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Abstract

Social outings can trigger influenza transmission, especially in children and elderly. In
contrast, school closures are associated with reduced influenza incidence in school-aged chil-
dren. While influenza surveillance modelling studies typically account for holidays and mass
gatherings, age-specific effects of school breaks, sporting events and commonly celebrated
observances are not fully explored. We examined the impact of school holidays, social events
and religious observances for six age groups (all ages, ⩽4, 5–24, 25–44, 45–64, ⩾65 years) on
four influenza outcomes (tests, positives, influenza A and influenza B) as reported by the City
of Milwaukee Health Department Laboratory, Milwaukee, Wisconsin from 2004 to 2009. We
characterised holiday effects by analysing average weekly counts in negative binomial regres-
sion models controlling for weather and seasonal incidence fluctuations. We estimated age-
specific annual peak timing and compared influenza outcomes before, during and after school
breaks. During the 118 university holiday weeks, average weekly tests were lower than in 140
school term weeks (5.93 vs. 11.99 cases/week, P < 0.005). The dampening of tests during
Winter Break was evident in all ages and in those 5–24 years (RR = 0.31; 95% CI 0.22–0.41
vs. RR = 0.14; 95% CI 0.09–0.22, respectively). A significant increase in tests was observed dur-
ing Spring Break in 45–64 years old adults (RR = 2.12; 95% CI 1.14–3.96). Milwaukee Public
Schools holiday breaks showed similar amplification and dampening effects. Overall, calendar
effects depend on the proximity and alignment of an individual holiday to age-specific and
influenza outcome-specific peak timing. Better quantification of individual holiday effects,
tailored to specific age groups, should improve influenza prevention measures.

Introduction

Despite global efforts to control influenza, this seasonal infection remains a serious health
problem, especially in children, older and immuno-compromised peoples. Influenza viral
infection is highly contagious and has a short incubation period yet is preventable if multiple
barriers are employed. Increased social mixing, frequent physical contacts and high travel
volumes are known to boost influenza transmission [1, 2, 3]. Social outings are shown to
heighten the opportunities for influenza spread, especially in susceptible populations such
as children and the elderly [4, 5]. In contrast, school closures are associated with reductions
of influenza incidence in school-aged children [6, 7]. The effects of holidays and social events
on seasonal influenza have been explored in influenza surveillance time series and agent-based
modelling studies [2, 7–10]. While these studies often account for holidays and mass gather-
ings, the differential and age-specific effects of school breaks, sporting events and national and
cultural observances are not fully explored. Particularly, it is unclear whether such effects are
uniform across age groups.

Most research is emphasizing understanding transmission dynamics, both in the context of
socially acceptable control measures such as school holiday timing or duration and quantifying
transmission related to travel timing, volume and route [6, 7, 11–16]. A spatiotemporal study
of influenza spread among school-aged children in Belgium illustrated that changes in mixing
patterns, rather than changes in travel behaviour, are responsible for altering the seasonal pat-
tern of influenza [7]. Another study showed that during school closures, influenza risk shifts
from school-aged children to adults due to increased child–adult interactions [3], supporting
that routine vaccination of children might impart indirect protection to the elderly [17].
Stochastic simulation studies have suggested that weekends and holidays could delay seasonal
disease peaks and mitigate infection spread by periodically dampening transmission [7, 12];
for example, an extension of the Christmas holiday by 1 week might further mitigate infection
[7, 12]. While Christmas holidays have the largest documented impact on influenza
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transmission, other school breaks may also reduce an epidemic’s
size, stressing the importance of full calendar analyses [3, 11–13].

Contrary to school closures and other events likely to reduce
social mixing, large sporting events, festivities and mass gatherings
facilitate the spread of infections [4, 5, 18, 19]. In Singapore, the
Asian Youth Games of 2009 caused the declaration of a public
health emergency due to the spread of A(H1N1) influenza
among adolescents [20]. In fact, Singaporean health officials
implemented strict control measures such as airport screening,
quarantining hospitalised H1N1-infected persons and their close
contacts, and mandatory vaccination of all youth competitors
[20]. Mass gatherings involve increased travel of diverse groups
from a wide range of ages and countries-of-residence and can pro-
mote an introduction of novel viruses to local communities. These
novel viruses can cause substantial, complex and unpredictable
effects on influenza activity and escape traditional surveillance
detection tools. Authorities may underestimate the true influenza
incidence at these gatherings, as shown during the 2008 World
Youth Day in Australia [21] and the American Super Bowl from
1974 to 2009 [4]. Using county-level vital statistics of the USA
from 1974 to 2009, researchers demonstrated that social mixing
during the Super Bowl affects influenza dissemination in popula-
tion groups. Authors estimated having a local team in the Super
Bowl caused an 18% increase in influenza deaths for those over
age 65, with no impacts on influenza mortality in hosting cities.
The effect was most pronounced in years when the dominant
influenza strain was more virulent or when the Super Bowl
occurred closer to the peak of the influenza season [4].

Holiday-related travel also increases social contacts between
infected and susceptible persons of all ages. Although the travel
patterns themselves may not directly influence transmission,
increased travel volumes "affect the coupling force between epi-
demics in different (sub-populations) and the opportunity for
individuals to be exposed to the disease" [7]. Due to winter sea-
sonal migration among older adults from colder to warmer states,
in several southern states, such as California, Arizona, Texas and
Florida, the proportion of non-residents being hospitalised for
pneumonia and influenza (P&I) was higher in winter months
than summer months, although for most states, the opposite
was true. In Florida, the proportion of all P&I hospitalisations
attributable to out-of-state residents was over three times as
high between October and March compared to the usual nadir
of influenza activity from April to September. A large portion
of out-of-state resident P&I hospitalisations in Florida are derived
from Northeastern and Midwestern states, such as New York,
Michigan, Pennsylvania and Ohio [8].

