temperature
regulation, energy production, and energy regulation of the
human body. )erefore, if the thyroid gland is diseased, the
metabolism and regulation of the human body will lose the
necessary control and that may be life threatening in severe
cases.

)yroid disease has now become the second largest
disease in the endocrine field [1], which can lead to death
when the disease is severe. )e total number of patients with
thyroid disorders worldwide is more than 300 million, of
whom the number of females is about 6∼10 times of that of
male patients, and the number of females over 40 years is
about 10%∼20%. In China, there are more than 40 million

people with primary hypothyroidism and more than 10
million people with primary hyperthyroidism. )e treat-
ment rate for hyperthyroidism in China is less than 5%.

In practical clinical practice, many approaches can be
used to diagnose thyroid diseases, such as clinical evaluation,
blood examination, thyroid hormone (TSH) detection,
imaging examination, and tissue biopsy. )e comprehensive
application of various detection methods has been very
common in clinical diagnosis, such as the combined use of
TSH detection data and blood examination data.

Computer-aided diagnosis (CAD) systems are in-
creasingly being used in clinical diagnostics. On the one
hand, these CAD systems can reduce the drudgery of
doctors. On the other hand, they can avoid some mistakes
that may be made in the diagnostic process. More and more
CAD systems are being applied in practice to improve the
accuracy of diagnosing various diseases. A lot of research
studies on CAD of thyroid diseases have been carried out at
present [2–10].
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Imaging technology is very important for the diagnosis
of thyroid diseases, so there have been a lot of research
studies on CAD for imaging technology. Common medical
images used to diagnose thyroid diseases include ultra-
sound, CT, SPECT, etc. Ultrasound imaging has the ad-
vantages of good real time, convenient operation, and low
cost, so it is widely used in the clinical diagnosis of thyroid
diseases. )e CAD of thyroid disease based on ultraso-
nography was developed earlier, and the typical example
was a benign or malignant diagnosis of thyroid nodules
based on ultrasound [8–10]. Compared with the ultrasonic
image, the CT image has a clearer image detail display, but
it also brings ionizing radiation. CT images also caught
attention in CAD studies, such as image segmentation and
volume estimation of the thyroid gland [11]. Although as
an important imaging modality, SPECT plays an irre-
placeable role in the diagnosis of thyroid diseases, there is
no research on the CAD of thyroid diseases based on
SPECT.

Unlike ultrasound imaging and X-ray imaging of CT,
SPECT imaging uses a gamma-ray camera to collect image
data, and it is a nuclear medicine imaging method. )e
SPECT imaging system consists of one or more gamma
cameras mounted on the platform that allows these cameras
to accurately rotate around the patient when collecting the
images. Patients ingest radioisotope drugs with appropriate
half lives. Due to radioactive decay, drugs emit gamma
photons when they reach the desired imaging location. )e
main feature of SPECT imaging is that the resulting images
are 3D tomographic images, which can provide various cross
section information. SPECT can show the changes of blood
flow, function, and metabolism of organs or lesions, which is
beneficial to the early diagnosis and diagnosis of the disease.
SPECT imaging is particularly important for the clinical
diagnosis of thyroid diseases. At present, when other im-
aging or examination methods cannot provide a reliable
diagnosis, it is necessary to use SPECT imaging to make a
final diagnosis of thyroid diseases. Although SPECT is ex-
tremely important for the diagnosis of thyroid diseases, there
is no study of thyroid disease CAD using SPECT image
currently.

)is paper studies thyroid disease CAD using SPECT
image. In this paper, the machine learning method of deep
learning is adopted to diagnose thyroid diseases using
SPECT images. From the perspective of machine learning
methods, the use of SPECT images for thyroid disease di-
agnosis is to link the characteristics of SPECT images with
the diagnosis of thyroid diseases, and the classification
problem of SPECT is to classify thyroid SPECT images into
specific diseases according to characteristics. )erefore, for
machine learning methods, the use of SPECT images for
disease diagnosis is to solve the classification problem of
SPECT images. )e DenseNet network is an important deep
learning network architecture that has emerged in recent
years, and it has performed well in many practical appli-
cations. )is paper uses DenseNet network to establish the
diagnosis model of thyroid disease based on SPECT image.
On the basis of the traditional DenseNet network archi-
tecture, both the architecture and the training method are

improved in this paper, which greatly improves the di-
agnosis effect of thyroid disease.

