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SUMMARY

Dissecting the in vivo host-pathogen interplay is crucial to understanding the molecular 

mechanisms governing control or progression of intracellular infections. In this work, we explore 

the in vivo molecular dynamics of Mtb infection by performing dual RNA-seq on Mycobacterium 
tuberculosis-infected, ontogenetically distinct macrophage lineages isolated directly from murine 

lungs. We first define an in vivo signature of 180 genes specifically upregulated by Mtb in mouse 

lung macrophages, then we uncover a divergent transcriptional response of the bacteria between 

alveolar macrophages that appear to sustain Mtb growth through increased access to iron and fatty 

acids and interstitial macrophages that restrict Mtb growth through iron sequestration and higher 

levels of nitric oxide. We use an enrichment protocol for bacterial transcripts, which enables us to 

probe Mtb physiology at the host cell level in an in vivo environment, with broader application in 

understanding the infection dynamics of intracellular pathogens in general.

In Brief

In this study Pisu et al. performed dual RNA-seq on Mycobacterium tuberculosis-infected, 

ontogenetically distinct macrophage lineages isolated directly from infected murine lungs. The 

transcriptional response of host and bacteria diverged between alveolar macrophages that sustain 

Mtb growth and interstitial macrophages that restrict Mtb growth.

Graphical Abstract

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Correspondence: dgr8@cornell.edu.
AUTHOR CONTRIBUTIONS
D.P., L.H., and D.G.R. designed the study. D.P. and L.H. conducted experiments. D.P., L.H., J.K.G., and D.G.R. analyzed and 
interpreted the results. D.P., L.H., and D.G.R. drafted and edited the manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.celrep.2019.12.033.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2020 February 20.

Published in final edited form as:
Cell Rep. 2020 January 14; 30(2): 335–350.e4. doi:10.1016/j.celrep.2019.12.033.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.celrep.2019.12.033


INTRODUCTION

Dual RNA sequencing (RNA-seq) is emerging as a powerful new tool that is of particular 

value in the dissection of the host-pathogen interplay, revealing the impact both organisms 

exert over each other. The majority of studies published to date have involved tissue culture 

models of infection conducted on cell lines or on differentiated primary cells. Although 

clearly of considerable value, these studies do not address the in vivo host cell heterogeneity 

that for many pathogens is central to the control or progression of the infection. This is of 

particular significance for pathogens such as Mycobacterium tuberculosis (Mtb), for which 

bacterial survival and growth are linked to the ontogeny and metabolism of the different 

macrophage lineages that co-exist in the tuberculosis granuloma (Huang et al., 2018). Dual 

RNA-seq would be ideally suited to determining the molecular dynamics underlying host 

cell phenotype and bacterial fitness among these divergent host cell lineages (Russell et al., 

2019), but the challenges in generating dual RNA-seq datasets from in vivo material in 

which bacterial burden is low and variable, and host cell heterogeneity is high, remain 

daunting.

Studies undertaking dual RNA-seq on in vivo samples have been performed on total tissues 

rich in extracellular bacteria, such as Yersinia pseudotuberculosis-infected lymph nodes 

(Nuss et al., 2017), Pseudomonas aeruginosa-infected lung tissue (Damron et al., 2016), 

Mycobacterium leprae-infected human tissue lesions (Montoya et al., 2019), and 

Toxoplasma gondii-infected brain tissue (Pittman et al., 2014). Application of dual-RNA-seq 
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to in vivo infected cell populations is in development. In particular, a new pipeline called 

Path-seq was recently used to recover the Mtb transcriptome from alveolar macrophages 

(AMs) isolated from the murine lung (Peterson et al., 2019); however, the majority of 

datasets in the study came from in vitro infections.

Recently we used an acute mouse Mtb challenge model with fluorescent Mtb fitness reporter 

strains (Sukumar et al., 2014; Tan et al., 2013) to demonstrate that bacteria in the resident 

AMs from the lung displayed lower stress and greater rates of replication relative to bacteria 

within recruited, monocyte-derived interstitial macrophages (IMs) (Huang et al., 2018). In 

the present study we sought to determine the host and bacterial transcriptomes associated 

with the different Mtb growth phenotypes (Huang et al., 2018). We performed dual RNA-seq 

on Mtb-infected AM and IM host cell populations isolated directly from mouse lungs. Using 

a modified RNA extraction protocol, together with a data analysis pipeline tailored for 

samples with low sequencing depth, we were able to enrich for bacterial transcripts and 

increase the resolution of differential gene expression (DGE). Analysis of the datasets 

provides novel insights into the host cell conditions that Mtb has to endure during infection 

of lung macrophages in vivo. Finally, the increased resolution provided by probing the 

transcriptomes of both host and pathogen emphasizes the significance of the metabolic 

interface in supporting bacterial growth in permissive host macrophages and restricting 

bacterial growth in controller host cells.

RESULTS

Physical Enrichment of Bacterial RNA from Total RNA in Mtb-Infected Lung Macrophages

In this work we sought to develop a streamlined RNA extraction protocol to perform in vivo 
dual RNA-seq on Mtb-infected lung macrophage sub-populations. We focused on an in vivo 
single time point, 14 days post-infection (p.i.), which enabled us to discriminate between the 

functional phenotypes of the resident AMs and the recruited, blood monocyte-derived IMs 

(Huang et al., 2018).

Our protocol (Figure 1B) is based on the differential lysis of the host and Mtb cells in Trizol/

GTC. The first step involved incubation in Trizol of the sorted infected cells at room 

temperature (RT). This allowed complete lysis of the host cell and release of the eukaryotic 

RNA and intracellular bacteria. The sample was centrifuged to pellet eukaryotic cell debris 

and Mtb. In step 2, up to 90% of the Trizol supernatant containing the bulk of the eukaryotic 

RNA was separated from the pelleted Mtb and set to one side. This step achieved two goals: 

leaving a small amount of Trizol in the tube avoided disturbing the bacterial pellet and 

meant that the host RNA was not subjected to the harsh Mtb homogenization treatment 

(Figure 1C). In step 3, zirconia beads and fresh Trizol were added to the tube containing the 

bacteria, which were subjected to mechanical lysis. In step 4, we added back part of the 

Trizol containing the host-RNA supernatant. This step enriched bacterial transcripts while 

enabling sufficient recovery of total RNA for library preparation. In Figure 1D we show the 

relative percentage of Mtb reads recovered using preliminary optimization tissue culture test 

samples following the removal of differing amounts of host RNA. These were compared 

with the percentage of Mtb reads that were obtained from the AM and IM populations from 
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each of the three independent in vivo experiments (Figure 1D; Table 1). The results confirm 

the value of this approach to manually enrich bacterial transcripts.