In-depth analyses assessing travel-related transmission and
the effects of holidays and social events on seasonal influenza
have been explored largely in agent-based modelling studies [3,
7, 12]. A simulation study showed that higher travel volumes
could shift the peak timing of influenza epidemics earlier com-
pared to national holiday observances and school closures [3].
Shi et al. also noted that the impact of a public gathering on
influenza prevalence depends on time proximity to the epidemic
peak. Specifically, mass gatherings that occur within 10 days
before the epidemic peak can result in as high as a 10% relative
increase in the peak prevalence and the total attack rate and may
have even worse impacts on local communities and travellers’
families [2]. Furthermore, if 25% of the population travelled
1 day prior to a mass gathering that aligned with influenza
peak incidence for that year, the prevalence of positives would
increase approximately 11% (equivalent to an additional 63502

individuals infected), disproportionately targeting children and
the elderly [2].

While simulation studies are exploring how social mixing
affects influenza spread, time series analysis allows researchers
to track the seasonal peaks of influenza outcomes [1, 9, 10]. On
a national scale, influenza peak timing migrates both spatially
[22] and temporally [9]. For example, for the influenza seasons
1991–2004, the hospitalisation rates for P&I in US older adults
peaked in Western states (such as Nevada, Utah and California)
earlier than in New England states (such as Rhode Island,
Maine and New Hampshire). On a regional scale, the difference
in peak timing is noticeable for different influenza strains [9].
In Wisconsin specifically, Lofgren et al. showed that influenza
mortality peak timing occurred earlier in children and infants
(calendar week 27) than the elderly (calendar week 30) from
1967 to 2004. That said, mortality rates were 10 times greater
among the elderly than children and infants with differing rates
across influenza A strains [1].

While the age-specific differences in influenza incidence are
well documented, the potential contribution of regular calendar
events, such as school breaks, sporting events and national and
cultural observances to these differences, is largely unknown.
Prior research suggests that such effects could vary across age
groups, influenced by a holiday type, and impacted by proximity
and alignment of influenza peak timing in relation to the holiday.
As such, our research aimed to evaluate and quantify the effects of
calendar events (in this case, holidays) on influenza seasonal sig-
natures. In this study, we examined the impact of school holidays,
religious observances, federal observances and sporting events for
six age groups (all ages, ⩽4, 5–24, 25–44, 45–64, ⩾65 years) on
four influenza health outcomes (tests, positives, influenza A and
influenza B) in Milwaukee, Wisconsin, in 2004–2009 during rou-
tine laboratory surveillance. First, we compared averages of weekly
outcomes as they occurred during holiday and non-holiday time
periods. Next, we estimated the direction and magnitude of calen-
dar effects using negative binomial regression models adjusted for
meteorological conditions and seasonality. We then estimated
annual peak timing for each outcome and evaluated differential
effects of school holidays for five adjacent time periods: before
and during Winter Break, between Winter and Spring Breaks,
and during and after Spring Break. Finally, we produced age-
specific seasonal signature curves to illustrate the dampening
and amplification of tests during Winter and Spring Breaks.
Through these time series-based methods, we explored possible
age- and outcome-specific holiday effects and offer recommenda-
tions for influenza near-term forecast modelling.

Methods

Study area and health outcomes

Maps of the study area’s population density and average age are
shown in Figure 1. The City of Milwaukee Health Department
Laboratory (MHDL), Wisconsin routinely collects tests from
the students’ residents of metropolitan areas and vicinities
around Marquette University (MU). If confirmed positive for
influenza, the MHDL classifies cases according to the Centers
for Disease Control and Prevention (CDC) guidelines for sub-
types: H1N1, H3N2, A (unknown subtype), B (Victoria and
Yamagata subtypes), A (2009 H1N1) and variant of influenza
A of swine origin (H3N2v). We obtained weekly counts of
tests from the MHDL from 16 May 2004 to 19 December
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2010 (344 weeks). We excluded the last 86 weeks (26 April 2009
to 19 December 2010) due to irregular surges of testing and
positives during the 2009 Milwaukee epidemic due to the
novel influenza A(H1N1) virus of swine origin. For the remain-
ing 258 weeks (16 May 2004 to 25 April 2009), we considered
four outcomes in our dataset: number of tests, tests that were
confirmed positive, tests that were positive for influenza A and
tests that were positive for influenza B. All recorded weekly
counts for each of the four outcomes were grouped into six
age categories: all ages, ⩽4, 5–25, 25–44, 45–64 and ⩾65.
We combined counts for the <1 and 1–4 age groups into a
⩽4 category due to low numbers and we excluded four tests
due to unknown age. The final dataset contained records aggre-
gated into four outcomes (tests, positives, influenza A and
influenza B), and six age categories with no missing data.

Meteorological data

Meteorological data are routinely collected by a monitoring
station at the General Mitchell International airport (KMKE/
MKE) located ∼7.5 miles from the MHDL (Fig. 1). We down-
loaded daily records of temperature, humidity and dewpoint
from an open source website [23] and aggregated them into
weekly averages. Sunday was designated as the beginning of
each week to align with MHDL influenza data. Dewpoint
values, which represent the perceived ambient temperature
corrected for the air moisture content, were used in regression
models.

Calendar of selected events

For this study, we focus on major school holidays, religious obser-
vances for three major denominations (Christian, Jewish and
Muslim), national federal observances and major sporting events.
Holidays included were not exhaustive and span multiple calendar
years. Durations of the holidays considered are shown in
Supplementary Table S1. Holidays with fixed dates occur on
the same day (e.g. New Years on January 1) or week (e.g.
President’s Day on 8th calendar week) annually. In contrast, float-
ing holidays occur annually on different days or weeks of the year,
and include the Jewish and Muslim religious observances, which
do not follow the Gregorian calendar. We classified a holiday
week as having at least 1 day of a holiday occurring during that
week.

Information on school holidays was obtained from publicly
available archives of semester-long academic calendars for MU
and annual academic calendars for the Milwaukee Public School
District [24, 25]. Undergraduate full-time student calendars with
four consistently non-overlapping school holidays (i.e. Winter,
Spring, Summer and Autumn Breaks) were closely aligned with
the Milwaukee Public School district (see Supplementary
Table S1). The exploratory analysis was performed using calendars
from both sources. University-based calendars were chosen to
represent school holidays for the entire 5–24 years age group for
the final analysis.

