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Abstract

Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably
persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode
secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most
immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like
proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors.
Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to
date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the
venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis.
By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode
Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of
basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host
defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the
defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins
from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-
like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the
delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by
migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize venom allergen-like proteins to
suppress the activation of defenses by immunogenic breakdown products in damaged host tissue.
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Introduction

Soil-borne plant-parasitic nematodes are major constraints on

global food security, as they reduce the annual yield of food crops

by approximately 10 percent [1,2]. This figure is a global average

and may therefore be somewhat misleading. In areas where people

depend on local cultivation of staple crops the effect of these

microscopic roundworms can be devastating. The impact of plant-

parasitic nematodes on food production provides plant breeders

with a strong incentive to better exploit genetic variation in

resistance to nematodes in crop cultivars. However, this requires

knowledge of the mechanisms underlying the activation and

suppression of plant innate immunity by plant-parasitic nema-

todes, an area which is currently underexplored [3,4].

Plants utilize pattern recognition receptors belonging to the

receptor-like kinase (RLK)/Pelle superfamily to detect extracellu-

lar microbes or their actions in the apoplast (i.e. the extracellular

matrix; [5,6]). The recognition of immunogenic microbe- and

damage-associated molecular patterns by receptor-like kinases

activates intracellular immune signaling pathways, resulting in a

wide range of structural and chemical defenses [7,8]. Several

members of the RLK/Pelle superfamily in plants lack a

cytoplasmic kinase domain, while they are nonetheless able to

activate immune responses to pathogens (e.g. Cf-proteins in

tomato; [9–11]). The activity of these so-called receptor-like

proteins requires mediation by other transmembrane proteins, or

cytoplasmic membrane-associated kinases, that function as co-

factors within multimeric receptor complexes [12,13]. At present,
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little evidence is available on the role of surface-localized pattern

recognition receptors in immunity to parasitic nematodes in

plants.

Recently, we showed that the receptor-like protein Cf-2 in

tomato mediates dual disease resistance by guarding a common

virulence target of a nematode and a fungus [14]. Perturbations of

the apoplastic papain-like cysteine protease Rcr3pim by two

unrelated effectors from the leaf mold fungus Cladosporium
fulvum and from the root parasitic nematode Globodera
rostochiensis activate Cf-2-mediated disease resistance. The

function of Rcr3pim, or any of its close homologs in tomato, has

not yet been resolved [15–17]. Tomato plants harboring the

Rcr3pim allele, but not the receptor Cf-2, are far more susceptible

to infections by G. rostochiensis than tomato plants lacking Rcr3pim

[14]. Apoplastic Rcr3pim is a molecular target of the venom

allergen-like protein Gr-VAP1 of G. rostochiensis, which is

secreted by infective juveniles during the onset of parasitism.

However, the role of this venom allergen-like protein (VAP), or its

interaction with Rcr3pim, in nematode virulence is not clear.

Venom allergen-like proteins constitute a monophyletic clade of

cysteine-rich secretory proteins within the Sperm Coating

Protein/Tpx-1/Ag-5/Pr-1/Sc-7 (SCP/TAPS) superfamily ([18,

19]). Members of this clade show similarity to venom allergen 5

from vespid wasps, pathogenesis-related protein PR-1 from plants,

brain tumor specific proteins in humans, and a wide range of other

secreted proteins (reviewed in [18]). Venom allergen-like proteins

have been identified in all animal- and plant-parasitic nematodes

studied to date [19,20]. They are even the most abundantly

secreted proteins during the onset of parasitism of some animal-

parasitic nematodes [19,21–24]. In spite of their conservation,

abundance, and strong association with the onset of parasi-

tism, little is currently known of the function of venom

allergen-like protein in nematode infections in plants and in

animals [19].

Sedentary plant-parasitic nematodes, such as cyst nematodes

(genera Globodera and Heterodera) and root-knot nematodes

(genus Meloidogyne), deliver effectors into the apoplast and

cytoplasm of host cells to induce the formation of a permanent

feeding structure [25–27]. The permanent feeding structure is the

sole source of plant nutrients for sedentary nematodes throughout

their life [28]. Besides altering host cell metabolism and function,

sedentary nematodes also use effectors to modulate host immunity

[3,27]. Specific immunity to nematodes in host plants often

involves a programmed cell death in or around permanent feeding

structures, resulting in the developmental arrest of feeding

juveniles [3]. The most advanced sedentary nematodes deliver

effectors into the cytoplasm of host cells to suppress the defense-

related programmed cell death mediated by intracellular immune

receptors [29,30]. However, sedentary nematodes are extracellular

parasites and their prolonged contact with surrounding host cells

makes them also vulnerable to detection by surface-localized

pattern recognition receptors [14]. Recent discoveries with the

root-knot nematode M. incognita suggest that sedentary plant-

parasitic nematodes may have adapted to this by evolving a

separate set of apoplastic effectors to further control host immunity

[31,32].

The unique conservation of venom allergen-like proteins in

secretions of animal- and plant-parasitic nematodes might point to

a common activity of these effector proteins in the extracellular

matrix of animal and plant cells. However, the composition,

structure, and function of the extracellular matrix of animal and

plant cells are fundamentally different [33,34]. A possible

exception might be that both in animals and plants nematodes

encounter an innate immune system that relies on the surveillance

of the extracellular matrix by surface-localized pattern recognition

receptors [35,36]. Earlier work has demonstrated that a secreted

venom allergen-like protein from the animal-parasitic nematode

Necator americanus acts in vitro as an antagonistic ligand of the

integrin complement receptor 3, a pattern recognition receptor on

the surface of human neutrophils [37–40]. This observation led us

to investigate if venom allergen-like proteins of plant-parasitic

nematodes similarly interfere with the functioning of surface-

localized immune receptors in plants. To address this question, we

first analyzed if venom allergen-like proteins are important for the

onset of parasitism by silencing the expression of Gr-VAP1 in

infective juveniles of G. rostochiensis. Next, we analyzed the effect

of ectopic venom allergen-like proteins in transgenic plants on

susceptibility to nematodes, and diverse plant pathogenic fungi,

oomycetes, and bacteria. Based on the response of these plants to

the immunogenic epitope flg22 from bacterial flagellin [41], we

concluded that the venom allergen-like proteins suppress basal

plant defenses to biotic stresses. We further provide evidence that

the breakdown of basal immunity by ectopic venom allergen-like

proteins involves a plant cell wall-associated subtilisin-like serine

protease, not previously linked to defense regulation in plants.

Remarkably, our data also suggest that cyst nematodes exploit a

trade-off mechanism between resistance to biotic and abiotic stress

to ward off host defense responses.

Results

The venom allergen-like protein Gr-VAP1 is required for
the onset of parasitism by G. rostochiensis

To investigate whether venom allergen-like proteins are

required for the onset of parasitism by sedentary plant-parasitic

nematodes, we soaked infective juveniles of G. rostochiensis in

double-stranded RNA, matching 820 base pairs of the Gr-VAP1
transcript sequence. Reverse transcription PCR on nematodes,

soaked in Gr-VAP1-specific dsRNA, showed a significant reduc-

tion in Gr-VAP1 transcript levels, whereas the control treatment

with dsRNA matching the NAU gene from Drosophila melano-
gaster did not alter Gr-VAP1 expression (Fig. 1A). Next,

Author Summary

Plant-parasitic nematodes have a major impact on global
food security, as they reduce the annual yield of food
crops by approximately 10 percent. For decades, the
application of non-selective toxic chemicals to infested
soils controlled outbreaks of plant-parasitic nematodes.
The recent bans on most of these chemicals has redirected
attention towards a wider use of basal, broad-spectrum
immunity to nematodes in crop cultivars. However, it is
currently not known if this most ancient layer of immunity
affects host invasion by plant-parasitic nematodes at all.
Basal immunity in plants relies on the detection of
molecular patterns uniquely associated with infections in
the apoplast by surface-localized receptors. Here, we
demonstrate that venom allergen-like proteins in secre-
tions of soil-borne cyst nematodes suppress immune
responses mediated by surface-localized pattern recogni-
tion receptors. Migratory stages of cyst nematodes most
likely deliver venom allergen-like proteins together with a
range of plant cell wall-degrading enzymes into the
apoplast of host cells. We therefore conclude that these
nematodes most likely secrete venom allergen-like pro-
teins to modulate host responses triggered by the release
of immunogenic fragments of damaged plant cell walls.
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susceptible tomato plants (Solanum lycopersicum, cultivar Money-

maker) were challenged with the dsRNA-treated infective juve-

niles, and monitored for nematode infections for 7 days post

inoculation. Treatment with Gr-VAP1-specific dsRNA signifi-

cantly reduced the number of nematodes inside tomato roots

compared to the treatment with NAU-specific dsRNA (Fig. 1B).

We therefore concluded that the apoplastic venom allergen-like

protein Gr-VAP1 is required for the establishment of successful

infections by G. rostochiensis during the onset of parasitism.

Gr-VAP1 expression coincides with nematode migration
inside host plants

Both infective second-stage juveniles and adult males of G.
rostochiensis migrate through host tissues, which causes significant

damage to host cells. By contrast, intermediate juvenile stages and

adult females are immobile, and thus induce little damage. To

determine whether the expression of Gr-VAP1 in G. rostochiensis
coincides with either migration or sedentarism in host plants, we

used semi-quantitative reverse transcription PCR on nematodes

isolated from infected potato roots at different time points prior to

and post host invasion (Fig. 2). Gr-VAP1 was highly expressed in

infective second stage juveniles during the onset of parasitism.