Assessment of Different Statistical Methods for Analysis of Depth-Constrained Dual RNA-
Seq Transcriptomes

The relative abundance of bacterial and host reads indicated that we achieved between 0.3% 

and 2% of mapped reads for Mtb from the different host populations across the three in vivo 
experiments (Table 1). We therefore decided to target a sequencing depth of ~1 M reads for 

the Mtb transcriptome from our in vivo samples, and we sought to determine the best 

statistical approach for analysis of our datasets that have constrained sequencing depth. 

Recently, a new empirical Bayes procedure (APEGLM) has been shown to be particularly 

robust in ranking genes by log fold change (LFC) in the presence of low counts (Zhu et al., 

2019). Therefore, we tested whether this statistical procedure could also provide superior 

results in the analysis of our dual RNA-seq datasets with constrained read counts.

Using our Mtb reference datasets (Figure S1) that have been sequenced to saturation (Table 

1) and a range of different statistical approaches for RNA-seq analysis (edgeR [Robinson et 

al., 2010], limma-voom [Law et al., 2014; Ritchie et al., 2015], DESeq2 [Love et al., 2014], 

IHW [Ignatiadis et al., 2016], Cuffdiff [Trapnell et al., 2012], and APEGLM [Zhu et al., 

2019]), we performed DGE analysis on the full datasets and on five independent, randomly 

sampled subsets of 1 M reads (Figure S2A). We defined the differentially expressed genes 

using edgeR, limma-voom, DESeq2, and IHW on the full datasets as the most robust set of 

differentially expressed genes for analysis, nominally defined as the “true DE” (Figure 1E). 

We then compared the performance of the various methods on the randomly sampled subsets 

against this consensus list and found APEGLM to have an average power of 80.88% (Figure 

S2B) and an average false-positive rate of 3.5%, which was considerably more robust than 

the other approaches (Figure 1F). Therefore, all subsequent DGE analysis was carried out 

using DESeq2 and APEGLM as the means of determination of the change in expression 

between datasets. The data analysis pipeline is illustrated in Figure S1 and provided in 

STAR Methods.

Identification of an Mtb In Vivo Transcriptional Signature in Mice

Exploratory analysis of our in vivo dual RNA-seq datasets for the Mtb transcriptome 

revealed the presence of transcriptional signatures distinct to each of the four different 

environmental conditions (Figure 2A; Table S3). To identify those genes that were 

upregulated only by Mtb in vivo, we focused on transcripts (abs[log2 FC > 1], adjusted p < 

0.05) whose expression was upregulated in one or both host macrophage populations (IMs 

and AMs) but not upregulated in either short-term bone marrow-derived macrophage 

(BMDM) or broth culture conditions. We found 274 genes that satisfied these requirements. 

However, in previous microarray studies, Schnappinger et al. (2003) defined a differential 

intraphagosomal transcriptome (454 genes induced in resting and activated BMDMs at 24 

and 48 h p.i.), while Rohde et al. (2012) determined the transcriptional profile of Mtb during 

an extended period of infection (up to 14 days) in BMDMs. Our BMDM dataset was 

restricted to an early time point (6 h p.i.); therefore, to encompass a broader range of cell 

culture conditions, we mined the data from these earlier studies (see STAR Methods) to 

Pisu et al. Page 4

Cell Rep. Author manuscript; available in PMC 2020 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ensure a more robust means of identifying gene signatures unique to the in vivo infection 

environment. The comparison of the 274 genes from the present study with the genes 

identified as upregulated in BMDMs in these earlier studies identified 180 genes uniquely 

upregulated in macrophages in vivo (Figure 2B; Table S4). We nominally defined this set of 

genes as the “in vivo signature.”

The assignment of function to the genes identified as upregulated in Mtb in vivo was 

pursued using pathway and protein-protein network analysis (Figures 2C and 2D). The 

pathways specifically upregulated by Mtb during the course of an in vivo infection were 

linked predominantly to cholesterol homeostasis, nitrogen assimilation, nitric oxide (NO) 

detoxification, and protein and lipid export machinery (Figure 2D). It is notable that all 15 

genes within the Kstr2 regulon were strongly upregulated during in vivo infection by Mtb in 

both IMs and AMs (Figure 2E), suggesting that cholesterol is degraded completely to 

support bacterial survival in mice. This is consistent with data from both genetic analysis 

and chemical screening (Casabon et al., 2013; VanderVen et al., 2015). We know from 

previous work that cholesterol degradation leads to expansion of the propionyl-CoA pool, 

which induces metabolic stress on Mtb (Lee et al., 2013; Muñoz-Elías et al., 2006; Savvi et 

al., 2008). However, although detoxification of the propionyl-CoA pool through the methyl 

citrate cycle (MCC) is required for growth of Mtb in macrophages in culture, it was the 

methyl-malonyl pathway (MMP), leading to the synthesis of Mtb cell wall lipids, that 

appeared to be the preferred routing of propionyl-CoA in vivo (Figure 2F). Indeed, genes 

involved in the synthesis and transport of the cell wall phthiocerol dimycocerosates (PDIMs) 

were also upregulated in vivo specifically (fadD26, ppsA-ppsE, mmpL7, and Rv2943) 

(Figure S3A).

