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THE CHALLENGE OF INDUCING ANTIGEN-SPECIFIC IMMUNE 
TOLERANCE
Gene replacement therapy, like organ or cell transplantation, and 
protein/enzyme replacement therapies share the risk for immune-
mediated rejection. The immune system may be induced by the 
novel antigen(s) to reverse therapy by specific antibody and/or T-cell 
responses. Another parallel can be drawn with autoimmune dis-
eases, where self-antigens are accidently targeted by antibodies or T 
cells. Whereas in any of these circumstances the unwanted immune 
response can potentially be eliminated by general immune sup-
pression, this creates risks for opportunistic infections and typically 
involves use of drugs with various side effects. Induction of antigen-
specific immune tolerance is therefore the preferred choice, which 
is more likely to succeed when the specifically targeted antigen(s) is 
known, as general effects on the immune system can be minimized. 
During the past decade, a number of studies have supported the 
notion that gene transfer can be a powerful method for inducing 
antigen-specific tolerance, provided that the requisite-specific vec-
tors, the correct selection of the routes of administration, and target 
cells are optimized for tolerance induction (Figure 1).

THE POTENTIAL FOR IMMUNE RESPONSES DURING GENE 
THERAPY
Gene therapy for the correction of monogenic diseases aims at cor-
recting the cause of a disease at the molecular level by delivering a 
functional copy of a disease-associated defective gene. Viral vectors 
have emerged as very efficacious delivery vehicles of therapeutic 

genes to cells ex vivo and organs in vivo. These vectors have their 
respective strengths and limitations and are extensively reviewed 
elsewhere.1 One drawback is that the immune system may target 
antigens associated with the gene transfer vehicle itself. Hence, 
gene transfer protocols need to be designed to minimize immune 
responses against the vector itself.

Recently, several new systems have been developed for gene 
editing, which provides a means for site-specific correction of 
mutated genes or site-specific insertion of a therapeutic gene with 
an improved safety profile and the ability to maintain both endog-
enous tissue and temporal expression. These approaches rely on 
a synthetic DNA-binding proteins coupled to a dimer-dependent 
endonuclease (ZFNs and TALENS) or a guide RNA associated with 
an endonuclease (CRISPR-Cas9) to provide a targeted double-
strand break within the mutated gene.2 A functional version of the 
gene, delivered with the endonucleases, can then be edited into the 
double-strand break using the homologous recombination repair 
pathway. Next-generation approaches may also combine viral vec-
tors as a delivery platform for site-specific gene editing. Once again, 
the potential for immune responses against these recombination-
mediating proteins or the delivered proteins remain of concern.

In general, immune responses directed against the therapeutic 
gene product provide a major obstacle to long-term disease correc-
tion with gene therapy, especially when the gene product is com-
pletely absent. In the case of an absent protein, the newly expressed 
therapeutic protein is seen by the immune system as nonself, result-
ing in the activation of both humoral (antibody) and cell-mediated 
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Gene replacement therapies, like organ and cell transplantation, are likely to introduce neoantigens that elicit rejection via 
humoral and/or effector T-cell immune responses. Nonetheless, thanks to an ever-growing body of preclinical studies; it is now well 
accepted that gene transfer protocols can be specifically designed and optimized for induction of antigen-specific immune toler-
ance. One approach is to specifically express a gene in a tissue with a tolerogenic microenvironment such as the liver or thymus. 
Another strategy is to transfer a particular gene into hematopoietic stem cells or immunological precursor cells thus educating the 
immune system to recognize the therapeutic protein as “self.” In addition, expression of the therapeutic protein in protolerogenic 
antigen-presenting cells such as immature dendritic cells and B cells has proven to be promising. All three approaches have suc-
cessfully prevented unwanted immune responses in preclinical studies aimed at the treatment of inherited protein deficiencies, 
e.g., lysosomal storage disorders and hemophilia, and of type 1 diabetes and multiple sclerosis. In this review, we focus on cur-
rent gene transfer protocols that induce tolerance, including gene delivery vehicles and target tissues, and discuss successes and 
obstacles in different disease models.
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(cytotoxic T lymphocyte) responses. The humoral immune response 
is often dependent on antigen-specific T-helper lymphocytes (CD4+ 
T cells) to activate B lymphocytes that recognize the same antigen 
and license their maturation to start producing antibodies. Cell-
mediated immunity is directed through the activation of antigen-
specific cytotoxic T cells, which are typically major histocompatibil-
ity complex (MHC) class I–restricted CD8+. Although CD8+ T cells can 
be activated in the absence of CD4+ T-helper cells, the speed and 
strength of activation as well as the generation of a good memory 
CD8+ T response is heavily dependent on help by CD4+ T cells. Other 
subsets of CD4+ T cells exist that can dampen or suppress humoral 
and cell-mediated responses and are dubbed regulatory T cells 
(Treg). In order to prevent unwanted immune responses against 
a therapeutic protein, many gene transfer approaches have been 
developed that selectively activate antigen-specific Treg and induce 
a state of tolerance.