Thereafter, the level of Gr-VAP1 expression declined in successive

sedentary juvenile stages inside host roots to total absence in

sedentary adult females. However, the expression of Gr-VAP1 was

raised again in migratory adult males. We therefore concluded

that the temporal expression of Gr-VAP1 in G. rostochiensis
coincides with nematode migration inside host plants.

Ectopic Gr-VAP1 increases susceptibility of potato plants
to G. rostochiensis

To examine whether Gr-VAP1 affects the susceptibility of host

plants to G. rostochiensis, we generated transgenic potato plants

ectopically overexpressing Gr-VAP1. Two randomly selected

independent transgenic lines without any visible anomalies in

shoots and roots were challenged with infective juveniles of G.
rostochiensis. Six weeks after inoculation the number of adult

females in plants expressing Gr-VAP1 was significantly higher

than in the corresponding empty vector control plants (Fig. 3A).

To confirm that the altered nematode susceptibility correlates with

Gr-VAP1 expression, we used a real-time quantitative reverse

transcription PCR on the two potato lines expressing Gr-VAP1.

Transgenic line Gr-VAP1-A, that showed the highest nematode

susceptibility, had a 7.9-fold higher expression of Gr-VAP1 than

transgenic line Gr-VAP1-B. We therefore concluded that ectopic

Gr-VAP1 enhances the susceptibility of potato plants to G.
rostochiensis.

Like the effector Avr2 from C. fulvum [42], we expected Gr-

VAP1 to interact with other extracellular papain-like cysteine

proteases in different host plant species of G. rostochiensis. We

used DCG-04 activity profiling to demonstrate that Gr-VAP1 also

perturbs the active site of the apoplastic papain-like cysteine

protease C14tub from potato (S. tuberosum) (Fig. 3B). By contrast,

Gr-VAP1 does not interfere with the binding of fluorescent DCG-

04 to apoplastic C14lyc from tomato (S. lycopersicum). For this

experiment, Gr-VAP1 and C14tub/lyc were separately produced in

the apoplast of agroinfiltrated leaves of Nicotiana benthamiana.

Protease activity was subsequently determined by the binding of

fluorescent DCG-04 to C14tub and C14lyc in the presence of Gr-

VAP1 on gels of mixtures of isolated apoplastic fluids. The

experiment was repeated three times, and each attempt resulted in

significantly less binding of the fluorescent probe to C14tub, but not

to C14lyc (S1 Figure). Only C14tub from potato is under strong

diversifying selection, because of which it is thought to be involved

defenses [43]. We therefore concluded that the enhanced

susceptibility by ectopic Gr-VAP1 in potato most likely involves

the perturbation of C14tub and perhaps other apoplastic papain-

like cysteine proteases.

Fig. 1. The venom allergen-like protein Gr-VAP1 is required for
the onset of parasitism in host plants. (A) RNA interference
specifically knocked down Gr-VAP1 expression in pre-parasitic second
stage juveniles of G. rostochiensis. Semi-quantitative reverse transcrip-
tion-PCR of Gr-VAP1 and a reference gene (60S rib. gene) in pre-parasitic
second juveniles in double stranded RNA either matching the Gr-VAP1
sequence or the sequence of the NAU gene of Drosophila melanogaster
as control. Numbers indicate the cycles in the PCR. (B) The knockdown
of Gr-VAP1 expression significantly reduces the number of infective
juveniles of G. rostochiensis inside roots of tomato plants (S.
lycopersicum). Pre-parasitic second juveniles were either treated with
double stranded RNA matching the Gr-VAP1 or the Nau sequence. Bars
represent standard error of mean of number of nematodes per plant at
7 days after inoculation over 10 replicates. Asterisk marks significance in
a Student’s t-test (with P-value ,0.05).
doi:10.1371/journal.ppat.1004569.g001
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Ectopic venom allergen-like proteins enhance the
susceptibility of Arabidopsis to multiple unrelated plant
pathogens

Arabidopsis thaliana is a far better model to study the molecular

changes induced by venom allergen-like proteins in plants than

either potato or tomato. However, G. rostochiensis is not able to

establish infections in A. thaliana. We therefore continued our

investigations with two homologous venom allergen-like proteins

from the beet cyst nematode Heterodera schachtii, which is a

parasite of A. thaliana. These two venom allergen-like proteins are

formally designated as Nem-Hsc-SCP/TAPS-1A and Nem-Hsc-

SCP/TAPS-2A [18], but for the remainder of this paper they are

referred to as Hs-VAP1 and Hs-VAP2. Hs-VAP1 is 81.4 percent

identical to Gr-VAP1, while Hs-VAP2 shows only 34.8 percent

sequence identity to Gr-VAP1. In comparison, a previously

reported venom allergen-like protein from the root-knot nematode

Meloidogyne incognita (hereafter named Mi-VAP1; [44]) shows

about 28.6% identity to Gr-VAP1 and Hs-VAP1, while it is for

33.9% of its sequence identical to Hs-VAP2 (S2 Figure).

To investigate if ectopic venom allergen-like proteins from H.
schachtii and G. rostochiensis alter the susceptibility of A. thaliana
to cyst nematodes, we generated transgenic plants overexpressing

Gr-VAP1, Hs-VAP1, and Hs-VAP2, including their native signal

peptides for secretion. We challenged two independent single

insertion lines, without visible anomalies in shoots and roots, of

each construct with infective juveniles of H. schachtii. Twenty-

eight days after inoculation the number of females per plant in

plants expressing Gr-VAP1, Hs-VAP1, and Hs-VAP2 was

significantly higher than in the corresponding transgenic empty

vector line or in the wild type Col-0 plants (Fig. 4A). We therefore

concluded that venom allergen-like proteins from two unrelated

cyst nematodes commonly enhance the susceptibility of different

plant species to nematode infections.

Next, we reasoned that if the VAP-enhanced susceptibility of

the transgenic Arabidopsis lines to cyst nematodes involves

modulation of the innate immunity, these lines might also be

more susceptible to entirely unrelated plant pathogens. To test

this, we analyzed the transgenic Arabidopsis lines overexpressing

Hs-VAP1 and Hs-VAP2 for their susceptibility towards Botrytis
cinerea, Plectosphaerella cucumerina, a virulent and a non-virulent

isolate of Phytophthora brassicae, Alternaria brassicicola, Verticil-
lium dahliae, and Pseudomonas syringae pv. tomato (Fig. 4B, and

S3 Figure). The overexpression of both Hs-VAP1 and Hs-VAP2
significantly increased the severity of the grey mold symptoms

caused by B. cinerea in the transgenic Arabidopsis plants (S4A

Figure). Similarly, both Hs-VAP1 and Hs-VAP2 significantly

increased susceptibility of Arabidopsis plants to infections by P.
syringae pv. tomato (S3A Figure). Only Arabidopsis plants

overexpressing Hs-VAP1 showed larger necrotic lesions following

the inoculation with the fungus P. cucumerina (S4B Figure). By

contrast, the oomycete P. brassicae (isolate CBS686.95) only

caused faster developing and larger lesions on transgenic

Arabidopsis expressing Hs-VAP2 (S4C Figure). Surprisingly, the

P. brassicae isolate HH, which is not virulent on wild type A.
thaliana Col-0, was able to colonize transgenic A. thaliana lines

expressing Hs-VAP2 (S4D Figure). However, neither Hs-VAP1
nor Hs-VAP2 altered the susceptibility of A. thaliana towards the

fungal pathogens A. brassicicola or V. dahliae, both of which do

not cause expanding lesions in Arabidopsis ecotype Col-0.

Altogether, our data suggests that ectopic Hs-VAP1 and Hs-

VAP2, albeit differently, modulate basal innate immunity of A.
thaliana toward multiple, but not all, plant pathogens. Further-

more, ectopic VAPs specifically altered the susceptibility of

Arabidopsis to pathogenic microbes that typically cause expanding

lesions in their necrotrophic phase (i.e. B. cinerea, P. cucumerina,

P. brassicae, and P. syringae pv. tomato).

Ectopic venom allergen-like proteins abrogate the
response of Arabidopsis to the immunogenic peptide
flg22

The flagella of P. syringae pv. tomato harbor an immunogenic

epitope of twenty two amino acids (flg22) that is recognized as a

pathogen-associated molecular pattern in Arabidopsis [45].

Prolonged exposure to flg22 elicits a persistent basal immune

response in seedlings of Arabidopsis Col-0 plants, which occurs at

the expense of plant growth [45]. We used this phenotype to

confirm that ectopic venom allergen-like proteins undermine basal

immunity in our transgenic Arabidopsis lines. As expected,

treatment with flg22 significantly inhibited seedling growth in

both wild-type Arabidopsis and in our transgenic lines harboring

the empty expression vector (Fig. 4C). By contrast, the expression

of Hs-VAP1 and Hs-VAP2 in Arabidopsis seedlings largely

abrogated this growth inhibition by flg22 (Fig 4C; S5 Figure).

Remarkably, the leaves of the transgenic plants overexpressing Hs-
VAP1 and Hs-VAP2 also remained much greener as compared to

the leaves of wild type Col-0 and empty vector control plants

following the treatment with flg22. As the perception of flg22 in

Arabidopsis is mediated by the extracellular pattern recognition

receptor FLS2 [45], we concluded that ectopic venom allergen-like

proteins most likely modulate the activation of basal immunity by

surface-localized immune receptors.