Major annually occurring religious observances listed on the
open source website, Time and Date [26], were selected based on
religious preference in Milwaukee retrieved from the Association

Fig. 1. Maps of the study area’s population density and average age with the location of the City of Milwaukee Health Department Laboratory (MHDL), General
Mitchell International Airport and Marquette University.

Epidemiology and Infection 3



of Religion Data Archives [27]. All individual Christian and Jewish
holidays were non-overlapping, while individual Muslim holidays
had some co-occurrences annually.

Federal observances included nine individual holidays with
fixed and floating dates retrieved from the Time and Date public
database [26]. We selected five major sporting events: the Super
Bowl (American football), the Triple Crown (horse races), the
World Series (baseball), the NBA Finals (basketball) and the
AHL Finals (hockey) to account for the professional sports
teams (Green Bay Packers, Brewers, Bucks and Admirals for the
national football, baseball, basketball and hockey leagues, respect-
ively) based in Milwaukee, Green Bay and Wisconsin as well as
major US national sporting events. Dates of individual sporting
events were retrieved from two publicly available websites [26,
28]. Each of the five individual sporting events varied in duration
annually depending upon the sport.

Exploratory statistical analysis

A calendar week was coded 1 if a holiday took place during that
week and 0 otherwise. First, we compared averages of weekly
counts for each age group and outcome as they occurred during
holiday and non-holiday time periods for each holiday category
(school holidays, observances for three major religions, federal
observances and sporting events) and for each holiday within a cat-
egory (see Supplementary Table S1). We estimated the summary
statistics for each health outcome and each age group (see
Supplementary Table S2), used a non-parametric Mann–Whitney
(MW) U test (significant differences defined a priori as α⩽ 0.05)
(see Supplementary Table S3), and determined the events for
which we had sufficient counts of tests and positives. This allowed
us to reduce the number of holidays for in-depth analyses.

Direction and magnitude of the calendar effects

Next, we estimated the direction and magnitude of the calendar
effects using negative binomial regression models adjusted for
meteorological conditions and seasonality. We constructed the
models sequentially to observe the contribution of individual
factors, e.g. holidays, meteorological conditions and linear and
seasonal trend components. Models were as follows:

Model 1: ln[E(Ytj)] = β0 + β1Ht

Model 2: ln[E(Ytj)] = β0 + β1Ht + β2Dt

Model 3: ln[E(Ytj)] = β0 + β1Ht + β2Dt + β3t + β4(sin(2πωt))
+ β5(cos(2πωt))

where Ytj – values of the study outcome for t-week and j-age
group; Ht – a binary time series indicating flagged weeks referring
to either the six holiday categories (School, Christian, Jewish,
Muslim, Federal, Sporting) or individual non-overlapping holidays
selected for in-depth analysis; Dt – weekly dewpoint averages; t –
refers to a time series indicating the consecutive study week from
1 to 258. Two periodic terms define seasonal oscillations with a fre-
quency of ω = 1/M, where M = 52.25 represents the length of the
annual cycle in weeks. The estimates of β1 regression coefficients
and their error values were used to calculate the relative risk
(RR) estimates along with their confidence intervals (95% CI):
RR = exp{β1} and 95%CI RR = exp {b1 + 1.96seb1

}. A dampen-
ing effect was defined as significant RR<1, while amplification
effects were defined as significant RR > 1.

Peak timing estimation

We estimated peak timing using Model 4, as follows:

Model 4: ln[E(Ytj)] = β0 + βtt + βs(sin(2πωt)) + βc(cos(2πωt))

We applied Model 4 to all tests, all positives, influenza A and
influenza B for each age group over the 258-week study period.
We estimated peak timing and its variance using equations provided
in Table 1. Equations were derived by MacNeill and Naumova
(2006) with further modifications by Alarcon-Falconi (2017) and
were used to calculate age- and influenza outcome-specific peak
timing estimates [29, 30]. To investigate how the school holidays
modified the estimated peak timing, we extendedModel 4 by adding
four indicator variables – one for each holiday (Model 5). To adjust
the estimates for meteorological conditions, we used Model 3.

Seasonal signatures

Finally, we explored seasonal signatures of influenza incidence with
respect to the Winter and Spring university-based school breaks.
Specifically, we compared five periods: period 1 – before Winter
Break (5 weeks), period 2 – during Winter Break (4–6 weeks), per-
iod 3 – between Winter and Spring Breaks (6–9 weeks), period 4 –
during Spring Break (2–3 weeks) and period 5 – after Spring Break
(5 weeks). For each period, we calculated weekly average counts
with pooled standard errors. The differences in average counts
between adjacent time periods were tested with a paired t test.
To derive the signature curves, we plotted the predicted values
from Models 3, 4 and 5 for the interval between week 43 and
week 23 of the following year. To demonstrate the effect of
Winter and Spring Breaks, we interpolated the predicted values
by connecting the first and last weeks of the holiday.

All statistical analyses were conducted using STATA (SE 15.1)
software.

Results

Over 258 study weeks, 2378 tests were submitted with 505 (21%)
laboratory-confirmed positives including 410 (81%) influenza A
(73 (18%) not subtyped) and 95 (19%) influenza B (see
Supplementary Table S2). Cases were not distributed evenly across
age groups. The largest portion of tests (1153 or 48%) belonged to

Table 1. Peak timing equations for log-linear negative binomial regression
models

Feature Log-linear model

Regression model ln(E [Yt]) = β0 + β1(t) + βs(sin(2πωt)) + βc(cos(2πωt))

Shift (∅)
tan ∅ = sin ∅

cos ∅ , thus: ∅ = arctan
bs

bc

( )

Var (∅) = b2
cs

2
s + b2

ss
2
c − 2sbsbc

bsbc

(b2
c + b2

s )2

Peak timing (PT) if bs . 0 &bc . 0, then: PT = (∅) M
2p

( )

if βc < 0, then: PT = (∅ + p) M
2p

( )

if bs , 0 &bc . 0, then: PT = (∅ + 2p) M
2p

( )

CI (PT) = PT + 1.96
��������
Var (∅)√ M

2p

( )
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the 5–24 years age group, which also had the most total (326 or
65%), influenza A (272 or 66%) and influenza B (54 or 57%) posi-
tives. The youngest age group (⩽4 years) had the fewest reported
positives (12 or 2%) while the oldest age group had the fewest
reported tests (178 or 7.5%). High values of skewness and kurtosis
are indicative of seasonal spikes of weekly counts and a low number
of cases; thus, the detailed analysis is limited to tests and total posi-
tives to ensure sufficient records.