A cluster of high-confidence interactions for nodes (genes) related to nitrate/nitrite 

assimilation and ergothioneine (EGT) biosynthesis pathways was present in our network, 

suggesting that these processes may be integrated during lung macrophage infection. Genes 

required for inorganic nitrogen assimilation (Figure 2G) were highly expressed by Mtb in 

both host cell types and were implicated in either nitrate/nitrite detoxification through 

generation of ammonia (nirB, nirD, Rv0818, narX, narK2, and narK3) (Malm et al., 2009) 

or ammonia uptake (amt, glnB, and glnD) (Read et al., 2007; Williams et al., 2013). 

Increased intracellular levels of ammonia are essential for glutamate production, and 

glutamate dehydrogenase (gdh) has been shown to be indispensable for growth on glutamate 

or related amino acids (glutamine, aspartate) as limiting carbon sources in the presence of 

NO (Gallant et al., 2016). Looking at possible organic nitrogen sources, our dataset revealed 

upregulation of genes linked to the import of amino acids that can easily be converted to 

glutamate: proX, proZ, proW, and proV (glycine betaine transport), gabP (arginine and 

GABA), rv0072 and rv0073 (glutamine), and rocE (ornithine) (Figure S3B). Glutamate, 

together with cysteine, is also the substrate of egtA, the enzyme of the EGT pathway 

responsible for the production of the end product γ-glutamyl cysteine, that has been shown 

to be required in the detoxification of reactive oxidative and nitrosative species in Mtb. A 

knockout (KO) mutant of egtA led to a 4 log10 reduction in bacterial burden in mice 

infection (Saini et al., 2016; Sao Emani et al., 2018). Intriguingly, although all the genes of 

the EGT biosynthetic pathway were upregulated in our in vivo datasets, the magnitude of 

this response differed between the two host macrophage lineages, with the induction being 
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elevated in IMs (Figure 2L), which are known to present a more hostile intracellular 

environment with increased levels of NO (Huang et al., 2018) (Figure 5C). Therefore, in 

lung macrophages, generation of glutamate appears to be a link between detoxification of 

NO via EGT biosynthesis and nitrogen metabolism for energy production. EGT genes 

(Figure S3C) are regulated by the 4Fe-4S cluster DNA-binding protein WhiB3, which 

maintains redox homeostasis (Cumming et al., 2018). WhiB3 also regulates expression of 

the molybdate transport system modA, modB, modC, which was also highly expressed in 
vivo (Figure S4B), providing an additional rationale for the significance of nitrogen 

assimilation and metabolism in supporting Mtb growth in a reducing environment 

(Cumming et al., 2017).

Previous work has shown that the ESX-5 secretion system enhances bacterial virulence in 
vivo, although the specific mechanism(s) involved are undefined (Bottai et al., 2012; Sayes 

et al., 2012). The Esx-5 locus is thought to be regulated by the Pst/SenX3-RegX3 

transcriptional regulatory system that responds to inorganic phosphate limitation (Elliott and 

Tischler, 2016a, 2016b). Although we did not specifically observe upregulation of the genes 

involved in response to phosphate starvation (data not shown), we note that genes encoding 

the subunits of the transporter were highly upregulated in vivo, with the induction being 

more prominent for Mtb in IMs (Figures 2H and S4A). This differential expression is 

consistent with reports demonstrating that IL-1β and inflammasome activation via NALP3 is 

dependent on a functional ESX-5 secretion system (Abdallah et al., 2011). Our data from the 

host transcriptome analysis reinforce this conclusion, as both the inflammasome and IL-1β 
pathways were more strongly upregulated in the IM lineage (Figure S3C).

Analysis of Different Host-Pathogen Transcriptional Patterns in Mtb-Infected and 
Uninfected AMs and IMs

PCA analysis of the mouse transcripts (Figure 3D) shows a very clear separation between 

ontologically linked host responses (PC1) and infection-associated responses (PC2). In 

previous studies we had found that the resident AM lineage was more supportive of bacterial 

growth than the blood monocyte-derived IM lineage (Huang et al., 2018). Therefore, in this 

work we sought to identify those ontology-specific responses involved in the differential 

growth dynamics reported previously. In order to generate a detailed appreciation of the 

transcriptional differences between the two host cell lineages, we directly compared both 

bacterial and host RNA-seq profiles in infected AMs versus IMs. A total of 319 Mtb genes 

(223 up in IMs, 96 up in AMs, adjusted p < 0.05) were found to be differentially expressed 

between the two bacterial populations (Figure 3A; Table S3), while among the host cell 

transcripts 3,732 genes were differentially expressed in IMs compared with AMs, and 4,097 

genes in AMs compared with IMs, with adjusted p < 0.05 (Figure 3B; Table S5).

In order to identify host transcriptional signatures specific to infection versus those 

associated with macrophage ontogeny, we also performed DGE analysis on bystander, 

uninfected macrophage populations recovered from Mtb-infected mouse lungs. In summary, 

within the bystander cell populations, 4,707 genes were upregulated in IMs and 4,035 genes 

in AMs, with adjusted p < 0.05 (Table S5). Furthermore, to identify the ontogenically 

specific responses to Mtb infection, we also compared the transcriptional profiles of infected 
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and uninfected cells in each macrophage subset. In AMs, 3,453 genes were upregulated and 

3,119 downregulated following infection (Table S5), while in IMs, 3,614 genes were 

upregulated and 3,298 genes downregulated (adjusted p < 0.05) (Table S5).

To acquire greater insights into the biological processes of significance that characterize 

each macrophage subtype and their infection status, we performed gene set enrichment 

analysis (GSEA) on the ranked lists of genes (Merico et al., 2010) and scored ~26,000 gene 

sets for enrichment in each of our transcriptional comparisons. When considering the 

infected populations, a total of 205 gene sets were enriched in IMs and 375 in AMs (p < 

0.01), while among the uninfected cells, 201 and 236 gene sets were enriched, respectively 

(p < 0.01). As previously stated, we also analyzed the transcriptional differences between 

infected and uninfected populations in each macrophage subtype: for AMs, 156 gene sets 

were enriched in the infected population and 161 in the uninfected one (p < 0.01), while for 

IMs, 109 and 63 were enriched for each population, respectively (p < 0.01). From this 

GSEA we then constructed network enrichment maps (Reimand et al., 2019) to provide a 

broad overview of the main biological themes associated with each host cell lineage and 

infection condition (Figures 3E, 4B, 5B, and S5).