Extracellular papain-like cysteine proteases regulate
immunity to cyst nematodes in Arabidopsis

The apoplastic effectors Avr2 of C. fulvum and Gr-VAP1 of G.
rostochiensis commonly inhibit the extracellular papain-like

protease Rcr3pim in tomato [14]. Although C. fulvum is not a

pathogen of Arabidopsis either, ectopic Avr2 has been shown to

interact with multiple extracellular papain-like cysteine proteases

Fig. 2. The expression of Gr-VAP1 coincides with host invasion and migration of Globodera rostochiensis. The expression of Gr-VAP1, as
shown by semi-quantitative reverse transcription PCR, is highly up-regulated in the migratory stages of G. rostochiensis (ppJ2, J2, and males (=)),
while it declines after initiation of the permanent feeding site in the sedentary juvenile stages (J3 and J4, and adult females (R). Changes in expression
of Gr-VAP1 were assessed using the constitutively expressed cAMP-dependent protein kinase (cAMP) gene in G. rostochiensis as reference. Reactions
using uninfected tomato roots as template (Root) and without reverse transcriptase (-RT) were included as controls.
doi:10.1371/journal.ppat.1004569.g002
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of Arabidopsis [42]. To investigate if heterologous expression of

Avr2 through its interactions with extracellular papain-like

cysteine proteases also affects susceptibility of Arabidopsis to

nematode infections, we challenged transgenic Arabidopsis plants

stably overexpressing Avr2 with H. schachtii. Four weeks post

inoculation the number of adult females of H. schachtii per root

was significantly higher in plants overexpressing Avr2 than in the

corresponding wild type Arabidopsis plants (Fig. 5A). This data

shows that the inhibition of extracellular papain-like cysteine

proteases by promiscuous effectors from different non-adapted

plant attackers (i.e. Gr-VAP1 and Avr2) undermines basal

immunity in Arabidopsis.

To further confirm the importance of extracellular papain-like

cysteine proteases in basal immunity to nematode infections, we

challenged the homozygous knockout mutants pap-1, pap-4, and

pap-5 of Arabidopsis with H. schachtii. Members of the pap gene

family are the closest homologs of Rcr3pim in Arabidopsis [14].

The loss of functional pap genes in all three mutant Arabidopsis

lines resulted in significantly enhanced susceptibility to H. schachtii
(Fig. 5B). We therefore conclude that conserved extracellular

protease-based immune signaling networks most likely regulate

basal immunity to plant-parasitic nematodes in multiple unrelated

plants.

Ectopic venom allergen-like proteins regulate apoplastic
and chloroplastic immune signaling in Arabidopsis

To better understand the molecular basis of the suppression of

basal immunity by venom allergen-like proteins, we analyzed the

transcriptomes of Arabidopsis lines expressing Hs-VAP1, Hs-
VAP2, and the corresponding transgenic empty vector control

plants. In total, the expression of 1294 genes was significantly

down-regulated, while 535 genes were significantly up-regulated in

the Arabidopsis lines overexpressing either Hs-VAP1 or Hs-VAP2
(False Discovery Rate ,0.05) (S6A Figure and S6B Figure). More

than sixty percent of the Arabidopsis genes strongly down-

regulated by ectopic Hs-VAP1 and Hs-VAP2 encode a protein

that is either predicted to be extracellular or localized to the

plasma membrane (S4C Figure; S1 Table and S2 Table). By

contrast, the predicted subcellular location of the products of the

genes strongly up-regulated by either Hs-VAP1 or Hs-VAP2 are

more evenly distributed over different cellular compartments (S3

Table and S4 Figure).

To resolve specific pathways particularly affected by the

overexpression of Hs-VAP1 and Hs-VAP2 in A. thaliana, we

subjected all differentially expressed genes to a KEGG pathway

gene set enrichment analysis [46,47]. The KEGG pathway most

significantly altered by both Hs-VAP1 and Hs-VAP2 in Arabi-

dopsis is named ‘Plant-pathogen interactions’ (KO04626; S5

Table; FDR ,10-12). The vast majority of these Arabidopsis genes

currently assigned to this pathway have been associated with

innate immunity to plant pathogens [48]. We therefore concluded

that the overexpression of venom allergen-like proteins in

Arabidopsis particularly affects molecular components in immune

signaling pathways.

To further investigate the expression of specific genes associated

with the loss of immunity in the transgenic Arabidopsis plants

overexpressing Hs-VAP1 and Hs-VAP2, we first focused on the

most down-regulated genes (Table 1). The annotations of many of

the most down-regulated genes point to an involvement of plant

cell wall-associated processes such as modification (e.g. plant

invertase/pectin methylesterase inhibitor family, and glycosyl

hydrolases), signaling (e.g. proline-rich extension-like receptor

kinases), and protein processing (e.g. subtilisin-like serine proteas-

es).

An exceptionally strong down-regulation was observed for gene

locus AT4G21630 in Hs-VAP1-overexpressing Arabidopsis plants

(Log2 fold change = 232.0). Albeit less, AT4G21630 was also

Fig. 3. Apoplastic Gr-VAP1 suppresses immunity of potato
plants to G. rostochiensis. (A) Transgenic potato plants stably
overexpressing Gr-VAP1 in the apoplast show enhanced susceptibility
to G. rostochiensis. The number of nematodes per plant was compared
at 6 weeks post inoculation for two independent transgenic potato
lines harboring either Gr-VAP1 (Gr-VAP1-A and Gr-VAP1-B) or the
corresponding T-DNA insert of the empty binary expression vector (EV).
The expression constructs included native signal peptide for secretion
of Gr-VAP1. Bars represent standard errors of the means. Different
letters indicate statistically significant differences between plant
genotypes as determined with ANOVA (with P-values ,0.05). (B)
Apoplastic Gr-VAP1 perturbs the active site of the extracellular defense-
related papain-like cysteine protease C14tub of potato (S. tuberosum).
Image shows binding of the fluorescent activity-based probe DCG-04 to
the active site of C14tub and C14lyc of tomato (S. lycopersicum) following
treatment with Gr-VAP1 isolated from apoplastic fluids of agroinfiltrated
leaves. Treatments with the Avr2, egg white cystatin, and apoplastic
fluids from agroinfiltrations with the empty binary expression vector
(Empty vector), and with buffer alone (Buffer) were included as controls.
doi:10.1371/journal.ppat.1004569.g003
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Fig. 4. Ectopic venom allergen-like proteins suppress basal immunity in Arabidopsis thaliana. (A) Heterologous expression of the venom
allergen-like protein Gr-VAP1 from G. rostochiensis, and Hs-VAP1 and Hs-VAP2 from Heterodera schachtii in the apoplast of transgenic Arabidopsis
lines enhances their susceptibility to H. schachtii. Two independent transgenic lines per construct (-A and -B) were compared with corresponding
transgenic line harboring the T-DNA of the empty vector (EV) and wild type A. thaliana (Col-0). Bars represent mean number of nematodes per plants
with standard errors of the means. Letters indicate statistical significance when using P-value ,0.05 as threshold. (B) Ectopic Hs-VAP1 and Hs-VAP2
enhance development of disease symptoms of fungal and oomycete pathogens in leaves of transgenic Arabidopsis lines. Pictures show symptoms on
leaves inoculated with Botrytis cinerea, Plectosphaerella cucumeria, and two isolates of Phytophthora brassicae, or mock inoculated. (C) Ectopic Hs-
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strongly down-regulated in the transgenic Arabidopsis lines

overexpressing Hs-VAP2. AT4G21630 encodes a putative plant

cell wall-associated subtilase-like serine protease (i.e. AtSBT3.14;

[49]). The role of AtSBT3.14 in Arabidopsis is not known, but a

closely related homolog from the same subtilase subfamily, named

AtSBT3.3, acts as an extracellular molecular switch in priming of

defense responses [50]. To investigate if AtSTB3.14 is required for

basal immunity of Arabidopsis to the cyst nematodes, we

challenged a homozygous knockout mutant line with H. schachtii.
Four weeks post inoculation the number of adult females was

almost twice as high in the Atsbt3.14 knock-mutant, as compared

to the corresponding Col-0 wild type Arabidopsis plants (Fig. 6).

We therefore concluded that the strong down-regulation of

AtSBT3.14 most likely contributes to the loss of basal immunity

in Arabidopsis plants overexpressing Hs-VAP1 and Hs-VAP2.

Next, we focused on four of the most up-regulated transcripts in

the transgenic Arabidopsis plant overexpressing Hs-VAP1 and

Hs-VAP2 (Log2 fold change.30.9; Table 2). Two of these

transcripts derive from gene loci encoding unknown proteins (i.e.

AT1G44608 and AT1G44542). However, the two other tran-

scripts are splice variants from the same and most up-regulated

gene in both Hs-VAP1 and Hs-VAP2 overexpressing plants (i.e.

AT1G44575, or NPQ4). NPQ4 encodes the chlorophyll-associat-

ed Photosystem II subunit S protein (PsbS), which is involved in

non-photochemical quenching of excess excitation energy [51].

Recently, it was shown that the Arabidopsis knockout mutant

npq4-1 lacking PsbS displays an enhanced response to flg22 [52].

The npq4-1 knockout mutant is also less attractive to herbivorous

insects than the corresponding wild type Arabidopsis plants [53].

We used the npq4-1 knockout mutant to demonstrate that the lack

of PsbS enhances immunity of Arabidopsis to H. schachtii (Fig. 6).

We therefore conclude that the constitutively enhanced expression

of NPQ4 by ectopic Hs-VAP1 and Hs-VAP2 in transgenic

Arabidopsis most likely undermines their ability to mount an

adequate immune response.