)e main contributions of the paper include the fol-
lowing: first, the paper introduces the deep learning method
into the diagnosis of thyroid disease based on SPECTimages.
Second, the paper has improved the existing deep learning
network DenseNet from both the network architecture and
the trainingmethod, whichmakes the diagnostic effect of the
deep learning method greatly improved compared with
other deep learning methods.

)is paper is organized as follows. Section 2 reviews the
related works. Section 3 presents the proposed solution
based on deep learning method for thyroid disease diagnosis
using SPECT images. Section 4 presents experimental results
and discussions. Section 5 concludes the paper.

2. Related Work

In the CAD study of thyroid disease, a large amount of
literature focuses on the diagnostic research employing TSH
data due to the open dataset of TSH in the UCI machine
learning repository. In this dataset, thyroid diagnosis is
considered as a classification problem with three classes of
normal, hyperthyroidism, and hypothyroidism. If we con-
sider the diagnosis of thyroid disease as a classification
problem, we can introduce a powerful machine learning
technology to discover the complex relationship of bio-
medicine to build CAD system. With the development of
machine learning technology, the recognition accuracy of
this problem has been improved gradually. )e diagnosis
accuracy was 78.14% when employing probabilistic neural
network method in 1997 [2]. )e accuracy achieved 88.3%
when multilayer perception was used in 2004 [3]. )e ac-
curacy rate of wavelet-based support vector machine (SVM)
recognition was 91.86% in 2011 [4], and the SVM method
with particle swarm optimization achieved the accuracy of
97.49% in 2012 [5]. And extreme learning machine method
(ELM) has achieved the accuracy rate of 97.73% [6].

Deep learning is a branch of machine learning tech-
nology in the field of artificial intelligence [12, 13]. Tradi-
tional machine learning techniques, including neural
networks, SVM, ELM, etc., do not work well with direct
processing of raw data. However, deep learning technology
can automatically discover the feature expression and
classification methods which need to be detected and
classified by calculation, thus greatly improving the effec-
tiveness of machine learning. Deep learning is such a feature
learning method, which transforms the original data into a
higher level and more abstract expression through some
simple nonlinear models. Deep learning uses a combination
of enough transformations so that very complex functions
can also be learned.

)e deep learning architecture uses a multilayer stack of
simple modules, and most of which are aimed at learning, as
well as some mappings for calculating nonlinear input and
output. Each module in the stack converts its input to in-
crease the selectivity and immutability of the expression.
Convolution neural network (CNN) is a typical depth
learning model, which consists of a series of modules. )e
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initial modules are composed of a convolution layer, a pool
layer, and the elements of the convolution layer. )e
function of convolution layer is to detect the local con-
nection of the upper layer feature, and the function of the
pool layer is to combine the similar features in semantics.
)e important feature of deep learning is that the features of
each layer are not designed artificially but are learned from
the data using the common learning process. As one of the
most important structures of deep learning, CNN is no
exception. )is ability to automatically discover features
makes CNN achieve better results than traditional methods
in many applications such as disease diagnosis based on
medical image classification and lesion area segmentation.
CNN is also used in a variety of medical imaging [14–16],
such as ultrasound, CT, MRI, medical optics images, pho-
toacoustic imaging, and so on.

In recent years, methods based on deep learning have
also been used for the recognition and processing of thyroid
images. Because of the high incidence of thyroid nodules, the
use of ultrasound images to detect thyroid nodules is cur-
rently more studied using CNN methods [10,17–19]. )ese
studies use the usual CNN model or a combination of two
CNNmodel. )e CNNmethod is also used to detect thyroid
cancer using ultrasound images. )e identification of thy-
roid papillary cancer and thyroid papillary carcinoma using
ultrasound images was reported [20, 21]. Simple CNN
models have also been used in these studies.