As explained above, immunological tolerance can be induced 
at a nonspecific (global immune suppression) or specific antigen-
specific level depending on multiple cell intrinsic and extrinsic fac-
tors. This review defines tolerance as an active process that main-
tains unresponsiveness even when repeatedly exposed to antigen 
(as opposed to immunological ignorance of the antigen). This 
often involves Treg induction as part of the tolerance mechanism. 
From a therapeutic standpoint, nonspecific immune suppression 
is not an optimal approach as it may disrupt normal immune sur-
veillance and responses to antigens, including and not limited to 
bacterial and viral pathogens and malignant cells. What types of 

therapies would benefit from inducing antigen-specific tolerance? 
Gene transfer–based immune tolerance induction protocols can be 
developed for inherited protein deficiencies, transplant antigens, 
autoimmune diseases, and allergies.3 The focus of this review is to 
provide an overview on different approaches to promote antigen-
specific tolerance through genetic modification or gene transfer to 
cells and tissues.

BACKGROUND: B- AND T-CELL DEVELOPMENT
Newly generated T lymphocytes undergo maturation and selec-
tion within the thymus. In an initial round of selection, immature 
T cells (CD4+ and CD8+) are deleted due to a lack of survival sig-
nals from the absence of engagement of peptide displayed on 
the MHC proteins and the T-cell receptor (TCR). Those T cells that 
receive a threshold level of TCR signaling are further selected for 
their level of TCR signaling. In this phase, T cells with too strong 
TCR signaling either undergo receptor editing to modulate affin-
ity or are eliminated through induction of apoptosis. Those T 
cells that have a moderate level of TCR signaling are retained, 
complete maturation and released into the circulation. To avoid 
developing autoimmune responses to tissue-restricted antigens 
(i.e., antigens not normally expressed in the thymus), medullary 
thymic epithelial cells express the transcription factor AIRE (auto-
immune regulator) that can globally activate mRNA expression. 
Thus, developing T cells are exposed to most self-proteins, and 
those with too high of a TCR affinity are eliminated. To underscore 
the importance of autoimmune regulator in self-tolerance, mice 

Figure 1 Overview of gene therapy vectors and target cells and tissues for inducing transgene-specific tolerance. (a) Hematopoietic stem cells (HSC) 
transduced ex vivo with a retroviral vector (RV) or lentiviral vector (LV) to express an antigen and are transferred to the donor with conditioning to 
promote engraftment. (b) Differentiated T cells, B cells, and dendritic cells (DC) are transduced ex vivo with a RV or LV. Antigen-specific expanded effector 
CD4+ T cells are cotransduced with FoxP3 and cytotoxic T-lymphocyte antigen 4 (CTLA-4) to generate Treg. Naive CD4+ T cells can be converted into 
Treg by cotransduction with an antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) along with FoxP3. B cells are transduced with a 
RV or LV expressing a transgene-IgG heavy chain fusion protein and transferred back to the donor. DC are cotransduced with a RV or LV expressing the 
immunosuppressive cytokine IL-10 and a transgene ex vivo and transferred back to the donor. (c) The thymus and liver are the main target organs for 
tolerance by in vivo gene transfer. Gene-modified HSC and differentiated lineages including DC and T cells are capable of migrating to the thymus and 
induce nTregs. Direct thymic gene transfer using adeno-associated virus (AAV), RV, or LV results in effector deletion and nTreg induction. Hepatocyte-
restricted transgene expression from adenovirus (Ad), AAV, RV, and LV transduction promotes the induction of antigen-specific iTreg. FVIII, factor VIII; 
FIX, factor IX; GAA, acid-alpha glucosidase; IMD, inherited metabolic disorder; LSD, lysosomal storage disease; MHC, major histocompatibility complex; 
MS, multiple sclerosis; T1D, type 1 diabetes.
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and humans with defective autoimmune regulator suffer from 
severe autoimmunity.4 Similar to T cells, B cells undergo matura-
tion within the bone marrow and later in the spleen and lymph 
nodes, where highly autoreactive B cells either undergo receptor 
editing or are deleted.