Next, we summed weekly cases by calendar week and aligned
them with the selected holidays as they typically occur. The distri-
bution of aggregated cases per calendar week and the overlap
across holiday groups is shown in Figure 2, where we listed
each individual holiday and when it approximately fell across
53 weeks of the year. The total counts of tests, positives, influenza
A and influenza B were misaligned with periods of low-,
moderate- and high-influenza incidence according to the CDC’s
nationally defined influenza season [31]. CDC-defined periods
of high incidence occur in the first 9 and last 5 calendar weeks,
while moderate incidence ranges over the 10th–18th and 40th–
48th calendar weeks. The peak in distributions of observed
cases has shifted towards the period of moderate incidence.

University and public-school holidays are well distributed
throughout the year with Winter Break occurring during high-
incidence periods, Spring and Autumn Breaks occurring during
moderate incidence periods, and Summer Break occurring during
low-incidence periods. Three national observances (New Years,
Martin Luther King Jr. Day and President’s Day), five religious
observances (Ash Wednesday, Christmas, Hanukkah, Eid
al-Adha and Muharram) and one sporting event (Super Bowl)
occur during the high-incidence period (see Supplementary

Table S3). During the CDC-defined low-incidence period, only
422 tests were submitted with two reported positives, one each
for influenza A and B. During the moderate-incidence period,
987 tests were submitted and 141 (14%) were positive, all occur-
ring during overlapping weeks of Spring Break, Easter, Passover
and the Prophet’s Birthday. During the high-incidence period,
969 tests were submitted including 362 (37%) positives, nearly
all of which (92%) were influenza A. Weeks associated with
Spring Break and the Prophet’s Birthday had 64% of all influenza
B positives observed across the study period. Individual holidays
with at least three positive tests were selected for in-depth analysis
(see Table S3).

Direction and magnitude of the calendar effects

Next, we formally compared average weekly cases across holiday
categories using MW U tests and examined the direction and
magnitude of the calendar effects using negative binomial regres-
sion models adjusted for meteorological conditions and seasonal-
ity. Weekly tests, positives, influenza A and influenza B are shown
in Figure 3 as time series plots with superimposed university-
based school holiday occurrences. During the 118-week
university-based school holiday period, the average number of
tests was two times lower than during the 140-week school
term (non-holiday) period (5.93 ± 6.68 vs. 11.99 ± 10.18 cases/
week, P < 0.005). Similarly, during the 90-week public-school
holiday period, the average number of tests was 60% lower than
during the 168-week school term period (4.71 ± 4.70 vs. 11.63 ±
10.15 cases/week, P < 0.005). Similarly, average weekly positives
were lower for both the university-based and public-school

Fig. 2. Total weekly counts for influenza outcomes (according to seasonal intensities) and an overview of school holidays’, national and religious observances’ and
sporting events’ typical weeks of occurrence (in chronological order for each holiday category) in Milwaukee, WI (2004–2009).
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holiday compared to school term periods (0.85 ± 2.82 vs. 2.89 ±
5.66 cases/week, P < 0.005 and 0.42 ± 1.41 vs. 2.78 ± 5.55 cases/
week, P < 0.005, respectively). Tests and positives reach near
zero counts during the Summer and Autumn Breaks owing to
the natural seasonal nadir of influenza during these times. The
same patterns were observed for influenza A and B.

The results of direct comparison based on the MW tests for
school holidays are shown in Table 2. In all instances when the
MW test indicated a significant difference in average counts
between the school holiday and school term periods, there is a
dampening effect expressed as a negative percent change of aver-
age weekly cases. Age-specific holiday effects are prominent
among school children (5–24 years), young adults (25–44 years)
and the elderly (⩾65 years). While the magnitude of these dam-
pening effects is somewhat greater when using the public-school
calendar compared to the university school calendar for all age
groups, the difference is marginal. In the 5–24 years age group,
there is a 67% decrease in weekly tests (2.14 ± 3.63 vs. 6.44 ±
7.04, P < 0.005), a 74% decrease in influenza positives (0.49 ±
2.22 vs. 1.91 ± 4.02, P < 0.005), an 82% decrease in influenza A
(0.31 ± 1.25 vs. 1.68 ± 3.71, P < 0.005) and a 25% decrease in influ-
enza B (0.18 ± 1.06 vs. 0.24 ± 0.62, P = 0.01) using the university-
based calendar. By applying the public-school calendar to the
same age groups, we observed similar effects: 75%, 94% and
96% decrease in weekly tests, influenza positives and influenza
A, respectively, and a notable decline of 79% for influenza B.

Negative binomial regression models’ results support MW direct
comparisons (see Supplementary Table S4). We sequentially con-
structed three models to determine the contribution of individual
factors to weekly influenza tests. Model 1 is unadjusted and reflects
the dampening or amplifying effects of either combined school
holidays (marked as School) or individual school breaks (marked
as Winter, Spring, Summer and Autumn). Model 2 was adjusted
for average weekly dewpoint values, while Model 3 (shown in
Fig. 4) was also adjusted for seasonal and linear trend. Modelling
results indicate that School and Winter Break holiday weeks
using both calendars had a dampening effect (RR < 1) in reported

tests in all models for the all ages, 5–24 years and 25–44 years age
groups. For the elderly, only university-based Summer Break was
associated with a reduction in average weekly tests. For the youngest
age group, only for the public-school Winter and Spring Breaks
were associated with a reduction in average weekly tests.
University-based Spring Break appeared to show an amplification
of tests with RR ranging from 1.42 to 3.06 (Model 2); however,
these associations did not hold for either calendar when we adjusted
for seasonal and linear trends (Model 3). The discrepancies in
observed effects across models were further explored by examining
peak timing for influenza-specific outcomes.