At present, the CNN method has developed many
complex and effective models, which have also been
gradually applied to medical diagnosis. DenseNet [22] is
an important CNN architecture, and it has been widely
used for disease diagnosis. For example, an efficient
cardiac disease classification employing DenseNet is re-
ported recently in [23]. ResNet is another efficient CNN
architecture [24], and it is used to classify clinical 12 skin
diseases in recent times [25]. Inception model is also
reported for MRI-based classification of migraine in [26].
VGG architecture of CNN is employed in two-phase
multimodel automatic brain tumour diagnosis system
[27] and lung nodule classification between benign nodule
and lung cancer [28]. And a VGG variant architecture is
employed to detect breast cancer using symmetry in-
formation [29]. GoogleNet is a convolutional neural
network with a standard stacked convolutional layer with
one or more fully connected layers. It has many successful
applications in image-based medical diagnosis, such as
identifying the stage of diabetic retinopathy [30], auto-
mated classification of pulmonary tuberculosis in chest
radiography [31], the classification of breast lesions in
ultrasound images [32], and the like. In particular, Chi
et al. studied thyroid nodule classification in ultrasound
images based on GoogleNet [9]. )e stacked denoising
autoencoders (SDAE) model increases the robustness of
the model by introducing noise into the input layer and is
also used in medical diagnostics such as lung cancer di-
agnosis and brain lesion detection [33–35]. Studies have
shown that the applications of these models help CNN to
better discover the characteristics of different image types,
and thus obtain better classification results. In the

research of this paper, we improve the network archi-
tecture and the training method based on DenseNet
model. )e experimental results show that this method
has higher accuracy and better performance than other
models in thyroid disease classification using SPECT
image.

3. Materials and Methods

Different from the modality of ultrasound and CT that are
often used to determine existing nodules and the nature of
nodules, SPECTis more often used to determine the functional
state of the thyroid gland in clinical practice. Classification of
thyroid diseases by pathology is very complex. However, in
actual clinical diagnosis and treatment, thyroid disorders are
usually divided into three categories, which are Grave’s disease,
Hashimoto disease, and subacute thyroiditis. To be consistent
with the actual clinical needs, the diagnosis based on SPECT
images in this research is also divided into four categories,
which are Grave’s disease, Hashimoto disease, subacute thy-
roiditis, and normality.

)e proposed thyroid SPECT diagnosis method is il-
lustrated in Figure 1.

Like other machine learning methods, the deep learning-
based approach presented in this paper is divided into two
stages: training stage and diagnosis stage. In the training
phase, we used data augumentation, transfer learning, im-
proved network architecture, and optimization-based train-
ing methods to train the CNN model. We will discuss these
techniques in detail below. When the training is completed,
this trained model can be used for SPECT-based thyroid
disease diagnosis. When a SPECT image is input, the model
can output the diagnosis result, which is Grave’s disease,
Hashimoto disease, subacute thyroiditis, or normality.

3.1. Dataset and Data Augumentation. A SPECT image
dataset was established for the diagnosis of thyroid diseases.
)e images were collected with Siemens SPECT ECAM in
Heilongjiang Provincial Hospital. )e sources of these
images were outpatient or inpatient. )ese SPECT images
were also labelled with the true thyroid diagnosis results.)e
labelled diagnostic conclusions were confirmed by the
medical history and the auxiliary examination, and many of
these conclusions are confirmed by the cure after diagnosis
and treatment. Some images in the dataset are illustrated in
Figure 2.)e dataset had 780 samples of Grave’s disease, 438
samples of Hashimoto disease, 810 samples of subacute
thyroiditis, and 860 samples of normality.