ACTIVE IMMUNE SUPPRESSION BY REGULATORY T CELLS
Although thymic selection is effective, some self-reactive T cells 
escape the selection process. These cells are kept in check via a 
second level of T-cell immune regulation, which employs a sub-
set of CD4+ T cells called regulatory T cells (Tregs). These Tregs, 
which for this review are minimally defined by the markers 
CD4+CD25+FoxP3+ (Figure 2), act in an antigen-specific and non-
specific manner to dampen immune responses directly through 
cell–cell interactions and indirectly by release of immunosup-
pressive cytokines and sequestration of growth factors. The 
FoxP3 transcription factor has been identified as a master regula-
tor of Tregs suppressive function and as with autoimmune regula-
tor, severe autoimmunity is associated in mice and humans defec-
tive for FoxP3.5,6 There are two main subsets of Tregs defined as 
“central or natural” Tregs (nTregs) developed within the thymus 
and “peripheral or induced” Tregs (iTregs) developed from periph-
eral CD4+ effector T cells, which are induced to express FoxP3.7 
Although studies indicate there are little differences in suppres-
sive function between nTreg and iTreg, there are some indications 
that nTreg exhibit more stable FoxP3 expression, whereas iTreg 
are considered to be more plastic and can lose FoxP3 expression 
and revert back to effectors.8 Phenotypic differentiation of nTreg 
and iTreg can be difficult. Some reports indicate that Helios or 
Neuropilin-1 are exclusively expressed in nTregs and that nTregs 
are more hypomethylated in the Treg-specific demethylated 

region. Although there are other classes of suppressive T cells 
such as T regulatory 1 (Tr1) cells defined as IL-10 secreting CD4+ 
(Figure 2) and CD8+ T cells,9,10 CD8+ FoxP3+ T cells,11 and IL-10+ 
regulatory B cells (Breg),12–15 such cells and their role in antigen-
specific tolerance through gene transfer are beyond the scope of 
this review.

TOLERANCE INDUCTION BY HEPATOCYTE-RESTRICTED 
TRANSGENE EXPRESSION
Liver tolerance and the hepatic environment
One pathway to specific tolerance induction is to express the anti-
gen in a tissue that is prone to activation of immune regulatory 
pathways. The potential of using the liver as an organ for promoting 
tolerance was initiated from early transplant studies conducted in 
MHC-mismatched animals and humans.16–18 Further evidence came 
from basic anatomy and physiology studies that places the liver 
immediately downstream of blood flow from the gut, where the 
liver is routinely exposed to copious amounts of foreign antigens 
derived from food and bacteria. The fact that liver transplants are 
well tolerated compared with other single organ transplants, that 
multiple organ transplants from the same donor are better toler-
ated when the liver is transplanted, and that eating a meal does not 
routinely induce severe inflammation in the liver suggested that 
there is a mechanism in place for dampening immune responses. 
Indeed, many pathogenic viruses and parasites are able to exploit 
this mechanism and develop protection from immune-mediated 
clearance as seen with chronic infections of hepatitis B and C viruses 
and malaria, which initially infects human hepatocytes.19

The liver primarily consists of the following cell types: hepato-
cytes, resident macrophages (Kupffer cells), specialized endothe-
lial cells, liver sinusoidal endothelial cells, and hepatic stellate cells. 
Each of these liver cells has been associated with contributing to 
tolerance independently and most likely act synergistically to skew 
local immune responses toward tolerance.20–32 Thus, it is possible 
to induce transgene-specific tolerance by liver gene transfer and 
expressing the transgene in this microenvironment. When design-
ing a tolerogenic, liver-directed gene transfer protocol, several 
critical factors have to be considered, including: immunological 
microenvironment of the liver, restricted transgene expression to 
hepatocytes, achieving adequate levels of transgene expression, 
the relative immunogenicity of the gene transfer vehicle and trans-
gene, and optimal induction of Treg.