Identification of Host and Bacterial Transcriptional Responses in Mtb Growth-Permissive 
AMs

The enrichment maps that compare the two different macrophage ontologies (Figures 3E and 

S5) show marked upregulation of genes associated with pathways related to cell division 

(E2F targets, DNA replication, microtubule reorganization, mitotic spindle, and G/M 

checkpoints), fatty acid metabolism, oxidative phosphorylation, and mitochondrial function 

in both the infected and uninfected resident AM populations, therefore indicating an 

ontogeny-specific metabolic bias for this population of host cells.

Research into macrophage immune function has revealed a linkage between fatty acid 

metabolism and an optimal response to type I interferon (Wu et al., 2016), a pathway that is 

well known to promote Mtb pathogenesis (McNab et al., 2015). Intriguingly, the enrichment 

maps for AM showed upregulation of pathways related to triglyceride and cholesterol 

metabolic processes. In-depth analysis of the most highly expressed genes associated with 

these pathways revealed a small subset in AM (Figure 4A), most specifically Mgl, a 

monoacylglycerol lipase that hydrolyzes intracellular triglyceride stores to free fatty acids 

and glycerol; Lpl, a lipoprotein lipase that completes hydrolysis of monoglycerides from 

degradation of lipoprotein triglycerides; LipA, lysosomal acid lipase, the primary enzyme 

that hydrolyzes cholesteryl esters derived from low-density lipoprotein (LDL); 7-

dehydrocholesterol (7-DHC) reductase (Dhcr7), which converts 7-DHC to cholesterol; the 

peroxisome proliferator-activated receptor gamma (Ppar-γ), which regulates lipid uptake; 

and Lpin1, the co-activator of PPAR-γ, which encodes an enzyme that catalyzes the 

penultimate step in triglyceride synthesis and is involved in lipid sequestration and foamy 

macrophage formation. This clear metabolic shift to cholesterol and fatty acid metabolism is 

consistent with previous data that linked the metabolic state of the AM population with the 

enhanced growth phenotype observed for Mtb in these cells in vivo (Huang et al., 2018).
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Analysis of the pathways upregulated by AM following infection (Figure 4B) unveiled a 

small gene network involved in response to oxidative stress. Recent work by Rothchild et al. 

(2019) revealed that at early time points (up to 10 days p.i.), an NRF2-mediated oxidative 

stress response is upregulated in AM-infected cells compared with bystander and naive 

macrophages, and overexpression of the NRF2 signature is associated with reduced pro-

inflammatory responses and impaired control of bacterial growth. Our data agree with these 

findings, as we show that at 14 days p.i., the same NRF2 pathway is upregulated in infected 

AMs (Figure 4C), while pro-inflammatory cytokines (Figure S6) and molecules needed to 

prevent inflammation-associated intracellular damage are expressed at lower levels than 

infected IMs (Figure 4E). Among the pathways that are downregulated in AMs following 

infection are those related to oxidative phosphorylation, cholesterol, and fatty acid 

biosynthesis, but the levels of expression of the genes in these pathways remain higher than 

in IMs (Figure S4C).

We used the Seahorse Extracellular Flux analyzer to examine the cell metabolism of AMs 

and IMs isolated from Mtb-infected mouse lungs as an independent validation for our RNA-

seq analysis. Consistently, AMs exhibited much higher basal and maximal oxygen 

consumption rates (OCRs) compared with IMs, indicating the engagement of oxidative 

phosphorylation and mitochondrial activities (Figure 4DI). Notably, AMs also revealed a 

higher spare respiratory capacity (SRC) (Figure 4DII). Last, the maximal OCR in AM was 

reduced to the basal level after inhibition of the fatty acid oxidation pathway with etomoxir 

(Eto), whereas Eto had no effect on OCR in IMs (Figures 4DI and 4DIII), indicating that 

AMs are engaged in fatty acid oxidation. This observed disparity between the mitochondrial 

activity in AMs and IMs validates the RNA-seq data indicating that fatty acid metabolism is 

more active in AMs.

These results support the contention that at 14 days p.i., the infected AMs represent a host 

cellular niche more permissive for bacterial growth, an interpretation also supported by the 

transcriptional profile of Mtb isolated from AMs. These bacteria exhibited clear 

upregulation of several genes known to be involved in cell division and growth (ftsK, sepF, 
cdpC, rv1215c, ripA, and ripD), ribosomal protein synthesis (fusA1, rpsG, tuf, rpmG2, 
ppiA, and ppiB), and cell wall synthesis and remodeling (embB, rv0648, rv3258c, and fbpC) 

(Figure 5AI). Moreover, sigD and the anti-sigma factor SigD rv3413c, which had previously 

been shown to modulate the expression of ribosomal genes, were also upregulated (Figure 

5AII) (Calamita et al., 2005). In addition, in context with the AM host cell transcriptional 

profile indicating an abundance of free fatty acids, glycerol, and triglycerides, the bacterial 

transcriptome showed upregulation of genes known to be involved in fatty acid import 

(mce1A, mce1B, mce1C, and mce1F) (Nazarova et al., 2017, 2019), mycolic acid 

biosynthesis (hadA, hadB, and hadC), lipid degradation (rv1075c, lipU, plcB, and plcC), and 

TCA cycle and β oxidation (acn, rv0111, icl2, fixA, icd2, echA8, and accE5) (Figures 4A 

and 5AI), suggesting that fatty acid oxidation may be the preferred route of energy 

production for growth of Mtb in the AM lineage.
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Pro-inflammatory Host Gene Signatures in IMs Are Associated with an Enhanced Mtb 
Bacterial Stress Response

Transcriptional profiling of both infected and uninfected IM populations revealed a marked 

induction of pro-inflammatory pathways such as NF-κB activation and Th1 immune 

response (IL-1β, TNF-α, and IFN-γ) (Figures 3E and S5). Interestingly, one of the most 

robust networks upregulated in these cells are those genes associated with adhesion and 

chemotaxis, in agreement with the demonstration that this host cell population is recruited to 

the granuloma site from the peripheral blood (Huang et al., 2018). Looking at pathways 

differentially expressed upon infection (Figure 5B), IMs showed marked upregulation of 

gene sets related to ubiquitination, NO and reactive oxygen species (ROS) biosynthesis, 

secreted factors, glycolysis, and inflammatory responses. In addition, pathways related to 

potassium and chloride transport, two inorganic ions necessary for Mtb survival 

(MacGilvary et al., 2019; Tan et al., 2013), were downregulated. These host cell signatures 

are consistent with the IM lineage’s posing a much harsher environment for Mtb. The data 

indicate that monocyte-derived macrophages, recruited to the site of infection from the 

blood, are already activated toward a Th1 immune response potentially geared to contain 

Mtb growth.