Due to the fact that the dataset was not large enough,
mixup [36, 37] was employed to augment the dataset. Mixup
method can generate new samples by linear interpolation of
given samples and their labels. Many studies have revealed
that the mixup training method has better generalization
ability than the traditional empirical risk minimization
method [36, 37]. And mixup is used in this paper to generate
more samples. In mixup, two images were selected each time
and were linearly interpolated to generate a new virtual
sample as follows:
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X′ � αXi +(1− α)Xj,

Y′ � αYi +(1− α)Yj,
(1)

where Xi is an original image which is randomly selected
from one SPECTcategory to be augmented, Xj is an original
image which is randomly selected from all the SPECT image
dataset, and Xj is different from Xi. Yi and Yj are one-hot
encoding vectors to represent the corresponding category of
Xi and Xj respectively, and α and (1− α) are the linear
factors of Xi, Xj and Yi, Yj, respectively, 0.5≤ α≤ 1; they
determine the proportion of the original two real samples
when generating a new fake sample.

We have increased the samples of the dataset. When we
generate a new sample, α is randomly selected from a
uniform distribution of [0.5, 1]. And each kind of sample
number reaches to 2000. Every category is randomly divided
into 2 groups, among them 1400 samples for training and
600 samples for test.

3.2. Transfer Learning. As obtaining large dataset with
comprehensively annotation in the medical imaging domain
is a challenge, transfer learning is often employed to solve the
problem of lacking data. Transfer learning fine-tunes CNN
models pretrained from natural image dataset to medical

Data augumentation

Training stage

Diagnosis stage

Thyroid SPECT
training data

Augumented thyroid 
SPECT training data

ImageNet dataset

Pretrain cnn model

Trained CNN model

Improved model training
with FPA

Trained thyroid 
diagnosis model

Apply trained thyroid
dignosis model 

Thyroid SPECT
test data

(i)
(ii)

(iii)
(iv)

Grave’s disease
Hashimoto disease
Subacute thyroiditis
Normal

Diagnosis results

Figure 1: )e proposed thyroid SPECT diagnosis method.

Grave’s disease

Hashimoto disease

Subacute thyroiditis

Normal

Figure 2: Image samples in the dataset.
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image tasks. )e effectiveness of transfer learning in medical
image classification and detection tasks has been demon-
strated in many studies and applications [17, 28, 38]. When a
small dataset is trained directly with deep learning networks,
it can easily lead to overfitting. )e transfer learning is able
to improve the initial ability of extracting features to alleviate
the risk of overfitting. We transferred a set of pretrained
weight from ImageNet to our proposed network. After the
transferring of network weights, we can use the SPECT
image dataset to fine-tune our proposed network. Similar to
other medical image classification and detection tasks, we
used batch normalization to normalize the batch to prevent
the gradient from vanishing or exploding in the fine-tune
process. In order to prevent overfitting, we adopt dropout
strategy in the training process where each backpropagation
updates a part of the network with a certain probability. We
also take early stopping strategy to stop training when the
network performance on the validation set no longer
increases.

3.3. Network Architecture. DenseNet is a recently proposed
network architecture that has been studied and applied to
provide more effective classification accuracy than previous
networks. )e advantage of DenseNet is that it alleviates the
problem of gradient vanishment. )e gradient vanishment
problem is due to the use of backward propagation in deep
learning networks to modify the parameters by calculating
gradients to reduce the classification error. But with the
deepening of the network depth, the gradient will gradually
disappear in backward propagation. Under the premise of
guaranteeing the maximum information transmission be-
tween the layers in the middle, DenseNet can alleviate the
problem of gradient vanishment by directly connecting all
the layers. Meanwhile, DenseNet enhances the delivery of
the feature and makes more efficient use of the feature.
Finally, DenseNet is somewhat less parametric, making it
easier to be trained. )erefore, in the research of this paper,
DenseNet is also used to classify thyroid diseases based on
SPECT images.

In DenseNet, the output of the l-th layer is

yl � Fl x0, x1, . . . , xl−1􏼂 􏼃, Wl􏼈 􏼉( 􏼁, (2)

where Fl is a nonlinear transformation function, Wl is its
parameters in the l-th block, yl is the output of the l-th block,
xl is the input of the l-th block, and [x0, x1, . . . , xl−1] refers
to the concatenation of the features produced in layers
0, 1, . . . , l− 1.