Tolerance induction to transgene products by in vivo viral vector 
gene transfer to hepatocytes
Published protocols that were successful in tolerance induction 
typically used in vivo gene transfer mediated by a viral vector, 
with expression restricted to hepatocytes. Among these, adeno-
associated viral (AAV) vectors have been used to induce tolerance 
to a large number of transgene products. AAV vectors have the 
advantages of the availability of serotypes with strong tropism to 
hepatocytes and of limited innate immunogenicity.33,34 When initial 
inflammatory responses are low, activation signals to the immune 
system may be avoided, thereby increasing the chance for trans-
gene expression to induce tolerance. Similarly, limited induction of 
IFN I (IFNα/β) preserves transgene expression and reduces antiviral 
responses.35 A minimal level of transgene expression is required for 
tolerance induction, for example, ~1% of normal coagulation fac-
tor IX levels in murine models.32 For therapeutic transgenes that 
have low levels of expression, such as factor VIII protein, it may 
be possible to employ codon optimization of the cDNA encoding 

Figure 2 A simplified model for the activation of either antigen-specific 
Tr1, Treg, or T effector (Teff ) cells in the context of TCR engagement of 
a MHC-II–presented epitope on an APC. (a) In the case where there are 
costimulatory signals between the APC and Teff (CD80/CD28 and ICOSL/
ICOS) and the absence of immunosuppressive cytokines, Teff become 
activated and expand. In the presence of excessive IL-10, Teff can become 
Tr1 (CD4+CD25−FoxP3−IL-10+) regulatory T cells, and excessive TGF-β 
promote the induction of iTreg (CD4+CD25+FoxP3+). Tr1 and iTreg 
can indirectly suppress APC and Teff. In addition, iTreg can also directly 
suppress APC and Teff through contact inhibition. (b) In the absence of 
costimulatory signals or suppression by Tr1 and Treg, Teff cells are either 
eliminated or become anergic. TGF, transforming growth factor.
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the transgene product to augment protein expression to a level 
that promotes tolerance.36,37 One of the key mechanistic features 
of tolerance induction by hepatic gene transfer is the induction 
of transgene product-specific CD4+CD25+FoxP3+ Treg.38–40 Induced 
Treg actively suppress antibody and CD8+ T-cell responses against 
the transgene product.31,38,41 Treg induction is required for induc-
tion and maintenance of tolerance and correlated to the level of 
transgene expression.38,39,42 Although secreted antigens may also be 
presented in the thymus, peripheral Treg induction, a transforming 
growth factor-β–dependent process, is likely a major source for the 
generation of transgene product-specific Treg.21 The costimulatory 
molecule glucocorticoid-induced tumor necrosis factor receptor 
ligand has recently been identified as another factor required for 
efficient induction of Treg following AAV liver gene transfer.43 For 
suppression of CD8+ T-cell responses, hepatic expression of the sup-
pressive cytokine IL-10 is required, which occurs in Kupffer cells and 
in Treg such as the aforementioned FoxP3+ Treg or type 1 regula-
tory (Tr1) T cells, which are IL-10–induced CD4+CD25−FoxP3− cells 
expressing transforming growth factor-β and large amounts of their 
hallmark cytokine IL-10.21,27 Activation of CD8+ T cells may be further 
reduced by the development of vector genomes devoid of immune 
stimulatory CpG motifs, as innate immunity to AAV vectors in the 
liver is TLR9 dependent.44,45 In addition to Treg induction, deletion of 
effector T cells, via induction of activation-induced cell death/pro-
grammed cell death, has been shown to be required for effective 
tolerance induction.32,46,47