Turning to the bacterium, analysis of the 226 genes upregulated by Mtb in the IM host cell 

population indicated that the bacterium copes with numerous different environmental 

stresses. Indeed, the dosR operon that mediates the transcriptional response of Mtb to 

oxygen limitation and NO (Bagchi et al., 2005) and whose induction is required by the 

bacteria to enter into a non-replicative state was upregulated (dosT, dosR, dosS, and 

Rv3134c) (Figure 6AI). This is also consistent with the bacterial fitness reporter strain 

(smyc’::mCherry;hspX’::gfp), which has been shown to express higher GFP levels in IMs 

following a controlling immune response (Huang et al., 2018; Sukumar et al., 2014) that led 

to activation of a dosR regulon promoter element (Figure 6AIII). The type II toxin-antitoxin-

chaperon module higA1-higB1-secB that has been shown to be induced under stress 

conditions and hypothesized to be involved in bacterial persistence (Fivian-Hughes and 

Davis, 2010) was also upregulated, along with many genes related to DNA repair and 

protein folding (Figure 6AII). Finally, while most of the genes in the “in vivo signature” are 

common to Mtb in both AMs and IMs, we do observe further elevation of expression of 

genes involved in EGT biosynthesis, molybdate transport, and nitrogen assimilation 

pathways by Mtb in IMs, consistent with the analysis of the mouse transcriptome from the 

infected cells, which reveals that both Hif1A (hypoxia inducible factor) and Nos2 (NO 

synthase) are upregulated in this host cell population (Figure 5C). These data suggest that 

host-derived NO and a reducing environment are significant environmental pressures 

encountered by Mtb in IMs.

Iron Metabolism Is a Prominent Transcriptional Signature Differentiating Mtb Infection in 
AMs and IMs

A robust transcriptional signature related to genes associated with iron metabolism was 

observed in both the host and pathogen (Figure 6B). Specifically, AM-derived bacteria 

overexpressed genes associated with iron storage, suggesting that they are in an iron-replete 

environment. These bacteria upregulated expression of BfrB (ferritin), a storage protein 
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essential for iron sequestration during oxidative stress conditions (Pandey and Rodriguez, 

2012) and Rv0452 a transcriptional repressor of the mmpS4 and mmpL4 siderophore 

exporter proteins involved in iron scavenging (Chen et al., 2018; Kahramanoglou et al., 

2014).

Conversely, IM-derived Mtb showed a transcriptional signature normally associated with 

low-iron conditions. Mtb synthesizes the Fe3+-specific siderophores mycobactin and 

carboxymycobactin to scavenge insoluble and the protein-bound iron directly from the host. 

Genes involved in carboxymycobactin synthesis are organized into two clusters, mbt1 and 

mbt2 (Krithika et al., 2006), and both loci were strongly upregulated in Mtb isolated from 

IM (Figure 6B). In addition, genes encoding the iron-regulated ABC transporter IrtAB, 

which is required for Fe+3-carboxymycobactin uptake, were also overexpressed (Rodriguez 

and Smith, 2006). Recently, Tullius et al. (2019) described a new means of iron acquisition, 

heme-iron acquisition (HIA), and showed that PPE37, an iron-regulated PPE family 

member, was essential for HIA. PPE37 expression was strongly upregulated in Mtb in IMs, 

suggesting that this pathway of iron acquisition may also be important for Mtb survival in 

IMs in vivo (Figure 6AIII). This is a broad transcriptional signature indicating that the 

bacteria in the IM host cell lineage are competing to acquire iron from their host, in marked 

contrast to the iron-replete environment that is experienced by Mtb in AMs.

Turning to the host, both macrophage subsets upregulated genes in a manner similar to the 

iron-response profiles reported for M1 versus M2 macrophages (Recalcati et al., 2010; 

Sukhbaatar and Weichhart, 2018) (Figure 6B). In IMs, which are restrictive for Mtb growth, 

one of the most highly differentially expressed genes was the transcriptional regulator Spi-C. 

Spi-C has been shown to be upregulated in a heme-dependent manner in splenic red pulp 

macrophages that are required to degrade senescent erythrocytes and recycle heme-

associated iron (Haldar et al., 2014). IMs also exhibited increased levels of expression of 

mRNA for Scara5, a ferritin-binding scavenger receptor (Li et al., 2009), Trfc, the transferrin 

receptor, haptoglobin, which binds hemoglobin, and most significantly the intracellular iron 

transporter Nramp1 (Figure 6C), which has been shown to control intracellular bacterial 

infections by limiting availability of divalent cations in the phagosome (Cherayil, 2011; Van 

Zandt et al., 2008). C57BL/6 mice have a loss-of-function mutation in the Slc11a1 gene 

(Nramp1), associated with inability to clear some types of intracellular infections (Vidal et 

al., 1996). However, this lesion does not affect the rate of import/export of iron from cells, 

indicating that it is part of a larger physiological program (Kuhn et al., 1999). The iron 

starvation phenotype observed by Mtb in IM supports the hypothesis that these genes are 

involved in the generation of an iron sequestration phenotype consistent with M1 

macrophage activation and increased microbicidal activity (Gaetano et al., 2010).