A modified network architecture is developed in this
paper. In DenseNet, features of the previous layers are
concatenated with the same weight in every cross layer, but
not all these previous features are useful. A modified ar-
chitecture is proposed by adding the trainable weight pa-
rameters to each skip connection as shown in Figure 3. And
the output of the l-th layer in this modified structure is
modified as

yl � Fl x0 · kl,0, x1 · kl,1, . . . , xl−1 · kl,l−1􏽨 􏽩, Wl􏼈 􏼉􏼐 􏼑, (3)

where kl,0, kl,1, . . . , kl,l−1 refers to the parameters which
determinate weights of x0, x1, . . . , xl−1 when they concate-
nate to the l-th layer.

)e detailed network architecture is listed in Figure 4.
And the dense block in the architecture is the improved
dense block, and the architecture of the improved dense
block is shown in Figure 5.

In the proposed architecture, the network is more easy to
learn the weights parameters during the training period.
During the process of backward propagation, the parameters
of weight represent the degree of importance of the cor-
responding feature map for the image classification.
)erefore, greater weight means the corresponding feature
map plays a vital role in the classification task, that is to say it
contains more useful information. Otherwise, the weight is
small. Due to the fact that the weights of the corresponding
feature map in each layer are no longer fixed, the network
obtains greater flexibility with the ability to enhance effective
features. Meanwhile, the pooling layer is replaced with di-
lated convolution layer in the network architecture to
preserve the important features as much as possible.

3.4. Learning Rate Optimized with Flower Pollination
Algorithm. Learning rate is one of the most important
parameters of CNN, and the quality of learning rate selection
will largely determine the speed and quality of network
training. )e random gradient descent algorithm is used in
CNN, and the training set is divided into several mini-
batches. For each minibatch, the following processing
procedure is repeated.)eminibatch is used as the input x of
the network, and the output y is computed, that is,

y � f(x, w), (4)

where w is the network parameter. )en, we compare the
output y with the label y

⌢ representing the true value with the
loss function L to get the loss C. Finally, by calculating the
gradient value ∇w � zC/zw of the network parameters, we
use this gradient to update w as

w⟵w− l · ∇w, (5)

where l is learning rate.

Dense layer

Input

Output

Concatenation

Dense layer

Input

Output

Concatenation

Trainable
parameters

Dense block Improved dense block

Figure 3: )e improved dense block replaces all the features with
trainable parameters for concatenation.
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However, there are two problems with the above method.
First, after updating the parameter w of the current minibatch,
the processing and parameter updating of the next minibatch
data begins directly, while the effect of the parameter updating
of the minibatch is not validated. )is means that it is not
known whether the loss C of the current minibatch is reduced.
Second, since the learning rate is often selectedmanually based
on experience, it is likely that it does not effectively reduce the
computational loss of the current minibatch.

)erefore, this paper proposes an improved method to
solve the two problems mentioned above. Before updating
with equation (5), the learning rate l in equation (5) is op-
timized to get the best learning rate parameter, and then
equation (5) is applied to complete the update. By applying this
optimization strategy, we can ensure that each updated w can
reduce the loss value of the currentminibatch, which is a better
classification result, so as to ensure a better learning effect.

In this paper, the flower pollination algorithm (FPA)
algorithm is used to find the optimal parameter of learning
rate l in equation (5). FPA algorithm is a kind of optimi-
zation algorithm which simulates the pollination process of
flowers in nature, which has been used to solve multi-
objective optimization problem and has achieved good re-
sults [39–41]. )e algorithm has the advantages of less
parameters and easier implementation, and it has strong
global optimization ability.

Pollen pollination in nature includes self-pollination and
cross-pollination, which is simulated by FPA algorithm. In
the FPA algorithm, it is assumed that each flower is a so-
lution of the optimization problem solved; each flower
chooses the cross-pollination operation with the probability
PC to reproduce or chooses the self-pollination operation
with the probability 1−PC to reproduce. Cross-pollination
operation draws on the method of cross-pollination in the
nature of bee and butterflies in different flowers with levy
distribution in the global pollination of flowers. Self-
pollination operation simulates the method of near-
distance local pollination between the same flower in na-
ture. )e main optimization process of learning rate pa-
rameters based on FPA in this paper is summarized as
follows.