Peak timing estimation

We estimated peak timing and their confidence intervals for four
outcomes and six age groups based on the 258-week study period
using Models 3, 4 and 5 (see Fig. 5 and Supplementary Table S5).
For all ages, influenza A peaked between the 6th and 7th calendar
weeks right after the Winter Break and before the Spring Break.
Influenza B peaked between the 8th and 12th calendar weeks
right before or during the Spring Break. Based on Model 5, the
peaks for influenza A preceded influenza B by 3.5 weeks for all
ages (6.28, 95% CI 5.54–7.02 vs. 9.70, 95% CI 8.87–10.53 calendar
week) and by 2.5 weeks for the 5–24 years age group (6.84, 95%
CI 6.04–7.63 vs. 9.29, 95% CI 7.93–10.65 calendar week; Fig. 5).
Although the differences between the estimates were not signifi-
cant, peak timing obtained from Model 5 consistently preceded
the estimates from Model 4. The peaks in influenza A and B typ-
ically coincide with the following events and observances: Super
Bowl (6th calendar week), Ash Wednesday (6th–9th calendar
weeks) and President’s Day (8th calendar week).

Winter and Spring Break holidays effects

Given the general similarity of university-based and public-school
results, only university-based Winter and Spring holiday effects
were investigated in greater details as described below.

Fig. 3. Time series of total weekly counts for
four influenza outcomes (tests, positives, influ-
enza A and influenza B) for all ages with super-
imposed university school holiday occurrences
in Milwaukee, WI (2004–2009).
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Table 2. Weekly counts, averages and percent change for the study, school term and school holiday periods for the university and public-school calendars for influenza tests, positives, influenza A and influenza B
across six age groups in Milwaukee, WI in 2004–2009

All study period

University academic calendar Public-school district academic calendar

School term School holiday

MW test percent changea
School term (168 weeks)

School holiday
(90 weeks)

MW test Percent changea
(258 Weeks) (140 Weeks) (118 Weeks)

Counts Mean S.D. Counts Mean S.D. Counts Mean S.D. P-value % Counts Mean S.D. Counts Mean S.D. P-value %

Tests

All ages 2378 9.22 9.24 1678 11.99 10.18 700 5.93 6.68 <0.005 −51 1954 11.63 10.15 424 4.71 4.70 <0.005 −60

⩽4 527 2.04 2.07 316 2.26 2.16 211 1.79 1.94 0.08 −21 380 2.26 2.11 147 1.63 1.93 0.08 −28

5–24 1153 4.47 6.12 901 6.44 7.04 252 2.14 3.63 <0.005 −67 1019 6.07 6.94 134 1.49 2.01 <0.005 −75

25–44 291 1.13 1.70 208 1.49 1.94 83 0.70 1.24 <0.005 −53 241 1.43 1.85 50 0.56 1.18 <0.005 −61

45–64 227 0.88 1.66 133 0.95 1.39 94 0.80 1.95 0.04 −16 174 1.04 1.64 53 0.59 1.68 0.04 −43

⩾65 178 0.69 1.74 120 0.86 2.05 58 0.49 1.27 0.02 −43 139 0.83 1.96 39 0.43 1.20 0.02 −93

Positive

All ages 505 1.96 4.68 405 2.89 5.66 100 0.85 2.82 <0.005 −71 467 2.78 5.55 38 0.42 1.41 <0.005 −85

⩽4 12 0.05 0.23 11 0.08 0.30 1 0.01 0.09 0.01 −88 12 0.07 0.28 0 0.00 0.00 0.01 −100

5–24 326 1.26 3.39 268 1.91 4.02 58 0.49 2.22 <0.005 −74 315 1.88 4.07 11 0.12 0.42 <0.005 −94

25–44 87 0.34 0.92 66 0.47 1.10 21 0.18 0.62 0.01 −62 76 0.45 1.08 11 0.12 0.42 0.01 −73

45–64 32 0.12 0.56 20 0.14 0.56 12 0.10 0.56 0.20 −29 22 0.13 0.52 10 0.11 0.63 0.20 −15

⩾65 47 0.18 1.03 40 0.29 1.37 7 0.06 0.27 0.09 −79 41 0.24 1.26 6 0.07 0.29 0.09 −71

Influenza A

All ages 410 1.59 4.10 349 2.49 5.20 61 0.52 1.63 <0.005 −79 391 2.33 4.91 19 0.21 0.61 <0.005 −91

⩽4 11 0.04 0.22 10 0.07 0.28 1 0.01 0.09 0.02 −86 11 0.07 0.27 0 0.00 0.00 0.02 −100

5–24 272 1.05 2.93 235 1.68 3.71 37 0.31 1.25 <0.005 −82 266 1.58 3.52 6 0.07 0.25 <0.005 −96

25–44 67 0.26 0.81 54 0.39 0.99 13 0.11 0.47 0.01 −72 59 0.35 0.96 8 0.09 0.32 0.01 −74

45–64 21 0.08 0.38 16 0.11 0.48 5 0.04 0.20 0.30 −64 18 0.11 0.45 3 0.03 0.18 0.30 −73

⩾65 38 0.15 0.97 34 0.24 1.30 4 0.03 0.18 0.08 −88 36 0.21 1.19 2 0.02 0.15 0.08 −90

Influenza B

All ages 95 0.37 1.20 56 0.40 1.02 39 0.33 1.38 0.02 −18 76 0.45 1.28 19 0.21 1.00 0.02 −53

⩽4 1 0.00 0.06 1 0.01 0.08 0 0.00 0.00 0.36 −100 1 0.01 0.08 0 0.00 0.00 0.36 −100

5–24 54 0.21 0.85 33 0.24 0.62 21 0.18 1.06 0.01 −25 49 0.29 1.01 5 0.06 0.35 0.01 −79

25–44 20 0.08 0.38 12 0.09 0.41 8 0.07 0.34 0.77 −22 17 0.10 0.43 3 0.03 0.23 0.77 −70