In contrast, AMs exhibited enhanced expression of the transcription factor Myc, and ectopic 

expression of Myc has been shown to drive polarization of macrophages toward a M2-like 

phenotype (Pello, 2016; Zhong et al., 2018), which is linked to iron release (Gaetano et al., 

2010; Soares and Hamza, 2016). As illustrated in Figure 6B, AMs showed relatively higher 

levels of expression of transcripts for CD163, the hemoglobin scavenger receptor, Hrg1, the 

endosomal heme transporter, and Ngal, the lipocalin 2 receptor (Gaetano et al., 2010; Jung et 

al., 2012; Soares and Hamza, 2016). In addition, they showed increased transcripts for Aco1/
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Irp1, the dual aconitase/cytosolic iron response protein that regulates transcription of several 

IRE-containing genes (Sanchez et al., 2011; Wang and Pantopoulos, 2011) including Aco2, 

the mitochondrial aconitase, Fech, ferrochelatase required for heme biosynthesis, Hmox2, a 

hemoxygenase involved in breakdown of heme and release of iron, and Trf, transferrin. 

Moreover, mRNAs encoding several iron-containing, iron-utilizing, and iron-regulating 

mitochondrial proteins were upregulated indicative of the enhanced mitochondrial activity 

know to occur in these cells (namely, Fxn, the mitochondrial iron regulator frataxin; Alas1, 

aminolevulinate synthase; fdx1, a mitochondrial electron transfer protein adrenodoxin; and 

Sfxn1 & 2, iron-regulated mitochondrial serine transporters) (Kelly and O’Neill, 2015; Mills 

and O’Neill, 2016). This profile is consistent with the M2-like polarization profile and 

enhanced mitochondrial respiration of the AM population.

DISCUSSION

Successful execution of dual RNA-seq from in vivo-derived infected host cell populations 

remains a considerable technical challenge. However, in the present study we were able to 

generate robust datasets on both host and bacterium from two distinct host myeloid lineages 

isolated directly from infected mouse lungs using a simple bacterial RNA enrichment 

protocol. Moreover the use of fluorescent bacterial fitness reporter strains in an in vivo 
infection model that incorporates host cell heterogeneity and provides an adequate source of 

infected host cells for flow sorting and isolation increases the resolution of such studies 

(Russell et al., 2019). The data presented here detail the transcriptional responses of both 

host and pathogen during in vivo infection of two ontologically distinct macrophage 

lineages.

The dual RNA-seq datasets in this study provide further elucidation of why AMs represent a 

preferred niche for Mtb replication. The data are also consistent with IMs’ being recruited to 

the site of infection and fulfilling the major role in the containment of bacterial growth. 

Previous work showed that depletion of the AM population resulted in an 80% reduction in 

bacterial burden, while depletion of IMs resulted in almost a 10-fold increase in bacterial 

burden (Huang et al., 2018). Our analysis of both host and bacterial transcriptomes re-

emphasizes the significance of nutritional immunity (Kochan, 1973) for in vivo control of 

infection. The key role played by iron metabolism in tuberculosis infection is not a new 

theme and is backed by an extensive body of data from genome-wide susceptibility studies 

(Gallant et al., 2007; Govoni and Gros, 1998; Vidal et al., 1996) to experimental in vitro 
infections (Abreu et al., 2018; Dahl et al., 2018; De Voss et al., 2000; Olakanmi et al., 2000, 

2013; Wagner et al., 2005). Moreover, many of the host genes involved in the iron 

transcriptional signature have been reported to be responsive to heme-associated iron, 

tempting one to speculate that the hemorrhaging and red blood cell damage, frequently 

observed in infected mouse tissue, may drive this aspect of the host cell response. This 

interpretation is consistent with a recent report that ferroptosis, or iron-mediated cell death, 

is a robust signature in Mtb-infected mouse lung tissue (Amaral et al., 2019).

Finally, although both Mtb populations are shifted to cholesterol use in vivo, the Mtb in the 

AM population exhibits a more marked upregulation of genes involved in acquisition and 

use of fatty acids. Metabolic flux analysis of host macrophages provided experimental 
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verification of the increased oxidative phosphorylation and mitochondrial function in AMs 

compared with IMs, providing further support that the growth advantage experienced by 

Mtb in AMs is also a consequence of the metabolic interface between host cell and 

pathogen.

In the present study we examine a single time point during mouse infection, and although 

such analysis needs to be extended to later time points following the development of 

acquired immunity, it holds considerable value as a proof of principle and technical advance 

that stresses the importance of interrogating in vivo-derived host cell and pathogen 

populations to unravel the molecular basis of infection and the disease process.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, David G. Russell (dgr8@cornell.edu).

This study did not generate new unique reagents. Plasmids used in this study will be 

available through contact information provided in the Key Resources Table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mtb Strains—Mycobacterium tuberculosis Erdman ATCC 35801 was the parental strain 

used for all experiments. The fluorescent reporter smyc’::mCherry was previously described 

(Sukumar et al., 2014). Bacteria were grown at 37°C to mid-log phase in MiddleBrook 7H9 

broth supplemented with 10% oleic acid/albumin/dextrose/catalase (OADC Enrichment - 

Becton, Dickinson and Company), 0.2% glycerol, 0.05% Tyloxapol (Sigma-Aldrich). 

Hygromycin B (50 μg/ml) was used as a selection marker for the fluorescent strain 

smyc’::mCherry. For mice infection, aliquots were frozen in 10% glycerol, titered and stored 

at −80°C until use, while fresh bacterial cultures were used for RNA extraction from tissue 

and broth cultures (reference samples).

Mice—C57BL/6J WT mice were purchased from The Jackson Laboratory. The mice used 

in this study were 6–8 weeks old. All mice were maintained in a specific pathogen free 

animal biosafety level 3 facility at Cornell University. Animal care was in accordance with 

the guidelines of the Association for Assessment and Accreditation of Laboratory Animal 

Care. All animal procedures were approved by the Institutional Animal Care and Use 

Committee of Cornell University.