Normalization

ReLU

Convolution

Normalization

ReLU

Convolution

Input feature

Feature

Concatenation

Trainable parameters
(kl,0, kl,1, ..., kl,l–1)

Output feature

Figure 5: )e improved dense block architecture of the proposed
thyroid SPECT diagnosis method.

Layers Output size Description
Convolution 112 × 112 7 × 7 conv, stride 2
Pooling 56 × 56 3 × 3 max pooling, stride 2

Dense block (1) 56 × 56

Transition layer (1) 56 × 56 1 × 1 conv
28 × 28 2 × 2 average pooling, stride 2

Dense block (2) 28 × 28

Transition layer (2) 28 × 28 1 × 1 conv
14 × 14 2 × 2 average pooling, stride 2

Dense block (3) 14 × 14

Transition layer (3) 14 × 14 1 × 1 conv
7 × 7 2 × 2 average pooling, stride 2

Dense block (4) 7 × 7

Classification layer 1 × 1

7 × 7 global average pooling
1000D fully connected, ReLU
100D fully connected, ReLU
4D fully connected, So�max

BN
ReLU

1 × 1 conv
BN

ReLU
3 × 3 conv
Dropout

∗Trainable parameter

× 6

BN
ReLU

1 × 1 conv
BN

ReLU
3 × 3 conv
Dropout

∗Trainable parameter

× 12

BN
ReLU

1 × 1 conv
BN

ReLU
3 × 3 conv
Dropout

∗Trainable parameter

× 12

BN
ReLU

1 × 1 conv
BN

ReLU
3 × 3 conv
Dropout

∗Trainable parameter

× 16

Figure 4: )e CNN architecture of the proposed thyroid SPECT
diagnosis method.
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Step 1. Parameter Initialization. Determine the number of
iterations N, the number of pollen m, and the probability of
PC; the range of learning rate l is in [Lmin, Lmax]. And l is
regarded as the pollen, which obeys the standard distribu-
tion on the interval of [Lmin, Lmax].

Step 2. Probability P is randomly generated, and if P≤PC,
the cross-pollination operation is performed; otherwise the
self-pollination operation is performed. In cross-pollination
operation, the following update of the current learning rate li
is performed

li⟵ li + c · L · lbest − li( 􏼁, (6)

where c is the scaling factor, and in this paper it is set to 0.1. L
is a random number which subjects to the Levy distribution
with the exponential parameter of 1.5. l is the current
learning rate, and lbest is the optimal solution in the global. In
self-pollination operation, the following update of the
current learning rate li is performed:

li⟵ li + ε · l1 − l2( 􏼁, (7)

where ε is a random real number subject to uniform dis-
tribution between [0, 1] and l1 and l2 are two random
pollens, which denote learning rates in our application.

)e pseudocode of flower pollination algorithm used for
updating learning rate is shown in Figure 6. After applying
the above mentioned FPA algorithm to optimize learning
rate parameter in CNN training, we can obtain a well-
trained CNN with good performance for classification of
thyroid disease with SPECT images.

4. Results and Discussion

)e experiments are performed using the deep learning
framework PyTorch on a workstation equipped with two
NVIDIA Geforce 1080Ti GPUs and an Intel Xeon E5-2620
CPU. Transfer learning is used with DenseNet121 and pa-
rameters that were pretrained by ImageNet and fine-tuned
with our SPECT image dataset. Each minibatch contains 5
images, and each image size is 255× 255. )e loss function is
set as cross entropy loss. Every experiment is preformed 10
times, and results are averaged.

Other CNN methods, including DenseNet121 [22],
ResNet101 [23], InceptionV3 [24], VGG19 [25, 26], Mod-
ified VGG (MVGG) [27], GoogleNet [9,28–30], and SDAE
[31–33], have also been implemented for comparison with
the methods proposed in this paper.

4.1. Classification Performance Evaluation. In order to
evaluate our proposed method, the classification recall,
precision, accuracy, specificity, and F1 score are used as the
indicators to evaluate the performances of different
methods.