45–64 11 0.04 0.33 4 0.03 0.17 7 0.06 0.46 0.56 100 4 0.02 0.15 7 0.08 0.52 0.56 300

⩾65 9 0.03 0.25 6 0.04 0.29 3 0.03 0.21 0.54 −25 5 0.03 0.25 4 0.04 0.26 0.54 33

aPercent change = ((mean school holiday cases–mean school term cases)/mean school term cases)×100%.
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Examining influenza A and B more closely, there was a 4.8-fold
decrease of influenza A during school holiday weeks (0.52 ±
1.63 vs. 2.49 ± 5.20, P < 0.005) for all ages, while average weekly
counts of influenza B were near equivalent to school term
weeks (0.33 ± 1.38 vs. 0.40 ± 1.02, P = 0.02; Table 2). As shown
in Figure 6, we compared for all years five holiday periods: period
1 – before Winter Break (5 weeks), period 2 – during Winter
Break (4–6 weeks), period 3 – between Winter and Spring
Breaks (6–9 weeks), period 4 – during Spring Break (2–3
weeks) and period 5 – after Spring Break (5 weeks). The high
counts of tests and positives fall either between the Winter and
Spring Breaks (typically 2nd–9th calendar week) or during
Spring Break alone (typically 10th–13th calendar week).
Figure 6 displays the estimated peak timing in relation to the
Winter and Spring Break school holiday periods.

Dampening of weekly tests, positives and influenza A during
Winter Break is evident by significant differences in counts
between periods 1 and 2 (3.60 ± 2.42 vs. 1.49 ± 1.53, P = 0.01)
and between periods 2 and 3 (1.49 ± 1.53 vs. 14.23 ± 8.66, P <
0.005) for the 5–24 years age group (see Supplementary
Table S6). Similarly, significant increases in tests (4.93 ± 2.81
vs. 22.12 ± 11.60, P < 0.005), positives (0.67 ± 0.82 vs. 9.61 ±
7.16, P < 0.005) and influenza A (0.67 ± 0.82 vs. 8.58 ± 6.77,
P < 0.005) were observed after the Winter Break for all ages.
No significant changes were detected for influenza B across
any age group.

Seasonal signatures

In Figure 7, we plotted seasonal signatures of influenza incidence
for time periods surrounding the Winter and Spring school
breaks. Signatures were derived from Model 5 for all ages, 5–24
years and 45–64 years age groups across tests. The dampening
of tests during Winter Break was evident in all ages and in
those 5–24 years (RR = 0.31; 95% CI 0.22–0.41 vs. RR = 0.14;
95% CI 0.09–0.22, respectively). A significant increase in tests
was observed during Spring Break in 45–64 years old adults
(RR = 2.12; 95% CI 1.14–3.96).

Effects of religious observances, federal holidays and sporting
events

A direct comparison of average weekly tests, positives, influenza A
and influenza B reported during weeks with Christian, Jewish or
Muslim observances to those weeks without relevant observances
show largely no significant differences (Supplementary Table S7).
Similarly, no differences in four influenza-related outcomes were
observed for federal holidays and sporting events (Supplementary
Table S8). Overall, regression modelling results support the find-
ings of direct comparisons for holiday categories (Supplementary
Table S9). However, some discrepancies were noted for Christian
observances.

Fig. 4. Estimates of relative risk (RR) with 95% confidence intervals for all university school holiday weeks (School) and individual school holiday weeks (Winter,
Spring, Summer, Autumn) based on Model 3.
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Specifically, in the 25–44 years age group, there are increases
in weekly tests (2.00 ± 1.83 vs. 1.07 ± 1.68, P = 0.01), positives
(0.75 ± 0.86 vs. 0.31 ± 0.92, P < 0.005) and influenza A (0.75 ±
0.86 vs. 0.23 ± 0.80, P < 0.005), respectively (Supplementary
Table S7). Similar patterns were observed for positives and influ-
enza A for all ages though these observations did not hold in the
fully adjusted regression model. The holiday amplification effect
for tests in the 25–44 years age group most likely was driven by
the alignment of Ash Wednesday to the peak timing for tests
and positives. Based on regression modelling, average weekly
tests for the 25–44 years age group during Ash Wednesday
were significantly higher than weeks with no other Christian
observances (RR = 2.56, 95% CI 1.55–4.21). At the same time,

during Christmas weeks, which are aligned with Winter Break,
a significant decrease in tests are detected by all models for the
all ages and 5–24 years age groups (Supplementary Table S10).

In closer analyses of individual federal holidays and sporting
events using regression models, we observed that President’s
Day showed significant increases in weekly tests for the all ages
(RR = 1.41; 95% CI 1.10–1.82) and the 5–24 years (RR = 2.07;
95% CI 1.52–2.81) age groups. Similarly, the Super Bowl showed
significant increases in weekly tests for the 5–24 years age group
(RR = 1.79; 95% CI 1.15–2.77). These results confirmed direct
comparisons shown in Supplementary Table S11. These two
events are aligned with the period of high influenza incidence
near the peak of influenza A.

Fig. 5. Estimates of peak timing for six age groups (all ages, ⩽4, 5–24, 25–44, 45–64, ⩾65 years) and four influenza outcomes (tests, positives, influenza A and
influenza B) based on Model 4 (red) and Model 5 (blue).
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Discussion

We examined the impact of school holidays, religious observances
and social events for six age groups (all ages, ⩽4, 5–24, 25–44, 45–
64, ⩾65 years) on four health outcomes of influenza (total tested,
positives, influenza A and B) in Milwaukee, WI from 2004 to
2009. Our analysis compared average weekly counts of health out-
comes for holidays sharing a common theme (e.g. School,
Christian, Jewish, Muslim, Federal and Sporting holidays) and
individual holiday, observance or event periods. An increase in
cases was most pronounced among holidays more closely aligned
with the peak timing of positives, influenza A and influenza B
health outcomes (ranging from 5th to 13th calendar week). In
contrast, a decrease in cases was seen for holidays taking place
during time periods of low incidence (ranging from 19th to
39th calendar week) or multiple weeks before and after the
peak timing for influenza A and B. We observed amplification
and dampening of cases during holidays that depended on
proximity to seasonal peaks of influenza, most pronounced in
school-aged children and young adults. These effects were
consistent irrespective of using university-based or district-wide
public-school holiday calendars.