The importance of hepatocyte-restricted expression for tolerance 
is underscored in a set of studies evaluating gene transfer with a 
lentiviral vector (LV), an alternative platform for hepatic tolerance 
induction. LV pseudotyped with the VSVg envelope protein effi-
ciently transduce antigen-presenting cells (APC) in the liver48 and 
fail to induce tolerance even when using tissue-specific promoters. 
Remarkably, when transgene expression is detargeted in APC by a 
complementary microRNA target to microRNA 142-3p, a microRNA 
specifically expressed in hematopoietic cells, tolerance is induced 
for cytosolic GFP49 and secreted hFIX protein for conventional LV50 
and integrase-defective LV.51 Hence, although we understand some 
of the factors needed for tolerance, certain questions such as, what 
are the tolerogenic APCs in the liver, remain unanswered. Additional 
details on the mechanism for tolerance by liver gene transfer have 
been extensively reviewed elsewhere.16,52,53

Illustrating the broad applicability of the approach, liver gene 
transfer has resulted in the induction of robust transgene toler-
ance to a variety of cytosolic and secreted transgene products 
in small and large animal disease models, including hemophilia 
A,36,37,54–57 hemophilia B,32,39,42,58,59 Pompe disease,60–62 allo-MHC for 
skin graft,63 and experimental autoimmune encephalomyelitis.64 
Liver-induced tolerance extends to extrahepatic tissues, such as 
muscle, brain, and central nervous system as demonstrated in 
supplemental gene transfer to the muscle,65 and to brain/central 
nervous system in Niemann–Pick disease,66 central nervous sys-
tem in experimental autoimmune encephalomyelitis,64 and mus-
cle in Pompe disease.62 Hence, in an optimized protocol, immune 
tolerance induced by hepatic gene transfer may be dominant over 
activation of immune responses elsewhere, a phenomenon that 
can be exploited for treatment of disease that requires gene trans-
fer to multiple organs or for development of immune modulatory 
gene therapy. Such a protocol may involve coadministration of a 
liver-targeted vector with a second vector targeting other tissues 
or simultaneous or sequential administration of two vectors via 
different routes. There are now a growing number of published 

studies demonstrating long-term correction of a variety of inher-
ited metabolic and lysosomal storage disorders following liver 
gene transfer67,68 and supporting evidence in nonhuman primates 
that AAV8 liver-directed α-galactosidase A promotes tolerance.69

Although there have been ample studies in different disease 
models showing that liver gene transfer can prophylactically 
induce transgene tolerance, there have been limited studies on the 
potential for hepatic gene transfer to reverse an ongoing immune 
response. In the case of hemophilia A and B, patients with severe 
forms of disease are at risk to develop inhibitory antibodies against 
FVIII and FIX proteins during the course of recombinant protein 
therapy. It is unknown what the impact on patients with inhibitors 
would be following liver gene transfer. In the case of hemophilia 
B and/or Pompe disease, a subset of patients who develop inhibi-
tory antibodies during enzyme replacement therapy to FIX and 
GAA proteins develop acute anaphylaxis. One could predict that 
liver gene transfer would either exacerbate or suppress the ongo-
ing immune response. Three recent studies addressed this impor-
tant question in a canine hemophilia A70 and murine hemophilia 
B models.42,71 Importantly, each of these studies indicated that liver 
gene transfer with an AAV or LV could reverse preexisting inhibitors, 
provide therapeutic factor expression, and protect against anaphy-
laxis and pathogenic antibody responses. Inhibitor reversal was 
dependent on the active suppression of induced antigen-specific 
Treg that rapidly eliminated antibody-secreting plasma cells and 
suppressed the activation of memory B cells. Thus, beyond thera-
peutic protein expression, liver-directed gene transfer might hold 
promise as a novel approach to treating autoimmune disease and 
severe allergies.

AAV vectors, which are largely maintained in episomal form, 
have now been successfully used in clinical trials for liver gene 
transfer. Due to size limitations, it is difficult to include extensive 
endogenous enhancer and promoter elements within the vector 
to maintain regulated, spatial, and temporal therapeutic trans-
gene expression. Although strict control of transgene expression 
is not as critical for secreted zymogens, such as FVIII and FIX in 
hemophilia, other therapeutic transgenes may require strict regu-
lation. Taking advantage of new gene-editing tools, Li et al.72 dem-
onstrated robust gene correction in the liver of young hemophilia 
mice using AAV vectors to deliver a specific ZFN and hF9 cDNA 
sequence. This study was followed by similar results by Anguela 
et al.73 in adult hemophilia mice. Such an approach is also able to 
direct site-specific integration into so-called “safe harbor” regions 
within a chromosome and provided stable transgene expression 
with minimal genotoxicity, such as a reduced risk for insertional 
mutagenesis, and may pave the way as a next-generation thera-
peutic for treating monogenic disorders.