Apoplastic venom allergen-like proteins suppress
defense-related programmed cell death activated by cell
surface receptors

The increase of non-photochemical quenching capacity may

block the activation of singlet oxygen-dependent programmed cell

VAP1 and Hs-VAP2 suppress seedling growth response of Arabidopsis to the immunogenic peptide flg22. Bars represent mean root length of
transgenic lines with standard error of mean after 10 days in the presence or absence of 10 mM flg22.
doi:10.1371/journal.ppat.1004569.g004

Fig. 5. Defense-related extracellular papain-like cysteine proteases regulate immunity to cyst nematodes in Arabidopsis. (A)
Inhibition of papain-like cysteine proteases by heterologous expression of the apoplastic effector Avr2 from Cladosporium fulvum in transgenic
Arabidopsis lines suppresses immunity to H. schachtii. The bars represent mean number of nematodes per plant with standard error at four weeks
post inoculation in transgenic line harboring ectopic Avr2 in the apoplast (Avr2) and the corresponding wild type Arabidopsis. Asterisk indicates
statistical significance when using P-value ,0.05 as threshold (Student’s t-test). (B) Members of the extracellular papain-like cysteine protease family
AtPAP in Arabidopsis are required for immunity to H. schachtii. Bars represent mean number of nematodes per plant with standard error of mean.
Different letters indicate statistically significant differences between homozygous knockout mutants pap1, pap4, pap5 and corresponding wild type
Arabidopsis at four weeks after inoculation determined with ANOVA (with P-values ,0.05).
doi:10.1371/journal.ppat.1004569.g005
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death [54,55]. To investigate if the venom allergen-like proteins

are able to suppress programmed cell death, we transiently co-

expressed several inducers of cell death and nematode VAPs in

leaves of Nicotiana benthamiana (S6 Table; Fig. 7). Because N.
benthamiana is not a host of G. rostochiensis or H. schachtii, we

also included the venom allergen-like protein Mi-VAP1 from the

polyphagous M. incognita in these cell death suppression assays.

Both Mi-VAP1 and Hs-VAP1 consistently suppressed the cell

death induced by the Phytophthora infestans elicitin INF1

(Fig. 7A). Both Mi-VAP1 and Hs-VAP1 also suppressed the cell

death induced by extracellular receptor protein Cf-4 from tomato

and its cognate elicitor Avr4 from C. fulvum (Fig. 7B). All tested

VAPs similarly suppressed the cell death induced by the

extracellular receptor-like protein Cf-9 from tomato and its

cognate elicitor Avr9 from C. fulvum (Fig. 7C). Surprisingly,

none of the venom allergen-like proteins suppressed the cell death

responses induced by several cytoplasmic immune receptors and

their cognate elicitors (e.g. Rx1, Gpa2, R3a, Blb2). To confirm

that the ectopic VAPs harboring their native signal peptide for

secretion are indeed secreted to the apoplast in planta, we

analyzed apoplastic fluids isolated from agroinfiltrated leaf of N.
benthamiana on western blots using antiserum towards an

additional carboxyl terminal FLAG affinity tag on the proteins

(S7 Figure). Taken together, we conclude that apoplastic venom

allergen-like proteins selectively suppress the activation of the

programmed cell death by surface-localized immune receptors.

Discussion

Since their first identification in the canine hookworm

Ancylostoma caninum (Ac-ASP; [21]) and the root-knot nematode

M. incognita (Mi-MSP1/VAP1; [44]) venom allergen-like proteins

are thought to be crucial for the onset of parasitism of nematodes

in animals and plants. However, in spite of their conservation,

relative abundance in nematode secretions, and strong association

with the onset of parasitism, the role of venom allergen-like

proteins in host-parasite interactions has so far remained elusive

[18,19]. To date, the only available functional data on the role of a

venom allergen-like protein in secretions of parasitic nematodes

point to a perturbation of a complement receptor on human

immune cells [37–40]. Here, we demonstrate that plant-parasitic

nematodes most likely deliver venom allergen-like proteins into the

apoplast of host cells to suppress basal immunity mediated by

surface-localized immune receptors.

Several lines of evidence in our data suggest that plant-parasitic

nematodes may use venom allergen-like proteins to modulate

immune responses activated by tissue damage caused by migratory

nematodes inside host plants. First, the expression of Gr-VAP1 in

G. rostochiensis coincides with host invasion by infective juveniles

and intracellular migration by adult males inside plants (Fig. 2).

Both host invasion and migration by parasitic nematodes involves

the enzymatic breakdown of plant cell walls, resulting in extensive

damage to host tissue [56]. More importantly, Gr-VAP1 is

secreted at the same time and from the same pharyngeal glands in

G. rostochiensis as an elaborate set of plant cell wall-degrading

enzymes [14]. The transient knockdown of these plant cell wall-

degrading enzymes in infective juveniles of G. rostochiensis inhibits

the onset of parasitism [56]. Similarly, the transient knockdown of

Gr-VAP1 expression during host invasion significantly reduced the

number of infective juveniles inside susceptible tomato plants

(Fig. 1), showing that this venom allergen-like protein is also a

critical factor during the onset of parasitism.

Although we have not formally shown that plant-parasitic

nematodes deliver VAPs into the apoplast of host cells in planta,

our previous work demonstrates that this is nonetheless most likely

the case [14]. More specifically, we have shown that Gr-VAP1

associates with and perturbs apoplastic Rcr3pim in tomato, and

that this perturbation specifically activates nematode resistance

and programmed cell death mediated by the extracellular

receptor-like protein Cf-2. Furthermore, tomato plants that harbor

apoplastic Rcr3pim, but not Cf-2, are almost twice as susceptible to

nematode infections than tomato plants with allelic variants of

apoplastic Rcr3 to which Gr-VAP1 is unable to bind or tomato

plants that have no functional Rcr3 at all. Altogether, we conclude

that venom allergen-like proteins may specifically function as

apoplastic suppressors of immune responses triggered by plant cell

wall fragments released by the enzymatic breakdown of plant cell

walls during nematode migration inside host plants [57,58].

Little work has been done on the importance of surface-

localized pattern recognition receptors mediating damage-trig-

gered immunity in nematode-plant interactions. Transcriptome

analyses of nematode-infected roots suggest that plant cell wall-

associated legume-like lectin receptor kinases might be involved in

basal immunity to H. schachtii in Arabidopsis [59], but further

research is needed to corroborate this. Interestingly, both Hs-

VAP1 and Hs-VAP2 significantly down-regulate the expression of

five proline-rich extensin-like receptor kinases (i.e. At4G34440,

AtPERK5; At3G18810, AtPERK6; At1G49270, AtPERK7;

Fig. 6. A plant cell wall-associated subtilase and non-photo-
chemical quenching in chloroplasts regulate immunity to
plant-parasitic nematodes. The lack of the subtilisin-like serine
protease AtSBT3.13 and the chlorophyll-associated Photosystem II
subunit S protein in homozygous Arabidopsis mutants (sbt3.14 and
npq4-1, respectively) significantly alters their susceptibility to H.
schachtii. Bars represent mean number of nematodes per plant with
standard error of mean. Different letters indicate statistically significant
differences between homozygous knockout mutants and correspond-
ing wild type Arabidopsis at four weeks after inoculation (determined
with ANOVA (with P-values ,0.05).
doi:10.1371/journal.ppat.1004569.g006
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At1G10620, AtPERK11; S1 Table and S2 Table)). These PERKs

belong to a family of fifteen predicted transmembrane receptor-

like kinases in Arabidopsis. The extracellular domain in PERKs

shares similarity with plant cell wall-associated extensin proteins

[60], but the biological function of most members of the AtPERK
family is unknown. However, the expression of BnPERK1 from

Brassica napus is rapidly induced following wounding, because of

which it is thought to mediate early events in defense responses to

cell wall damage by invading plant pathogens [61].

The modulation of basal immunity by venom allergen-like

proteins in plants most likely involves at least two different classes

of extracellular proteases. The first class of extracellular proteases

regulating basal immunity to nematode infections in plants

concerns the papain-like cysteine proteases. The inhibition of the

extracellular papain-like cysteine protease Rcr3pim from S.
pimpinellifolium by Gr-VAP1 results in enhanced susceptibility

of tomato plants to G. rostochiensis [14]. Here, we showed that Gr-

VAP1 also perturbs the extracellular papain-like cysteine protease

C14tub from potato (S. tuberosum; Fig. 3B), while ectopic Gr-

VAP1 significantly increased the susceptibility of potato plants to

G. rostochiensis (Fig. 3A). Remarkably, ectopic Gr-VAP1 also

suppressed basal immunity of Arabidopsis, even though this plant

species is not a host of G. rostochiensis. However, a similar

phenomenon has been observed with the apoplastic effector Avr2

of the C. fulvum, which acts as an inhibitor of Rcr3pim and several

other extracellular papain-like cysteine proteases in tomato

[15,16,42,62]. Although A. thaliana is not a host of C. fulvum
either, ectopic Avr2 nonetheless interacts with multiple papain-like

cysteine proteases required for basal defense in Arabidopsis [42].

The inhibition of apoplastic papain-like cysteine proteases by

ectopic Avr2 also suppresses immunity of Arabidopsis to H.
schachtii (Fig. 5A). Similarly, the lack of three papain-like cysteine

proteases most related to Rcr3pim in Arabidopsis mutants (i.e.

pap1, pap4, and pap5) suppresses immunity to H. schachtii
(Fig. 5B) Altogether, these findings position the inhibition of

extracellular papain-like cysteine proteases by apoplastic effectors

as an important regulatory process in plant innate immunity to

cyst nematodes.