Depending on whether the classification results of the
CNN are correct and whether the sample is positive, true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN) for each class can be determined.

Recall, precision, accuracy, and F1 score are defined as
follows:

recall �
TP

TP + FN
,

precision �
TP

TP + FP
,

accuracy �
TP + TN

TP + FN + FP + TN
,

specificity �
TN

FP + TN
,

F1 score �
2TP

2TP + FP + FN
.

(8)

Recall is the ratio of the number of samples correctly
predicted for the class to the total number of samples for the
class, and it is also called sensitivity or hit rate. Precision
refers to the ratio of the number of category samples cor-
rectly predicted to the total number of samples all predicted
for that category. Accuracy is the ratio of correctly predicted
observations. Specificity is the ratio of correctly predicted
negative samples to the total negative samples. F1 score is the
harmonic mean of precision and sensitivity of the classifi-
cation. )e larger these performance values are, the better
the performance of a method is.

To compare the classification accuracy, the classification
recall, precision, accuracy, specificity, and F1 score in-
dicators are listed in Tables 1–4. Our proposed method
obtains the best performance than other methods. )is
shows that our improvements to the network architecture
and learning method are effective.

4.2. Average Precision with Different Iteration Numbers.
Average precision with different iteration numbers is also
compared and illustrated in Figure 7. Our proposed method
obtains the best average precision when the iteration
number is greater than 56, so the overall performance of our
proposed method is superior to other methods.

4.3. Confusion Matrix. )e confusion matrix is also
employed in this work to evaluate the classification per-
formance. Each column represents the actual category that
images are classified to in confusion matrix. And the total
number of each column represents the number of images
actually classified as the category. )e confusion matrix of
different methods in this work is illustrated in Figure 8. And
our proposed method has the least classification error.

5. Conclusions

An efficient method of convolutional neural network for the
diagnosis of thyroid diseases using SPECTimages is proposed.
)e proposed method employs modified DenseNet archi-
tecture and improved training method. Experimental results
demonstrate that the proposed method had superior per-
formances than other methods of convolutional neural

Computational Intelligence and Neuroscience 7



Table 1: Grave’s disease class performance comparison of different methods (percent).

Network DenseNet121 ResNet101 InceptionV3 VGG19 MVGG GoogleNet SDAE Proposed
Recall 95.17 93.83 88.50 89.00 89.50 90.83 92.33 97.50
Precision 98.11 98.57 90.15 91.44 91.95 91.91 94.22 98.82
Accuracy 98.33 97.63 94.71 95.17 95.42 95.71 96.67 99.08
Specificity 99.39 98.89 96.78 97.22 97.39 97.33 98.11 99.61
F1 score 96.62 95.18 89.32 90.20 90.71 91.37 93.27 98.15

Input:
Number of iterations: N
Number of Pollens: m
Probability of global pollination: PC

Lower limit of learning rate: Lmin

Upper limit of learning rate: Lmax

Output:
�e optimized learning rate lbest

Begin
Create m pollens, ll, l2, ..., lm, which represent a learning rate respectively and

obey the standard distribution on the interval of [Lmin, Lmax].
While (t < N)

For i = 1:m
Random a number P
If P < PC ,

Sample γ from a Levy-Fight distribution
Global pollination via
l k

t+1 l i
t + γ ·L · (l t

best – l i
t)

Else
Draw ε from an uniform distribution in [0, 1]
Randomly choose j and k (1 ≤ j, k ≤ m)
Do local pollination via
l k

t+1

Endif
Evaluate L(y, f(x, w0 – l i

t+1 ·  

If L(y, f(x, w0 – l i
t+1 ·  

Update l i
t+1 in the population

Endfor
t t + 1

Find the current best learning rate lbest

Endwhile
End

l i
t + ε · (ltk – l j

t)

∆w))
∆w)) then∆w)) < L(y, f(x, w0 – l i

t  ·  

Figure 6: Pseudocode of flower pollination algorithm used for updating learning rate.

Table 2: Hashimoto disease class performance comparison of different methods (percent).