TAKING ADVANTAGE OF AGE-DEPENDENT DEVELOPMENT 
OF THE IMMUNE SYSTEM—NEONATAL AND IN UTERO GENE 
TRANSFER
Another approach that has seen some success in tolerance induc-
tion is liver gene transfer either in utero or neonatally. The idea is 
that expressing a transgene when the immune system is immature 
or in the early stages of development will promote tolerance, most 
likely in a mechanism that incorporates the transgene as a self-
protein. Additionally, this approach would also avoid any potential 
immune responses directed against the delivery vector. Naturally, 
such an approach is more effective with a gene delivery system that 
provides stable integration of the transgene cassette (such as retro-
virus, lentivirus, or site-directed integration) as episomal vectors will 
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become diluted and eventually lost as the liver grows to adult size. 
Most successes with neonatal gene transfer tolerance are in murine 
models, as mice have a very immature immune system at birth and 
in some reported canine studies.55,74–78 Although there have been 
many neonatal gene transfer studies conducted in rats and large 
animal models (cats, dogs, and nonhuman primates), tolerance 
induction is often not as robust as seen in mice.79–82

THYMIC GENE TRANSFER—NEGATIVE SELECTION AND 
NTREG INDUCTION
Given the role of the thymus in the negative selection of autore-
active T cells and induction of nTreg, it is not surprising that direct 
thymic gene transfer has been considered as a means of induc-
ing antigen-specific tolerance.83 Such studies conducted in mice 
demonstrated induction of specific tolerance to viral antigens,84–86 
reduction in the occurrence of type 1 diabetes in nonobese diabe-
tes mice,85 protection against the development but not progression 
of experimental autoimmune encephalomyelitis,87 and resistance to 
the therapeutic hGAA protein.88 Alternatively, Hadeiba et al.89 have 
demonstrated that CCR9-expressing plasmacytoid dendritic cells 
(DCs) can be peripherally loaded with an antigen and migrate to 
the thymus to promote tolerance. Although such an approach may 
be feasible in animal models, the exact mechanism that determines 
whether a T cell becomes an effector or regulatory T cell following 
encounter with MHC-II–presented antigen is not completely under-
stood.90–92 Therefore, some “fine tuning” may be required in design-
ing a gene transfer approach that can reliably promote induction of 
antigen-specific nTreg.

HEMATOPOIETIC STEM CELL GENE TRANSFER FOR 
TRANSPLANT TOLERANCE, TREATMENT OF INHERITED 
PROTEIN DEFICIENCIES, AND AUTOIMMUNE DISEASE
Hematopoietic stem cells (HSCs) represent an attractive target cell 
for genetic modification for tolerance induction. Defined proto-
cols have been established for the collection, culturing, transduc-
tion, and transfer/engraftment into a recipient. In most instances, 
autologous cells can be used, reducing potential host versus graft 
disease. Using specific regulatory elements such as tissue-specific 
promoters and microRNA targets, it is possible to strictly control 
transgene to a particular cell lineage.93–97 As platelets, lymphocytes 
(B and T cells), and most of our professional APC are derived from 
HSC, it is possible to direct the expression of a transgene product 
to promote the generation of nTreg from antigen presentation in 
the thymus or peripheral induction of CD4+ effector T cells to iTreg. 
Later sections will discuss approaches of direct gene modification 
of differentiated B and T cells and professional APCs. Therefore, it is 
not surprising that similar to the liver, hematopoitic stem cell gene 
transfer has been used for expressing therapeutic proteins and for 
inducing transgene-specific tolerance.