The second class of extracellular proteases most likely involved

in the suppression of basal immunity by venom allergen-like

proteins concerns subtilisin-like serine proteases. The transcript

most down-regulated by ectopic Hs-VAP1 in Arabidopsis encodes

the plant cell wall-associated subtilisin-like serine protease

AtSBT3.14 (S1 Table; AT4G21630; [49,63]). AtSBT3.14 is also

down-regulated by ectopic Hs-VAP2, albeit to a lesser extent. The

Arabidopsis SBT family comprises 56 members, most of which are

still uncharacterized. AtSBT3.14 is specifically expressed in roots,

siliques, and dry seed of A. thaliana, but its function is not known

[63]. AtSBT3.14 belongs to the same subfamily as AtSBT3.3,

which functions as an extracellular molecular switch in the

priming of defense responses in Arabidopsis [50]. T-DNA

insertion knockout mutations in the AtSBT3.3 gene compromise

innate immunity of Arabidopsis. The loss of immunity of

Arabidopsis mutants lacking a functional AtSBT3.14 gene to H.

schachtii suggests that this plant cell wall-associated subtilase may

also act as an extracellular regulator of basal innate immunity

(Fig. 6).

Most of the genes differentially regulated by the overexpression

of venom allergen-like proteins in Arabidopsis are typically

associated with innate immunity and plant cell wall-associated

processes. A notable exception to this is NPQ4, which was the

most up-regulated gene in both Hs-VAP1 and Hs-VAP2
overexpressing plants. The PsbS protein encoded by NPQ4 is

involved in non-photochemical fluorescence quenching in the

thylakoid membranes of chloroplasts [51,64]. PsbS functions as

photo protectant by mediating the thermal dissipation of excess

excitation energy of singlet chlorophyll. Saturation of the electron

transport chain in the photosystem II by excess light can lead to

the accumulation of excited chlorophyll, which when insufficiently

quenched by PsbS transfers its energy to oxygen to form highly

reactive singlet oxygen [65]. The non-photochemical quenching

capacity in chloroplasts thus regulates the generation of singlet

oxygen [54]. Singlet oxygen can be the cause of oxidative damage,

but on the other hand it is also involved in the peroxidation of

lipids into oxylipin hormones (e.g. jasmonic acid; [54]) and in the

onset of programmed cell death [55,66]. It is for this duality that

PsbS is thought to play a key role in the trade-off between the

ability to protect against abiotic photo-oxidative stress and the

ability to mount effective redox-dependent immune responses to

biotic invaders [54].

Our data shows that ectopic Hs-VAP1 and Hs-VAP2 suppress

innate immune responses in Arabidopsis, at least partly, through

their regulation of PsbS. As PsbS is a rate-limiting factor in non-

photochemical quenching of excited singlet chlorophyll [67], the

more than 30-fold increase in the expression of NPQ4 by ectopic

venom allergen-like proteins in the transgenic Arabidopsis most

likely reduces the formation of singlet oxygen under biotic stress

[54]. As a consequence, the constitutive augmentation of the non-

photochemical quenching capacity by elevated levels of PsbS will

probably also affect the production of oxylipin hormones (i.e.

jasmonic acid, and its precursors) and the signaling of pro-

grammed cell death in response to biotic stress [54]. By contrast,

PsbS-deficient npq4-1 mutant Arabidopsis plants show an

enhanced production of jasmonic acid in response to herbivory

by feeding insects [68]. We used the same Arabidopsis mutant line

to demonstrate that PsbS-deficient plants are immune to infections

by H. schachtii (Fig. 6). This finding shows that a functional PsbS

protein is required for virulence of H. schachtii in Arabidopsis,

possibly for down-regulating oxylipin hormone signaling or other

singlet oxygen-dependent immune responses.

While a PsbS-centered model may offer a plausible explanation

for the suppression of immune responses by ectopic venom

allergen-like proteins in leafs, the biological relevance of PsbS as

regulator immunity to parasitic nematodes in roots is more

puzzling. PsbS is localized in chloroplasts, which mainly occur in

aerial plant parts that are exposed to light but not in roots.

However, the Arabidopsis plants used in nematode infection assays

are routinely cultured in vitro on translucent media in a light/dark

Fig. 7. Ectopic venom allergen-like proteins from cyst and root-knot nematodes selectively suppress defense-related programmed
cell death. (A) Agroinfiltration assays in Nicotiana benthamiana showing the transient co-expression in the apoplast of cell death inducing elicitin
INF1 of Phytophthora infestans and venom allergen-like proteins from G. rostochiensis (Gr-VAP1), H. schachtii (Hs-VAP1 and Hs-VAP2), and Meloidogyne
incognita (Mi-VAP1). Co-expressions with the corresponding empty binary vector (EV) and green fluorescent protein (GFP) were included as controls.
(B and C) Transient co-expression of receptor-like proteins Cf-4 and Cf-9 from tomato and their cognate elicitors Avr4 and Avr9 from C. fulvum with
venom allergen-like proteins and controls as described above. Photographs were taken 4 days post infiltration for INF1, and 7 days post infiltration for
Cf-4/Avr4 and Cf9/Avr9. The bars represent the mean number of events in which cell death suppression was observed for a total of 60 inoculation
spots over 5 biological replicates (with standard error of mean). Different letters indicate a significant difference when using P-value ,0.05 (in an
ANOVA).
doi:10.1371/journal.ppat.1004569.g007
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cycle to monitor the infection over time. It has been shown before

that permanent feeding structures formed by H. schachtii under

these circumstances harbor chloroplasts [69]. Importantly, it has

also been shown that NPQ4 is strongly up-regulated in permanent

feeding structures of H. schachtii as compared to other root cells in

the elongation zone of Arabidopsis plants kept in a light/dark cycle

[70]. One could argue that the occurrence of chloroplasts and the

expression of NPQ4 in nematode-induced feeding structures in

roots are artifacts caused by the unnatural exposure of the roots to

light. However, others have shown that permanent feeding

structures of H. schachtii in Arabidopsis roots that are kept in

the dark also harbor plastids with similar fluorescence spectra as

chloroplasts [70]. More research is therefore needed to further

investigate the nature and functions of PsbS in plastids of

nematode-infected roots. Taken together, we conclude that non-

photochemical quenching capacity is at least partly responsible for

regulating innate immunity of roots to infection by H. schachtii
under our experimental conditions.

In conclusion, plants monitor the integrity of their cell walls with

specific surface-localized pattern recognition receptors [71,72].

The recognition of fragments of plant cell walls can elicit strong

basal defense responses that counteract further invasion by

microbial invaders [73,74]. As plant-parasitic nematodes cause

significant damage to plant cell walls during their migration inside

host plants, they could evidently benefit from effectors that

suppress immunity triggered by fragments from damaged plant

cell walls. Our data allows for a model in which apoplastic venom

allergen-like proteins of plant-parasitic nematodes suppress host

defenses activated by the detection of fragments of plant cell walls

released by migrating nematodes. This model could also explain

why ectopic VAPs particularly affect the susceptibility of

Arabidopsis to diverse unrelated lesion-forming plant pathogens,

the symptoms of which also involve significant plant cell wall

modifications.

So far, we have identified three components of the molecular

mechanisms that are most likely underlying the suppression of

plant innate immunity by apoplastic venom allergen-like proteins

(i.e. extracellular papain-like cysteine proteases, cell wall-associat-

ed subtilisin-like serine protease, and the chlorophyll-associated

Photosystem II subunit S protein). As our mutant analyses showed,

each of these components separately has a major impact on

immunity to cyst nematodes in Arabidopsis. An important

question that needs further research is if all three components

are part of a single signaling pathway that spans different

subcellular compartments. This might not be the case, because

promiscuous effectors like Gr-VAP and Avr2 can interact with

multiple apoplastic papain-like cysteine proteases, each of which

may feed into different signaling pathways.

Materials and Methods

Knockdown of Gr-VAP1 expression by RNA interference
Gr-VAP1 expression in preparasitic second stage juveniles

(ppJ2s) of G. rostochiensis was knocked-down by soaking nema-

todes in double-stranded (ds) RNA matching 820 base pairs of the

Gr-VAP1 coding sequence as described by Chen et al [75] and

Rehman et al [56]. Briefly, a cDNA fragment was PCR-amplified

with the primers Gr-VAP1-RNAiFW and Gr-VAP1-RNAiR (S7

Table) using Gr-VAP1 cDNA as template. The amplified cDNA

fragment of Gr-VAP1 was subsequently used as template for

generating dsRNA in vitro using the Megascript RNAi kit

(Ambion, Cambridgeshire, UK). Double-stranded RNA matching

the sequence of the Nautilus gene from Drosophila melanogaster
(Genbank accession number M68897) was used as control

treatment. RNA interference was induced in nematodes by

soaking approximately 15,000 freshly hatched ppJ2s of G.
rostochiensis Ro1 Mierenbos in a 1 mg/ml dsRNA solution,

including 50 mM octopamine, 3 mM spermidine, and 0.05%

gelatin. The treatments were done in duplo so that 15,000

juveniles could be processed further for infectivity assay on tomato

seedlings and 15,000 juveniles could be used for semi-quantitative

reverse transcription (RT)-PCR.

To test the effect of RNA interference on infectivity of G.
rostochiensis, we inoculated plates with five two-week old tomato

seedlings (cultivar Moneymaker) on Gamborg B5 medium with

400 dsRNA-treated ppJ2s [56]. For each treatment a total number

of 10 plates was inoculated with dsRNA-treated ppJ2s. The plants

were grown at 24uC and light/dark cycles of 16 h/8 h. Seven days

post inoculation, the roots were stained with acid fuchsin,

destained using acidified glycerol, and the number of nematode

per root was determined using a dissection microscope. The means

of numbers of nematodes per plant were tested for significant

differences in a one-way ANOVA.

To analyze Gr-VAP1 expression after dsRNA treatment, total

RNA was extracted from dsRNA-treated ppJ2s using the RNeasy

Mini kit (Qiagen, Hilden, Germany). RT-PCR was done following

the protocol of the SuperScriptTM III One-Step RT-PCR System

(Invitrogen) using the primer Gr-VAP1-sRTFw and Gr-VAP1-

sRTRv (S7 Table), which were designed outside the region

targeted by the dsRNA. The expression of the 60S acidic

ribosomal protein-encoding gene (Genbank accession number

BM354715.1) was analyzed with primers 60S-RTFw and 60S-

RTRv (S7 Table) as a reference for constitutive expression.