METHOD DETAILS

BMDM culture and infection—BMDM cells were isolated from femur and tibia of 

euthanized C57BL/6J WT mice (Jackson Laboratories). Briefly, femur and tibia were 

dissected from the mice and surrounding tissues and muscles removed. Both ends of the 

bones were cut, bone-marrow flushed with Dulbecco’s modified Eagle’s medium (DMEM) 

using a 21-gage needle, then centrifuged at 1000 rpm for 5′ and resuspended in DMEM 

supplemented with 10% fetal bovine serum (Thermo Scientific), 2 mM L-glutamine, 1 mM 
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sodium pyruvate, 10% L-cell conditioning media and 1% penicillin/streptomycin (Corning 

cellgro). Cells were then grown at 37°C for 7 days in culture dishes while media was 

replenished every 3 days. At day 7, non-adherent cells together with red blood cells were 

removed using PBS washes. BMDM were infected with Mtb smyc’::mCherry at a 

multiplicity of infection of 2:1 for 4 hours (test samples) or 6 hours (reference samples). 

Briefly, macrophages were seeded in T75 vented tissue culture flasks at a density of ~2×107 

per flask. The next day, mid-log phase Mtb cultures (OD600 = 0.5 to 0.6) were harvested by 

centrifugation, resuspended in basal uptake buffer (PBS with 4.5 mg/ml glucose, 5 mg/ml 

BSA, 0.1 mg/ml CaCl2, 0.1 mg/ml MgCl2, and 1 mg/ml gelatin), passaged 10 times through 

a 21-gauge needle, and then used to infect macrophages. Extracellular bacteria were 

removed after 2 hours and the media replaced. At 4h or 6h post-infection, RNA was 

extracted as described in the corresponding sections of this paper.

Mice infection and lung cells isolation—Mice were infected intranasally with Mtb. 

Mice were anesthetized and inoculated with ~1000 CFU of the Erdman strain smyc’:: 
mCherry, resuspended in 25ul of PBS containing 0.05% Tween 80. Inoculum dosage was 

confirmed by plating different dilutions of the bacterial stock in 7H10 agar plates 

supplemented with OADC, glycerol and hygromycin B. Plates were incubated at 37°C and 

colonies enumerated 3 weeks after. Two weeks post-infection mice were sacrificed, the 

lungs aseptically removed and placed in PBS containing 5% FBS. To minimize unwanted 

changes in the gene expression profile of both host and bacteria, samples were kept on ice 

and immediately processed using a GentleMACS tissue dissociator (Miltenyi Biotec). The 

dissociated lung material was then passed through a 70 μM cell strainer and red blood cells 

were lysed with ACK lysis buffer (Lonza).

Sorting of AM and IM populations—Staining of the lung phagocytes was streamlined 

to minimize processing time and unwanted changes in the gene expression profile. Briefly, 

lung cell suspensions were incubated for 20 minutes in the dark with fluorophore-conjugated 

antibodies against mouse CD64 (X54–5/7.1), MerTK (DS5MMER) and SiglecF (E50–2440) 

from BioLegend, Thermo Fisher or BD Biosciences. The panel of antibodies used in this 

study to separate the two phagocytic lung populations has been described and validated in a 

previous study (Huang et al., 2018). Stained samples have then been washed in PBS, 

resuspended in sorting buffer (PBS, 5% FBS, 5mM EDTA, 25mM HEPES) and sorted 

according to the gating strategy depicted in Figure 1A. Samples were maintained at 4°C 

during sorting and collected directly into Trizol (Ambion).

Recovery of Mtb-infected cells from the lung tissues for subsequent processing varied from 

1.2 – 2.5×104 for AM and 2.5 – 4×104 for IM, and a full description of these samples and 

subsequent RNA yields is provided in Table 1. In those cases where the number of recovered 

infected cells were lower than 40k, we chose a trade-off between enrichment and sequencing 

depth in order to have enough input RNA for library preparation (Figure 1D; Table 1)

Extracellular Flux Analysis (Agilent Seahorse)—Real-time cell metabolism of AM 

and IM was determined by using a XFp Extracellular Flux Analyzer. FACS sorted AM and 

IM were plated in 8-well Seahorse plates. Mitochondrial function was determined by using 

the Seahorse XFp Cell Mito Stress Test Kit (Agilent Technologies, Santa Clara, CA), 

Pisu et al. Page 13

Cell Rep. Author manuscript; available in PMC 2020 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



according to the manufacturer’s instruction. Three or four measurements were obtained 

under basal conditions and after the sequential addition of oligomycin, FCCP, etomoxir and 

Rotenone/antimycin A.

Development of the Dual RNA-seq protocol—Previous experiments informed us that 

4 × 104 was the maximum number of infected AM recoverable following sorting from 3 

pooled mouse lungs. Therefore, since the number of infected host cells and consequently the 

amount of total mixed RNA recovered from an in vivo infection was likely to be limited, we 

performed preliminary experiments to assess if a modified rRNA depletion step worked 

efficiently for low-input samples and if the amount of total RNA left after bacterial 

enrichment would be sufficient for library preparation: our library preparation kit (see 

“Library preparation and sequencing”) requires at least 2ng of input RNA after rRNA 

depletion. From previous experiments, we estimated to recover ~90ng of total RNA from 

40k eukaryotic cells, which after rRNA subtraction (95% of total RNA) would result in ~5ng 

of input RNA. Therefore, we tested the protocol using 2 biological replicates of BMDM, 

infected with fluorescent Mtb Erdman (smyc’::mCherry) at an MOI of 2:1 for 4h. 4×104 

Mtb-infected cells were sorted, collected and incubated in Trizol to lyse the host 

macrophages (Figure 1B). The samples were processed for RNA isolation as detailed in the 

following section, following removal of 30% and 50% of the volume of the supernatant 

containing host RNA. In both cases we were able to recover enough mRNA (after rRNA 

depletion) for library preparation and we achieved an enrichment where 5% or 9% of the 

total reads aligned to the Mtb reference genome when discarding 30% or 50% of the volume 

of Trizol containing host RNA, respectively. Moreover, the modified rRNA depletion step 

was able to efficiently deplete ribosomal RNA from all the samples (Table S1).