Network DenseNet121 ResNet101 InceptionV3 VGG19 MVGG GoogleNet SDAE Proposed
Recall 97.17 96.50 92.33 91.67 90.33 93.17 94.50 98.50
Precision 95.57 94.92 90.67 91.21 91.71 91.49 93.41 98.50
Accuracy 98.17 97.83 95.71 95.71 95.54 96.13 96.96 99.25
Specificity 98.50 98.28 96.83 97.06 97.28 97.11 97.78 99.50
F1 score 96.37 95.70 91.49 91.44 91.02 92.32 93.95 98.50
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Figure 7: Average precision curve with different iteration numbers.

Table 3: Subacute disease class performance comparison of different methods (percent).

Network DenseNet121 ResNet101 InceptionV3 VGG19 MVGG GoogleNet SDAE Proposed
Recall 98.17 97.33 89.17 94.00 92.50 92.83 95.33 100.00
Precision 96.88 96.21 93.04 94.31 90.54 96.20 93.77 98.68
Accuracy 98.75 98.38 95.63 97.08 95.71 97.29 97.25 99.67
Specificity 98.94 98.72 97.78 98.11 96.78 98.78 97.89 99.56
F1 score 97.52 96.77 91.06 94.16 91.51 94.49 94.55 99.34

Table 4: Normal class performance comparison of different methods (percent).

Network DenseNet121 ResNet101 InceptionV3 VGG19 MVGG GoogleNet SDAE Proposed
Recall 100.00 100.00 99.50 99.17 96.83 100.00 96.33 100.00
Precision 100.00 100.00 95.52 96.75 94.93 97.24 97.14 100.00
Accuracy 100.00 100.00 98.71 98.96 97.92 99.29 98.38 100.00
Specificity 100.00 100.00 98.44 98.89 98.28 99.06 99.06 100.00
F1 score 100.00 100.00 97.47 97.94 95.87 98.60 96.74 100.00

G H S N

G 0.98 0.02 0.01 0.00 

H 0.01 0.99 0.00 0.00 

S 0.00 0.00 1.00 0.00 

N 0.00 0.00 0.00 1.00 

(a)

G H S N

G 0.95 0.03 0.02 0.00 

H 0.02 0.97 0.01 0.00 

S 0.00 0.02 0.98 0.00 

N 0.00 0.00 0.00 1.00 

(b)

G H S N

G 0.94 0.04 0.03 0.00 

H 0.02 0.97 0.01 0.00 

S 0.01 0.02 0.97 0.00 

N 0.00 0.00 0.00 1.00 

(c)

G H S N

G 0.89 0.07 0.03 0.01 

H 0.05 0.92 0.02 0.01 

S 0.03 0.02 0.94 0.01 

N 0.00 0.00 0.00 0.99 

(d)

G H S N

G 0.89 0.07 0.03 0.01 

H 0.05 0.92 0.02 0.01 

S 0.03 0.02 0.94 0.01 

N 0.00 0.00 0.00 0.99 

(e)

G H S N

G 0.90 0.04 0.06 0.01 

H 0.04 0.90 0.03 0.03 

S 0.04 0.02 0.93 0.02 

N 0.00 0.02 0.01 0.97 

(f )

G H S N

G 0.91 0.07 0.02 0.01 

H 0.04 0.93 0.02 0.01 

S 0.04 0.02 0.93 0.02 

N 0.00 0.00 0.00 1.00 

(g)

G H S N

G 0.92 0.04 0.03 0.01 

H 0.02 0.95 0.02 0.01 

S 0.02 0.02 0.95 0.01 

N 0.01 0.01 0.01 0.96 

(h)

Figure 8: Confusion matrix comparison.
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network. )is study shows that it is feasible to apply con-
volutional neural network to the diagnosis of thyroid diseases
based on SPECT images, and the method presented in this
paper is very promising.

And there is still much work to be done before CNN-
based method can be applied in practice, including the
establishment and testing of larger datasets, the comparison
and evaluation of diagnoses by professional physicians, and
the study of more effective models of deep learning. In
addition, due to insufficient data, more detailed classification
and diagnosis of thyroid diseases has not been carried out,
which will be a very important part of our future research.
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