Aliquots of the PCR solutions were visualized on ethidium

bromide stained 1% agarose gel after 28 cycles.

Fluorescent protease activity profiling
Fluorescent activity based protease profiling was used to test

whether Gr-VAP1 perturbs the active site of cysteine proteases.

The cysteine proteases C14tub of S. tuberosum and C14lyc of S.
lycopersicum were transiently overexpressed in apoplastic fluids of

N. benthamiana leaves following agroinfiltration [62]. Twenty-five

to fifty microliters of apoplastic fluid was incubated with either 100

nM of P. pastoris produced Avr2, 100 nM cystatin from chicken

egg-white (Sigma-Aldrich), or 300 nM of Gr-VAP1 isolated from

apoplastic fluids of agroinfiltrated N. benthamiana leaves (see

below) in 50 mM sodium acetate (pH 5.5) and 100 mM DTT. To

label the available active sites in these cysteine proteases, the

proteins were subsequently incubated for 5 h with 1 mM of

fluorescent DCG-04-TMR [76]. Fluorescent labeled proteins were

separated in 12% Bis-Tris gels (Invitrogen), which were subse-

quently analyzed using a fluorescent imager scanner (Molecular

Imager FX, Bio-Rad, Hercules, CA, USA). Labelling densities

were quantified in triplicates using the computer software

Quantity One 4.6.9 (Bio-Rad Laboratories).

Temporal expression of Gr-VAP1 in G. rostochiensis
To study the expression of Gr-VAP1 at different time points

before and after inoculation, we used semi-quantitative RT-PCR

as described above. Messenger RNA extraction and cDNA

synthesis was conducted on parasitic second, third, and fourth

stage juveniles and the adult males and females isolated from roots

of susceptible potato (cultivar Bintje) at 13, 19, 23, 27, and 34 days

post inoculation respectively. Gr-VAP1 expression in these

developmental stages was examined by targeting a gene specific

fragment of 146 base pairs of Gr-VAP1 with primers Gr-VAP1-

RTFw and Gr-VAP1-RTRv (S7 Table). The constitutively

expressed cAMP-dependent protein kinase (Gr-cAMP; GenBank
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accession number BM343563) was PCR amplified with the

primers cAMP-RTFw and cAMP-RTRv (S7 Table) as a reference.

We included reactions without reverse transcriptase to test for

contaminating genomic DNA of the nematodes, while non-

infected potato roots were included to check for non-specific

amplification of host-derived cDNA.

Generating transgenic potato plants
Transgenic potato plants (Line V; genotype 6487-9) overex-

pressing Gr-VAP1 in the apoplast were generated as described by

Postma et al [30]. Briefly, potato stem pieces were incubated for

10 minutes with a suspension of Agrobacterium tumefaciens strain

AGL1 carrying the Gr-VAP1 cDNA sequence, including its

native signal peptide for secretion, in pMDC32 [14,77].

Transformant callus was selected on ZCVK medium (MS20

medium, 8 g/l plant agar, 1 mg/l zeatin, 100 mg/l kanamycin,

200 mg/l cefotaxim, 200 mg/l vancomycin; pH 5.8). The

introgression of Gr-VAP1 insert was checked by PCR on

genomic DNA extracted from plant leaves using the DNeasy

Plant Mini Kit (Qiagen). The expression of Gr-VAP1 was

checked by quantitative PCR (qPCR) using the primers

qGrVAP1-Fw and qGrVAP1-Rv (S7 Table) on RNA extracted

from leaves using the RNeasy Plant Mini Kit (Qiagen). The

constitutively expressed actin was amplified with the primers

StActinF and StActinR (S7 Table) as a reference. qPCR was

performed using Absolute QPCR SYBR Green Mix (Thermo

Fisher Scientific) with amplification of 15 min at 95uC, followed

by 35 cycles of 30 s at 95uC, 30 s at 63uC and 30 s at 72uC.

Infection assays on potato plants
Dried cysts of G. rostochiensis pathotype Ro1-Mierenbos were

soaked in potato root diffusate on a 100-mm sieve to collect ppJ2s

[78]. Remnants of roots and other debris were removed from

suspensions of freshly hatched ppJ2s using centrifugation in

sucrose gradient. Prior to inoculation potato plants the ppJ2s

were surface sterilized, and resuspended in sterile 0.7% (w/v)

solution of Gelrite (Duchefa) as previously described [30].

Approximately, 200 ppJ2s were inoculated onto 3-week-old in
vitro-grown plants potato plant. Adult females per plant were

counted 6 to 8 weeks after inoculation. Two independently

transformed potato lines were used in these experiments. The

infection assays were repeated at least 3 times.

Identification and cloning of venom allergen-like protein
from H. schachtii

To identify and clone venom allergen-like proteins from the

beet cyst nematode H. schachtii, we first queried the expressed

sequence tag database at Genbank using the sequence of Gr-VAP1

as query. Four cDNA library clones, from which matching

expressed sequence tags derived, were acquired from ‘‘The

Washington University Nematode EST Project’’[79]. Re-sequenc-

ing of library insert in these clones, with the primers M13Fw and

M13Rv (S7 Table), resulted in the identification of two full-length

cDNA sequences encoding novel venom allergen-like proteins

named Hs-VAP1 and Hs-VAP2. The cDNA sequences encoding

the complete open reading frames of Hs-VAP1 and Hs-VAP2,

including native signal peptides for secretion, were PCR- amplified

with gene specific primers Hs-VAP1-GWFw, HsVAP1-GwRv,

HsVAP2-GWFw, and HsVAP2-GwRv (S7 Table) and cloned into

the entry vector pENT/D-TOPO (Invitrogen). The inserts in

these entry vectors were subcloned into the binary plasmids

pMDC32 for stable plant transformation [77] or pGWB411 [80]

for transient expression, using Gateway technology (Invitrogen).

Generation of transgenic Arabidopsis
To generate transgenic Arabidopsis lines constitutively overex-

pressing venom allergen-like proteins in apoplast, we transformed

A. thaliana Columbia 0 with A. tumefaciens strain GV3101

carrying constructs of Gr-VAP1, Hs-VAP1, and Hs-VAP2 in

pMDC32, and pMDC32 without insert, using the floral dip

method [81]. Primary transformants were selected on agar with

50 mg/ml kanamycin after which the plants were transferred to

soil to produce seeds. Several independent homozygous single

insertion lines were selected, and T3 and T4 generations were

used for infection assays (see below). The introgression of Hs-
VAP1 and Hs-VAP2 was checked by PCR on genomic DNA

extracted from seedlings using the DNeasy Plant Mini Kit

(Qiagen). The expression of the transgenes was checked by qPCR

using the primers qHsVAP1-F, qHsVAP1-R, qHsVAP2-F, and

qHsVAP2-R (S7 Table) on RNA extracted from seedlings using

the RNeasy Plant Mini Kit (Qiagen). The clathrin adaptor

complex medium subunit family protein (At5g46630) was ampli-

fied with the primers AtClathrinF and AtClathrinR (S7 Table) as a

reference. qPCR was performed using Absolute QPCR SYBR

Green Mix (Thermo Fisher Scientific) with amplification of

15 min at 95uC, followed by 35 cycles of 30 s at 95uC, 30 s at

60uC and 30 s at 72uC.

Seeds of the homozygous transgenic T-DNA insertion mutants

of the cysteine proteases PAP1 (At2g34080), PAP4 (At2g27420),

PAP5 (At3g49340), the serine protease SBT3.13 (At4g21630),

and the chlorophyll-associated Photosystem II subunit S
(At1g44575) were obtained from the SALK homozygote T-DNA

collection. The mutant plants were propagated under standard

greenhouse conditions of a 16-h/8-h light/dark regime and 60%

relative humidity.

Infection assays on Arabidopsis plants
Seeds from transgenic Arabidopsis and wild-type A. thaliana

Col-0 were vapor sterilized and planted in 12-well cell culture

plates (Greiner bio-one) containing modified Knop’s medium [82].

Plants were grown at 24uC under 16-h-light/8-h-dark conditions.

Two-week-old seedlings were inoculated with ,250 surface-

sterilized ppJ2s of H. schachtii [83]. Two and four weeks after

inoculation, the number of female J4s of H. schachtii was counted

by visual inspection. The statistical significance of the pairwise

differences between plant genotypes and the empty pMDC32

vector control and the wild type Arabidopsis was assessed with a

one-way ANOVA.

The susceptibility of the Arabidopsis plants to infections by B.
cinerea, P. cucumerina, A. brassicicola, and P. brassicae was

determined on 4-week-old soil-grown plants [42,84,85]. Briefly,

for B. cinerea, P. cucumerina, A. brassicicola, plants were drop

inoculated by placing two 4-ml drops of conidial suspension (56105

conidia/ml) on each leaf. Plants were incubated at 20uC, 100%

relative humidity, and a 16-h/8-h light/dark regime. Arabidopsis

was inoculated with P. brassicae by placing 5-mm-diameter

mycelial plugs of a 2-week-old P. brassicae agar plate culture onto

leaves. Subsequently, the plants were incubated at 16uC, 100%

relative humidity, and a 16-h/8-h light/dark regime. After two

days the mycelial plugs were removed from the leaves. Disease

progression for these pathogens was scored at regular intervals,

and representative pictures were taken at 4 days after inoculation.

The statistical significance of the pairwise differences between

plant genotypes and the empty pMDC32 vector control was

assessed with a one-way ANOVA.