Historical observations suggest that MU students have a large
influence on the recorded influenza burden in the Greater
Milwaukee area, potentially caused by the closeness of
student-dwelling spaces (e.g. dormitories, cafeterias, etc.) and
the centrality of the university with respect to much of the
city’s domestic and international transportation [32]. As 48% of
tests and 65% of positives were attributable to the 5–24 years

age group, in–out migration of Marquette students may be driv-
ing the dampening effects seen during the Winter Break holiday.
City demographic characteristics from 2005 to 2009 show that
35.3% of Milwaukee residents were <25 years, 43.5% ranged
from 25 to 54 years and 21.1% were >55 years (see Fig. 1). The
large proportion of younger- and older-adult residents along
with the MU student population likely contribute to the signifi-
cant holiday effects for the 5–24, 25–44 and 45–64 years age
groups [33]. High migration out of the city by MU students dur-
ing Winter Break is likely to reduce the child-to-child,
child-to-adult and adult-to-adult transmission patterns described
within other works [3, 7, 12]. Similarly, student migration out of
Milwaukee during Spring Break may support significantly
reduced influenza B positives during these calendar weeks.
Contrastingly, the return from the school holiday breaks is likely
to increase the exchange and introduction of the virus to the
community.

To the best of our knowledge, this is one of the few studies
using time series analysis to examine seasonal signatures of indi-
vidual holiday effects. All reviewed works primarily evaluated
transmission patterns of influenza during extreme mass gather-
ings [20, 21, 34]. Otherwise, researchers rarely considered differ-
ential effects of holidays at different times of the year, instead
combining all holiday weeks under one dichotomous variable
[13] or isolating their analyses to a single time of the year [35].
While some works have reviewed differences in incidence risk
ratios (IRRs) before, during and after individual school holidays,
none have explored holiday categorisation effects on these IRRs
or seasonal signatures [2, 3, 6]. Therefore, our results serve to:

Fig. 6. Weekly tests, positives, influenza A and B (panels A–D, respectively) for all ages across each study year with superimposed peak timing estimates in
Milwaukee, WI (2004–2009). The five time periods include period 1 – before Winter Break (5 weeks), period 2 – during Winter Break (4–6 weeks), period 3 – between
Winter and Spring Breaks (6–9 weeks), period 4 – during Spring Break (2–3 weeks) and period 5 – after Spring Break (5 weeks). All holiday breaks refer to the
university school calendar.
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(1) confirm dampening of influenza incidence during wintertime
school holidays seen using both academic calendars, (2) demon-
strate how holiday categorisation effects suspected amplification
or dampening of incidence in time series modelling, and (3) illus-
trate how seasonal signature estimates of peak timing can be
modified by holiday inclusion when modelling.

Though much smaller in scope, our findings showed signifi-
cant amplification of cases during springtime holiday weeks
(Ash Wednesday, Easter and the Prophet’s Birthday) compared
to non-holiday weeks using both non-parametric and log-linear
regression analyses. The observed associations with the
Christian holidays in Milwaukee County are supported by over
94% of religious-goers belonging to a Christian or Catholic con-
gregation [27]. According to the 2010 Census, approximately
439 526 (46.4%) residents of the total population affiliated to
any religious group; among those, 45.31% residents identified
themselves as Catholic, 46.99% – Protestant, 2.07% – Orthodox
Christian, 1.73% – Jewish, 2.08% – Muslim and 1.82% other reli-
gious affiliation. The studied religious observances are not
exhaustive. A significant increase in Muslim adherents, as well
as unchanging levels of Jewish adherents from 2000 to 2010, jus-
tifies further analyses of these religious holidays. Furthermore, the
significant outnumbering of Christian followers compared to all
other religious groups also justified further investigation of
Christian holiday-related effects. However, as these holidays are
often short (1–4 days), time series analyses are susceptible to sur-
veillance reporting delays. Future research over a longer time ser-
ies and in a larger population is needed to investigate more
detailed seasonal signatures for these holidays.

Our results show that while holidays may be clustered close
together within the high-incidence influenza season, age-specific

peak timing variations among health outcomes can result in dis-
similar effects. On the one hand, School Break holidays exemplify
how peak timing of certain health outcomes may consistently align
with some holidays more than others, irrespective of age groups.
This alignment explains the consistent amplification during
Spring Break compared to the dampening effects of Winter
Break. We demonstrated that the collective categorisation of holi-
days, such as School Break weeks, can mask the individual effect
of one holiday (in our case – Spring Break) due to the near-zero
incidence of other individual holidays within that category (e.g.
Summer and Autumn Breaks). In addition, when holidays cluster
near one another, they may manifest similar effects with respect
to age-specific health outcomes. This was observed for Ash
Wednesday, President’s Day and the Super Bowl, which fell
between the 6th and 10th calendar weeks and aligned closely to
influenza A peak timing for school-aged children and young adults.
Alternatively, the slightly delayed occurrence of Spring Break,
Easter and the Prophet’s Birthday aligned more closely with influ-
enza B peak timing for the all ages and 45–64 years age groups, a
pattern not shared by the three earlier-occurring holidays.