HSC gene modification for inducing tolerance was inspired by 
the observation of immunological tolerance to donor MHC proteins 
following the generation of mixed donor–host chimerism following 
HSC transplantation.98,99 Although this approach could induce toler-
ance to donor cells and tissues,100 use of allogenic HSC often resulted 
in graft versus host disease and engraftment failure. Therefore, to 
prevent graft versus host disease, investigators found a way to gen-
erate molecular chimerism by autologous HSC gene transfer.101–106 
Gene transfer to HSC has successfully induced tolerance for tissue 
transplantation, desensitized allergic responses, protected against 
autoimmune diseases, and provided tolerance and therapeutic pro-
tein expression in a variety of disease models.102,107–110

One of the limiting factors for successful tolerance induction of 
gene-modified HSCs is efficient engraftment into the host. Efficient 
engraftment in early HSC transplantations often required complete 
myeloablation of the host bone marrow compartment by total 
body irradiation. Milder nonmyeloablation conditioning regimens 
using chemicals or low-dose radiation often failed to promote 
sufficient levels of engraftment to induce tolerance but instead 
were hyporesponsive,102,107 with the level of antigen expression 
determining hyporesponsiveness or tolerance. Newly developed 
nonmyeloablative regimens and gene transfer platforms can now 
provide sufficient engraftment and transgene expression for suc-
cessful tolerance induction from gene-modified HSC following 
transplantation.111–114

Genetic modification of HSCs has been used for the induction 
of tolerance toward skin grafts using the cytosolic reporter gene 
GFP115,116 and MHC-II.117 In terms of controlling autoimmunity, 
gene transfer to HSC has been successful in preventing onset and 
controlling early disease progression in an experimental autoim-
mune encephalomyelitis mouse model for multiple sclerosis118 and 
recently has been shown to be effective using nonmyeloablative 
conditioning to effectively halt disease progression.112 Additional 
success has been obtained in controlling progression of type 1 dia-
betes in a nonobese diabetes mouse model.109 HSC gene modifica-
tion has also been reported to control allergic responses in a mouse 
model.95,111,119 Several small and large animal disease models have 
shown long-term correction and tolerance using HSC gene trans-
fer protocols including hemophilia A,120–125 hemophilia B,126–129 and 
Pompe disease.130,131 The recently reported safety and efficacy of LV 
gene transfer to HSCs in two clinical trials for Wiskott–Aldrich syn-
drome132 and metachromatic leukodystrophy133 provide optimism 
for the translation of some of the above studies into new clinical 
trials.

B-CELL GENE TRANSFER FOR TOLERANCE INDUCTION
In addition to producing antibodies, B cells are also APCs, particu-
larly for memory CD4+ T cells. Interestingly, it is possible to har-
ness the ability of B cells to process and present antigen, not only 
to promote immune responses but also for tolerogenic antigen 
 presentation. Specifically, stable retroviral gene transfer to primary 
B  cells of a transgene fused in frame to the immunoglobulin G 
(IgG)-1 heavy chain leads to the induction of antigen-specific iTreg 
and tolerance.134–136 In this method, tolerance induction was shown 
to be dependent on endogenous processing and MHC-II presenta-
tion of the fusion gene product,135 B7 expression on B cells,137 and 
on CD4+CD25+FoxP3+ Treg.138,139 Expression of the immunosuppres-
sive cytokine IL-10 may be required in gene-modified B cells (pos-
sibly through induction of regulatory Tr1 cells), as suggested by 
one study or indirectly required in cells of the recipient of the B-cell 
therapy as suggested by others.140–142 It is interesting to note that 
multiple MHC-II epitopes dubbed “Tregitopes” have been identified 
within the Fc fragment of IgG that expand nTreg and promote global 
tolerance.143 Tregitopes have been used to promote antigen-specific 
tolerance,144–148 likely through a bystander suppression mechanism.

Gene-modified B cells expressing antigens fused to IgG has 
 provided antigen-specific tolerance in autoimmune models149 
including multiple sclerosis,150,151 rheumatoid arthritis,152 and type 
1 diabetes.150 In addition to autoimmune disease, retroviral gene 
transfer of an in-frame fusion of FVIII or FIX to IgG1 heavy chain to 
B cells is capable of promoting tolerance and controlling inhibitors 
in murine hemophilia A and B.153,154 As seen with liver gene trans-
fer of FIX protein, FIX-IgG–expressing B cells are capable of partially 
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reversing ongoing anti-FIX immune responses and can protect 
against anaphylaxis.