For inoculation of Arabidopsis with V. dahliae, 2-week-old soil-

grown plants were uprooted and inoculated by dipping the roots

for 2 min in a conidial suspension (106 conidia/ml). After
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replanting in soil, plants were incubated at standard greenhouse

conditions of a 16-h/8-h light/dark regime and 60% relative

humidity. Disease progression was monitored until 25 days after

inoculation. The statistical significance of the pairwise differences

between plant genotypes and the empty pMDC32 vector control

was assessed with a one-way ANOVA. All infection assays were

performed at least 2 times.

The susceptibility of the Arabidopsis plants to infections by P.
syringae pv. tomato DC3000 was determined on 2-week-old

Arabidopsis seedlings as previously described [86]. Briefly, three 2-

ml drops of a cell suspension of Pst at 109 CFU/ml, in 10 mM

MgSO4 supplemented with 0.01% (v/v) Silwet L77, was

inoculated on the two most expanded and in the center of the

leaf rosette. Inoculated plants were subsequently incubated at

21uC, 100% relative humidity, and a 16-h/8-h light/dark regime.

Disease severity was scored 3 days after challenge inoculation.

Colonization levels of the bacteria were determined with the

method described by Pieterse et al. [87]. The statistical significance

of the pairwise differences between plant genotypes and the empty

pMDC32 vector control was assessed with a one-way ANOVA.

Growth inhibition assays
Arabidopsis growth inhibition assays were performed as

described elsewhere [88]. Briefly, seedlings were grown for 5 days

on MS agar plates, supplemented with 1% w/v sucrose and 0.8%

agar. Subsequently, seedlings were transferred to liquid MS

medium supplied with 10 mM of the flg22 (QRLSTGSRIN-

SAKDDAAGLQIA) synthetic peptide. One seedling was placed

on 400 ml of medium in wells of 24-well-plates. The effect of

treatment with the flg22 peptide on the growth of transgenic and

wild type Arabidopsis (Col-0) seedlings was analyzed after 7 days

by measuring root length. Statistical significance of the difference

between plant genotypes was assessed with a one-way ANOVA.

RNA-seq on Arabidopsis plants
Two-weeks-old transgenic Arabidopsis plants, grown under the

same conditions as for the infection with H. schachtii, were

collected, flash-frozen in liquid nitrogen and total RNA was

extracted with the MaxwellH 16 LEV simplyRNA purification kit

(Promega). cDNA synthesis, library preparation (200-bp inserts),

and Illumina sequencing (90-bp paired-end reads) was performed

at BGI (Hong-Kong). Reads were mapped to the Arabidopsis

genome (tair10) using TopHat and transformed into a count per

gene per sample by using the BEDTools suite (function cover-

ageBed). The edgeR [89] method was used to analyze differen-

tially expressed genes (DEGs) between groups. DEGs were

mapped to Gene Ontology (GO) terms in the database (http://

www.geneontology.org/), and gene numbers were calculated for

every term using an ultra-geometric test to find significantly

enriched GO terms in DEGs. Calculated p-value went through a

Bonferroni Correction, taking corrected p-value #0.05 as a

threshold. KEGG pathway enrichment analysis was used to

identify significantly enriched metabolic pathways or signal

transduction pathways in DEGs comparing with the whole

genome background. Subcellular localization was determined for

all DEGs using the SUBcellular localization database for

Arabidopsis proteins [90].

Suppression of defense-related programmed cell death
in Nicotiana benthamiana

The suppression of programmed cell death in leaves of N.
benthamiana was assessed by using Gr-VAP1, Hs-VAP1, Hs-

VAP2, and Mi-VAP1 (including their native signal peptide for

secretion) subcloned into pGWB411 [80]. The Mi-VAP1 construct

was synthetized at GeneArt (Life Technologies) based on the

sequence in Genbank (accession AAD01511.1). All constructs

were transferred to Agrobacterium tumefaciens GV3101, and used

for agroinfiltration in leaves of the N. benthamiana. Empty

pGWB411 and plasmids carrying GFP in pGWB411 [80] were

used as controls to assess the non-specific suppression of

programmed cell death by agroinfiltration. The transient co-

expression by agroinfiltration of several pairs of resistance genes

and cognate elicitors was used to induce programmed cell death in

leaves of N. benthamiana (S6 Table; [30]). A. tumefaciens
harboring individual binary vectors was grown at 28uC in liquid

yeast extract peptone medium with appropriate antibiotics for

16 h. The bacteria were spun down and resuspended in infiltration

medium to an optical density at 600 nm (OD600) of 0.1 [30].

Agroinfiltration was done the abaxial side of the leaves of N.
benthamiana using a 1 ml syringe. Co-infiltration of different

constructs was performed by mixing equal volumes of the bacterial

suspensions to a final optical density of 0.3. Agroinfiltrated leaves

were monitored for up to 7 d for cell death symptoms.

To assess whether the VAPs harboring their native signal

peptide for secretion (in pGWB411) were indeed secreted to the

apoplast of agroinfiltrated leaves of N. benthamiana, we isolated

apoplastic fluids by vacuum-infiltrating ice-cold extraction buffer

(50 mM phosphate-buffered saline pH = 7.4, 100 mM NaCl, and

0.1% v/v Tween-20) for 10 min. Infiltrated leaves were surface

dried and placed in a 10-ml syringe hanging in a 50 ml tube and

centrifuged at 2000 g for 10 min at 4uC. Apoplastic fluids were

subsequently separated under reducing conditions by SDS-PAGE

on a 12% Bis-Tris gel and transferred to an InvitrolonTM PVDF

membrane (Life Technologies). For visualization of VAPs on

western blots, we used a mouse monoclonal ANTI-FLAGH M2-

Peroxidase (HRP) antibody to detect the FLAG tag at the carboxyl

terminus of the recombinant proteins. Pictures were taken using

the G:BOX Chemi System device (SynGene).

Supporting Information

S1 Figure Apoplastic Gr-VAP1 perturbs the active site of
the extracellular defense-related papain-like cysteine
protease C14tub of potato (Solanum tuberosum). Labeling

densities of the fluorescent activity-based probe DCG-04 to the

active site of (A) C14tub and (B) C14lyc of tomato (S. lycopersicum)

following treatment with Gr-VAP1 isolated from apoplastic fluids

of agroinfiltrated leaves. Treatments with the Avr2, egg white

cystatin, and apoplastic fluids from agroinfiltrations with the

empty binary expression vector (EV), and with buffer alone

(Buffer) were included as controls. Labeling densities were

quantified in triplicates and statistical significance of differences

was determined with an ANOVA. Different letters indicate

significant differences when using of P-value ,0.05 as threshold.

(TIF)

S2 Figure Protein sequence variation in venom aller-
gen-like proteins from cyst nematodes and root-knot
nematodes. (A) Protein sequence alignment of venom allergen-

like proteins from the potato cyst nematode Globodera rostochien-
sis (Gr-VAP1), the beet cyst nematode Heterodera schachtii (Hs-

VAP1 and Hs-VAP2), and the root-knot nematode Meloidogyne
incognita (Mi-VAP1). Colors indicate identity (black background)

or similarity among the sequences (gray background). (B) Protein

similarity matrix of venom allergen-like proteins. Numbers

represent the percentage of amino acid residues that are similar

(bottom left corner) and identical for any pair of proteins.

(TIF)

Immune Modulation by Venom Allergen-Like Proteins

PLOS Pathogens | www.plospathogens.org 15 December 2014 | Volume 10 | Issue 12 | e1004569

http://www.geneontology.org/
http://www.geneontology.org/


S3 Figure Ectopic venom allergen-like proteins enhance
susceptibility to Pseudomonas syringae pv. tomato (Pst)
in Arabidopsis. Heterologous expression of the venom allergen-

like proteins Hs-VAP1 and Hs-VAP2 from Heterodera schachtii in

the apoplast of transgenic Arabidopsis lines enhances their

susceptibility to Pst DC3000. Two independent transgenic lines

per construct (-A and -B) were compared with corresponding

transgenic line harboring the T-DNA of the empty vector (EV)

and wild type A. thaliana (Col-0). (A) Population densities were

determined 4 days after inoculation with Pst. Bars represent

colony forming units (cfu/mg of tissue) for three independent

replicates of 8 plants each. (B) Disease incidence was evaluated 4

days after inoculation. Bars represent the mean percentage of

leaves, which had developed chlorotic symptoms of 24 plants.

Statistical significance of differences was determined with an

ANOVA. Different letters indicate statistical significance when

using P-value ,0.05 as threshold. (C) Pictures show typical

symptoms on Arabidopsis plants inoculated either with Pst, or

mock inoculated.

(TIF)

S4 Figure Ectopic venom allergen-like proteins enhance
development of disease symptoms of fungal and oomy-
cete pathogens in Arabidopsis. Bars represent mean

percentage infected leaf area of transgenic Arabidopsis line

overexpressing Hs-VAP1 and Hs-VAP2 3 days after inoculation

with (A) Botrytis cinerea, (B) Plectosphaerella cucumerina, and (C

and D) two isolates of Phytophthora brassicae (CBS686.95 and

HH). Statistical significance of differences with transgenic plants

harboring the T-DNA of the corresponding empty expression

vector (EV) and wild type Arabidopsis (Col-0) was determined with

an ANOVA. Different letters indicate significant differences when

using of P-value ,0.05 as threshold.

(TIF)

S5 Figure Ectopic venom allergen-like proteins abro-
gate the inhibition of seedling growth by flg22 in
Arabidopsis. Photograph of typical root length of transgenic

Arabidopsis lines overexpressing Hs-VAP1 and Hs-VAP2 after 10

days of growth in the presence of 10 mM flg22. Transgenic plants

harboring the T-DNA of the corresponding empty expression

vector (EV) and wild type Arabidopsis (Col-0) were used to show

the normal inhibition of root growth in the presence of flg22.