These differences in observed effects despite small time inter-
vals between holidays’ occurrences exemplify the importance of
age- and outcome-specific peak timing analyses. Crude aggrega-
tion of influenza cases by broad age categories is likely to mask
nuanced relationships between influenza incidence and commonly
occurring holidays at the sub-population level. In this study, we
oversampled the college-aged population. Per the location of the
sampling site and per the scope of this study, most of the collected
samples were derived from patients and students attending MU,
located in downtown Milwaukee. The laboratory is one of the sur-
veillance sites in Milwaukee jurisdiction, and is likely to capture
the majority of flu cases in primary zip codes for the MU campus
and student-preferred residencies (53233, 53202 and 53203). The
urban campus also allows off campus residence, so students
were also able to be part of the urban setting while still attending
college. As the study oversampled MU students, the sampling ages
within the WHO bracket representing 5–24 years old are likely to
be closer to the 18–24 range (college age groups). Our inability to
disaggregate the 5–24 years age group into younger- and older-age
school children remains a limitation we could not adjust for. This
standard reporting practice prevents investigating differential
effects for Milwaukee public-school students (elementary to high
school, 5–18 years) and MU students (19–24 years). While we
applied two academic calendars and observed the holiday effects
with both calendars, a more detailed age breakdown would have
provided more accurate estimates and offered further insight
into how school holiday-related events may impact influenza
transmission during those periods.

The observed holiday effects were detected with both academic
calendars, yet there were differences in Spring Break timing: amp-
lification effects were seen during Spring Break for university
school breaks, occurring typically in March and during public-
school breaks about 2 weeks later. University Summer Breaks typ-
ically began 1–2 weeks before the public-school district, while
Winter Breaks began 1 week earlier and lasted 1 week later.
Spring Breaks were typically 2 weeks apart between academic
calendars. The public-school district had no annual Autumn
Break (except 2008). As all public schools followed a single district-
wide academic calendar, we were not able to explore individual dif-
ferences between primary and secondary or public and private
schools. As we choose the undergraduate full-time student calen-
dars with four consistently non-overlapping school holidays (i.e.

Fig. 7. Seasonal signatures of weekly tests for time periods surrounding the Winter
and Spring university school breaks for the all ages, 5–24 years and 45–64 years
age groups (panels A, B and C, respectively).
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Winter, Spring, Summer and Autumn Breaks) to represent school
holidays for the entire 5–24 years age group, it is likely that the esti-
mates of the observed effects are conservative. A marginal increase
in the effects detected by the public-school calendar supports this
assertion. A future analysis of more refined age groups aligned with
their respective school calendars is needed to verify our findings.

Holiday effects are not easily deciphered for overlapping holi-
days. While holidays within each combined holiday category have
little overlap, holidays between categories clustered at specific
times of the year. As such, risk ratios may have been confounded
by the effect of a combination of coinciding holidays as opposed
to a single holiday event. As such, dampening or amplification
effects may capture the synergy of collective holiday effects; the
overlapping holidays can either attenuate towards no effect or
falsely magnify a minimal effect. Our analysis accounts for this
by analysing both individual and collective holiday effects and
by building a model that accounts for seasonal oscillations.
Furthermore, the consistency of both average weekly cases and
risk ratios from regression models confirms the isolated effect
of a single holiday in our study.

Holiday effects can be also amplified by meteorological con-
ditions. To provide some robustness to the model, we incorpo-
rated dewpoint values representing the perceived ambient
temperature corrected for the air moisture content to all model-
ling procedures. In general, cold and dry conditions may
enhance the transmission and survival of the influenza virus
or other respiratory pathogens. Many studies had demonstrated
an increased risk for influenza and pneumonia associated with
the low temperature and humidity [36–39]. We also detected
an independent effect of the weather-related parameter even
after controlling for influenza seasonality. However, we did not
explore the joint effect of school closures related to extreme wea-
ther, which would require a longer time series to capture a suf-
ficient number of rare events.

Even without overlapping weeks, clustered holidays are also
liable to effect modification from surveillance system reporting
delays of cases for holidays spanning multiple weeks. This results
in a misalignment between weeks with assigned holidays and
weeks with reported cases. For example, if a holiday occurs at
the end of the week and the MHDL is closed due to a holiday,
influenza surveillance would not continue until the following
Monday. Cases originating due to transmission during the prior
week would now be reported the following week. Even in the
absence of a reporting delay, the multi-day incubation period of
influenza may create this misalignment for short-duration holiday
events. We accounted for this through examinations of seasonal
signatures for Winter and Spring Break holiday effects though
not elsewhere within our analyses. A simple approach of compar-
ing risks of respiratory infections within communities while
schools were in session and out-of-session is a viable approach
to start [40], yet the complexity of accounting for overlapping
events and delayed effects is daunting.

The conducted analysis shows the extreme care researchers
must take when defining holiday-related variables and consider-
ing their inclusion in time series modelling. If all holiday weeks
are combined into a single, collective category, researchers will
likely overestimate the protective effect these holidays play in miti-
gating influenza incidence. Thus, careful analyses of age- and
outcome-specific peak timing can help to inform modellers
what surrounding holidays may be influential in detecting dam-
pening or amplifying effects. Although the isolation of individual
holidays during periods of expected high influenza incidence can

be extremely laborious, a well-defined and consistent effect can be
properly considered as a controllable risk factor for the analysis of
influenza seasonality and improve influenza forecasting. While
full-scale randomised control studies to measure the effect of
school closures as prevention strategies are desirable, such studies
might be prohibitively expensive. Joint efforts of local health
departments to share data for an inclusive analysis would allow
to expand the scope of the presented study.

Conclusion

Our study emphasises the importance of understanding influenza
seasonality, or periodic behaviour of incidence over time, when
exploring associations between calendar effects and disease out-
comes. We applied time series analyses – methods performed
on time-referenced data to describe, explain and predict temporal
dynamics – to analyse seasonality and its important feature such
as peak timing [41]. The applied time series analyses allowed us to
formally compare seasonality characteristics across case defini-
tions and age groups and to detect differential effects of calendar
events. These effects were detected in publicly available records
maintained by routine influenza surveillance. Our results show
that holiday effects are largely contingent upon the alignment
of that holiday in relation to incidence peak timing and sensitive
to how one defines the holiday (collective or individual holiday
weeks). Combining individual holidays into collective holiday
periods potentially leads to misspecification by masking individ-
ual holiday effects. These effects are differential across age and
health outcomes, requiring researchers to pay particular attention
to holiday-peak timing relationships within a modelling frame-
work. We recommend incorporating location-specific calendar
effects in influenza modelling and near-term forecasts tailored
to susceptible age groups to better predict and assess targeted
intervention measures.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268819001511.
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