T-CELL GENE MODIFICATION AND TOLERANCE
Following the identification of FoxP3 as a master regulator for 
Treg,5,155,156 it was demonstrated that forced expression of FoxP3 by 
retroviral gene transfer to effector CD4+ T cell produced cells with 
similar suppressive functions to Treg.157 A typical protocol consists 
of expanding CD4+ effector T cells ex vivo followed by transduction 
with a retroviral vector expressing FoxP3 and has been successful in 
inducing tolerance in graft versus host disease158 and autoimmune 
disease.159,160 Monoclonal expanded CD4+ effector T cells are more 
efficient than polyclonal cells following FoxP3 transduction for 
inducing antigen-specific tolerance. Additional forced expression of 
other Treg surface markers such as CTLA-4 can further improve sup-
pressive function. Additionally, it is possible to generate antigen-
specific Treg by gene transfer of an antigen-specific TCR161 to nTreg 
or combining gene transfer of an antigen-specific TCR and FoxP3 
to naive CD4+ T cells.162 Chimeric antigen receptors have also been 
tested recently as a means for generating antigen-specific Treg 
and provided protection in a murine multiple sclerosis model.163 It 
is not clear if signaling through the chimeric antigen receptors is 
activating Tregs upon encountering antigen or providing a means 
of enriching the local concentration of Treg. Future studies are 
required to define the mechanism of tolerance with chimeric anti-
gen receptor–modified Treg.

DC GENE MODIFICATION
DCs as professional APCs are capable of presenting antigen on 
MHC-II and depending on their maturation state can activate 
either CD4+ effector T cells or Tregs.164 Therefore, gene transfer of 
an antigen to immature DCs is a potential approach to inducing 
antigen-specific Treg. Given the fact that DCs contain sensors for 
viral pathogen–associated molecular patterns, finding a means to 
transduce DC with a viral vector without inducing maturation has 
proven challenging.165,166 Nonetheless, a successful protocol was 
reported generating FVIII-specific Treg by ex vivo transduction of 
tolerogenic DC that express either FVIII or FVIII and IL-10.167 A sec-
ond approach used in vivo gene transfer of LV with a DC-restricted 
promoter to promote central and peripheral antigen-specific toler-
ance.168 Although direct modification of DCs is successful for induc-
ing antigen-specific tolerance, gene transfer to a precursor such as 
HSCs, coupled with antigen-restricted expression to a DC lineage, 
may prove more effective.169

CONCLUSIONS
The induction of transgene-specific tolerance through gene trans-
fer or gene modification is possible using a variety of cells and tis-
sues and gene delivery vehicles. Tolerance is typically dependent on 
the induction of antigen-specific Treg. Preclinical studies conducted 
in rodent and canine disease models have demonstrated robust tol-
erance induction, the ability to transfer tolerance by adoptive trans-
fer of Treg to naive animals, and the ability to suppress ongoing 
immune responses. The fact that liver gene transfer can induce Treg 
in a “hostile” proinflammatory setting and mediate suppression in 
the midst of an ongoing immune response has broader implications 
beyond therapies aimed at treating monogenic disorders and offer 
therapeutic approaches to treat autoimmune and hypersensitivity 
disorders. Clinical studies evaluating ex vivo gene delivery to HSC 
and in vivo gene transfer to muscle and liver have so far demon-
strated no immune responses directed against the therapeutic gene 

product, suggesting that humans may respond similarly as seen in 
preclinical studies. Indeed, most immunological complications in 
patients have been associated with immune responses directed 
against the gene delivery vector and vector-associated genotoxic-
ity. Although beyond the scope of this review, it is also important 
to note that including a transient immune suppression protocol 
that spares Treg can augment tolerance mediated by gene transfer, 
especially when using highly immunogenic vectors, delivery routes, 
or transgenes,170–172 Conversely, careful consideration should be 
placed on avoiding immune suppression protocols that effect Treg, 
as this can induce unwanted transgene immune responses.173 The 
advent of new tools for site-specific modification of chromosomes 
may greatly reduce the risks for insertional mutagenesis and pave 
the way for a transition from gene therapy to one of gene editing.
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