(TIF)

S6 Figure Ectopic venom allergen-like proteins regulate
immunity related pathways in Arabidopsis. Global gene

expression analysis as determined by RNA-seq in 2 weeks old

Arabidopsis plants overexpressing Hs-VAP1 and Hs-VAP2 in the

apoplast. Venn’s diagrams depict the total number of significantly

up- (A) and down-regulated (B) genes relative to transgenic

Arabidopsis plants harboring T-DNA of the corresponding empty

expression vector (EV) when using a false discovery rate of 0.05 as

cutoff. (C) Pie charts depict percentage of products of genes

significantly down-regulated by ectopic Hs-VAP1 and Hs-VAP2 in

Arabidopsis, according to their predicted subcellular localization

in the SUBA database.

(TIF)

S7 Figure VAPs harboring their native signal peptide
for secretion are secreted to the apoplast of agroinfil-
trated leaves of Nicotiana benthamiana. Heterodera
schachtii VAPs (Hs-VAP1 and –VAP2), Globodera rostochiensis

VAP1 (Gr-VAP1), and Meloidogyne incognita VAP1 (Mi-VAP1)

were transiently expressed in N. benthamiana plants as recombi-

nant carboxyl terminus FLAG tagged proteins together with

empty vector (EV) controls. VAPs were detected in apoplastic

fluids isolated from agroinfiltrated leaf segments at 5 days post

infiltration on western blots using FLAG specific antibody.

(TIF)

S1 Table Most down-regulated transcripts by ectopic
venom allergen-like proteins in Arabidopsis. Differentially

expressed genes in transgenic Arabidopsis thaliana overexpressing

Hs-VAP1 relative to the corresponding transgenic empty vector

control plants.

(XLSX)

S2 Table Most down-regulated transcripts by ectopic
venom allergen-like proteins in Arabidopsis. Differentially

expressed genes in transgenic Arabidopsis thaliana overexpressing

Hs-VAP2 relative to the corresponding transgenic empty vector

control plants.

(XLSX)

S3 Table Most up-regulated transcripts by ectopic
venom allergen-like proteins in Arabidopsis. Differentially

expressed genes in transgenic Arabidopsis thaliana overexpressing

Hs-VAP1 relative to the corresponding transgenic empty vector

control plants.

(XLSX)

S4 Table Most up-regulated transcripts by ectopic
venom allergen-like proteins in Arabidopsis. Differentially

expressed genes in transgenic Arabidopsis thaliana overexpressing

Hs-VAP2 relative to the corresponding transgenic empty vector

control plants.

(XLSX)

S5 Table KEGG pathway enrichment analysis: Statisti-
cally enriched pathways among differentially expressed
genes in Arabidopsis thaliana overexpressing Hs-VAP1
and Hs-VAP2 relative to the corresponding transgenic
empty vector plants.

(DOCX)

S6 Table Plant immune receptors and cognate patho-
gen elicitors used to induce programmed cell death in
leaves of Nicotiana benthamiana.

(DOCX)

S7 Table Oligonucleotide primers used in this study.

(DOCX)
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15. Krüger J, Thomas CM, Golstein C, Dixon MS, Smoker M, et al. (2002) A

tomato cysteine protease required for Cf-2-dependent disease resistance and
suppression of autonecrosis. Science 296: 744–747.

16. Rooney HCE, Van’t Klooster JW, Van Der Hoorn RAL, Joosten MHAJ, Jones

JDG, et al. (2005) Cladosporium Avr2 inhibits tomato Rcr3 protease required for
Cf-2-dependent disease resistance. Science 308: 1783–1786.

17. Song J, Win J, Tian M, Schornack S, Kaschani F, et al. (2009) Apoplastic

effectors secreted by two unrelated eukaryotic plant pathogens target the tomato
defense protease Rcr3. Proc Natl Acad Sci U S A 106: 1654–1659.

18. Cantacessi C, Campbell BE, Visser A, Geldhof P, Nolan MJ, et al. (2009) A

portrait of the "SCP/TAPS" proteins of eukaryotes - Developing a framework
for fundamental research and biotechnological outcomes. Biotechnol Adv 27:

376–388.

19. Cantacessi C, Gasser RB (2012) SCP/TAPS proteins in helminths - where to

from now? Mol Cell Probes 26: 54–59.

20. Jasmer DP, Goverse A, Smant G (2003) Parasitic Nematode Interactions with
Mammals and Plants. Annu Rev Phytopathol 41: 245–270.

21. Hawdon JM, Jones BF, Hoffman DR, Hotez PJ (1996) Cloning and

characterization of Ancylostoma-secreted protein: A novel protein associated
with the transition to parasitism by infective hookworm larvae. J Biol Chem 271:

6672–6678.

22. Hawdon JM, Narasimhan S, Hotez PJ (1999) Ancylostoma secreted protein 2:
cloning and characterization of a second member of a family of nematode

secreted proteins from Ancylostoma caninum. Mol Biochem Parasitol 99: 149–

165.

23. Datu BJD, Gasser RB, Nagaraj SH, Ong EK, O’Donoghue P, et al. (2008)

Transcriptional changes in the hookworm, Ancylostoma caninum, during the

transition from a free-living to a parasitic larva. PLoS Negl Trop Dis 2: e130.

24. Mulvenna J, Hamilton B, Nagaraj SH, Smyth D, Loukas A, et al. (2009)

Proteomics analysis of the excretory/secretory component of the blood-feeding

stage of the hookworm, Ancylostoma caninum. Mol Cell Proteomics 8: 109–121.

25. Haegeman A, Mantelin S, Jones JT, Gheysen G (2012) Functional roles of

effectors of plant-parasitic nematodes. Gene 492: 19–31.

26. Hewezi T, Baum TJ (2013) Manipulation of plant cells by cyst and root-knot
nematode effectors. Mol Plant Microbe Interact 26: 9–16.

27. Mitchum MG, Hussey RS, Baum TJ, Wang X, Elling AA, et al. (2013)

Nematode effector proteins: An emerging paradigm of parasitism. New Phytol
199: 879–894.

28. Kyndt T, Vieira P, Gheysen G, de Almeida-Engler J (2013) Nematode feeding

sites: unique organs in plant roots. Planta: 1–12.

29. Chronis D, Chen SY, Lu SW, Hewezi T, Carpenter SCD, et al. (2013) A
ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode

Globodera rostochiensis is cleaved in planta to promote plant parasitism. Plant J
74: 185–196.

30. Postma WJ, Slootweg EJ, Rehman S, Finkers-Tomczak A, Tytgat TOG, et al.
(2012) The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-

LRR-mediated disease resistance in plants. Plant Physiol 160: 944–954.

31. Jaouannet M, Magliano M, Arguel MJ, Gourgues M, Evangelisti E, et al. (2013)

The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense
suppression. Mol Plant Microbe Interact 26: 97–105.

32. Jaubert S, Milac AL, Petrescu AJ, De Almeida-Engler J, Abad P, et al. (2005) In

planta secretion of a calreticulin by migratory and sedentary stages of root-knot
nematode. Mol Plant Microbe Interact 18: 1277–1284.

33. Carpita N, McCann M, Griffing LR (1996) The plant extracellular matrix: News

from the cell’s frontier. Plant Cell 8: 1451–1463.

34. Aumailley M, Gayraud B (1998) Structure and biological activity of the
extracellular matrix. J Mol Med 76: 253–265.

35. Nurnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in

plants and animals: Striking similarities and obvious differences. Immunol Rev

198: 249–266.

36. Ausubel FM (2005) Are innate immune signaling pathways in plants and animals
conserved? Nat Immunol 6: 973–979.

37. Moyle M, Foster DL, McGrath DE, Brown SM, Laroche Y, et al. (1994) A

hookworm glycoprotein that inhibits neutrophil function is a ligand of the
integrin CD11b/CD18. J Biol Chem 269: 10008–10015.

38. Bower MA, Constant SL, Mendez S (2008) Necator americanus: The Na-ASP-2

protein secreted by the infective larvae induces neutrophil recruitment in vivo

and in vitro. Exp Parasitol 118: 569–575.

39. Asojo OA, Goud G, Dhar K, Loukas A, Zhan B, et al. (2005) X-ray structure of
Na-ASP-2, a pathogenesis-related-1 protein from the nematode parasite,

Necator americanus, and a vaccine antigen for human hookworm infection.
J Mol Biol 346: 801–814.

40. Del Valle A, Jones BF, Harrison LM, Chadderdon RC, Cappello M (2003)

Isolation and molecular cloning of a secreted hookworm platelet inhibitor from

adult Ancylostoma caninum. Mol Biochem Parasitol 129: 167–177.

41. Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis
receptor kinase FLS2 binds flg22 and determines the specificity of flagellin

perception. Plant Cell 18: 465–476.

42. Van Esse HP, Van’t Klooster JW, Bolton MD, Yadeta KA, Van Baarlen P, et al.
(2008) The Cladosporium fulvum virulence protein Avr2 inhibits host proteases

required for basal defense. Plant Cell 20: 1948–1963.

43. Kaschani F, Shabab M, Bozkurt T, Shindo T, Schornack S, et al. (2010) An
effector-targeted protease contributes to defense against Phytophthora infestans
and is under diversifying selection in natural hosts. Plant Physiol 154: 1794–

1804.

44. Ding X, Shields J, Allen R, Hussey RS (2000) Molecular cloning and
characterisation of a venom allergen AG5-like cDNA from Meloidogyne
incognita. Int J Parasitol 30: 77–81.
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