RNA extraction—Bacterial RNA extraction for reference samples (BMDM at 6h of 

infection and broth cultures) was performed using the protocol previously described (Rohde 

et al., 2012). Extraction of total RNA (eukaryotic + bacterial) from lung phagocytic 

populations was performed using the modified protocol to optimize the pathogen/host RNA 

ratio.

In brief, sorted samples were collected in Trizol, mixed and incubated for 5 minutes at RT to 

allow complete dissociation of the nucleoprotein complexes of the host cells. Specimens 

were then centrifuged at max speed for 20’ to pellet intact mycobacterial cells. ~80% of the 

Trizol (containing host RNA) was removed and placed in an RNase-free tube for later use. 

0.1mm zirconia/silica beads (Biospec) together with fresh Trizol (~400ul) were then added 

to the Mtb containing tube and bacilli were lysed using a BeadBeater. Subsequently, based 

on the number of sorted cells, a portion of the host RNA (usually > 50% of the volume) was 

added back to the tube containing bacterial RNA, mixed and the extraction carried out 

following the Trizol protocol. (Chomczynski and Sacchi, 1987). Because of the limited 

number of infected phagocytes recovered from the sorting procedure, we used Glycoblue 

(Invitrogen) during the precipitation step to maximize RNA recovery and have sufficient 

quantity for library preparation. RNA samples were resuspended in nuclease-free water 

(Ambion) and genomic DNA contamination removed using the commercially available 

Turbo-DNA free kit (Invitrogen).

Pisu et al. Page 14

Cell Rep. Author manuscript; available in PMC 2020 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Library preparation and sequencing—rRNA removal was performed using 50–100ng 

total RNA input and a modified protocol for the Ribo-Zero Epidemiology Gold rRNA 

removal kit (Illumina). Briefly, 90 μL bead stock was used per sample, together with 2 μL 

each of reaction buffer and removal solution in a 20 μL reaction volume, as detailed in the 

manufacturer’s protocol. The rRNA-depleted samples were purified by precipitating the 

RNA. Sequencing libraries were generated using the NEB Next Ultra II Directional RNA 

Library Prep Kit for Illumina (New England Bio-Labs). Libraries were sequenced on a Next 

Seq 500 (Illumina) in multiple rounds until the desired sequencing depth for bacterial reads 

was reached (target 1M 85nt reads).

QUANTIFICATION AND STATISTICAL ANALYSIS

Rationale for the use of APEGLM – Approximate posterior estimation for 
generalized linear models—Estimation of LFC (log fold change) represents a 

continuing challenge for RNA-seq analysis of datasets with low sequencing depth and 

limited numbers of biological replicates. In presence of low or high variable counts, the 

maximum likelihood estimates (MLE) for the LFCs have high variance leading to poor 

ranking of genes by effect sizes. Because ranking of genes by LFC is a common approach in 

the analysis of transcriptional data and ranked lists of genes are used in downstream 

applications such as network and pathway analysis, different approaches have been proposed 

to stabilize the estimation of LFC for genes with low counts and high variance, including 

filtering out low count genes and using scaled pseudocounts (edgeR, limma-voom) or 

through the use of Bayesian modeling. For example DESeq2, one of the most popular 

packages for differential gene expression analysis, (Love et al., 2014) uses an adaptive 

normally distributed prior for shrinkage of LFC.

However recently, a new empirical Bayes procedure (APEGLM) that makes use of a heavy-

tailed Cauchy prior distribution has been proposed to stabilize the estimator of LFC. (Zhu et 

al., 2019) Briefly, using the same framework of DESeq2 (a Negative Binomial (NB) 

generalized linear model (GLM)), apeglm exchanges the normal distribution with a heavy-

tailed Cauchy distribution on the effect sizes, with fixed shape and scale adapted to the 

distribution of observed MLE of the effect sizes for all genes. For each gene, it then uses a 

LaPlace approximation to provide shrinkage estimates and corresponding SD (Zhu et al., 

2019), This removes the needs for filtering rules or pseudocounts and maximizes the power 

of the current data to estimate the effect size for each gene. In particular, it has been shown 

that this statistical approach preserves true, large differences in LFC across conditions and is 

superior to common methods in ranking of genes by LFC in presence of low counts (Zhu et 

al., 2019).

Dual RNA-seq Data analysis—Raw sequencing reads were analyzed using FastQC (v. 

0.11.5) for quality control. Flexbar (v. 3.4)(Roehr et al., 2017) has been used to remove low 

quality reads and trim Illumina adapters. rRNA reads have been removed using Bowtie2 

(Langmead and Salzberg, 2012) (–sensitive mode) and a custom GTF file. For the 

processing of in vivo datasets, filtered fastq files were split using Bowtie2 (–very-sensitive 

mode) into species-specific files using the two reference genomes, GRCm38.94 for Mus 
musculus and NCBI assembly GCA_00668235.1 for Mtb Erdman. Hisat2 (v. 2.1.0) (Kim et 
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al., 2015) was used to align reads to the respective transcriptomes and raw read counts for 

each sample were obtained using HTSeq (v. 0.11.0) (Anders et al., 2015). Two separate raw 

gene-count matrixes were obtained: one for the Mtb samples and one for the Mus musculus 
samples. Unless noted, exploratory, visualization and differential gene expression analysis 

was carried out in R using the DeSeq2 pipeline and APEGLM for LFC estimation. Genes 

with less than 10 raw counts across all samples were excluded from downstream analysis.

Pathway enrichment analysis was performed to compare the host conditions (AM versus IM, 

Infected versus Uninfected). A ranked list of genes was generated and GSEA analysis 

performed using the gene-sets provided by the BaderLab (http://download.baderlab.org/

EM_Genesets/) excluding electronically annotated gene-sets. As of December 2018 this list 

contained around 26000 pathways from different sources (GO, Reactome, Panther, IOB, 

NetPath) (Reimand et al., 2019). GSEA analysis was carried out with the following settings: 

1) number of permutations: 2000; 2) Enrichment statistic: weighted; 3) Min and max gen-

sets size: 10 and 500; 4) Normalization mode: meandiv. Gene-sets enriched in both 

populations at a nominal p value < 0.01 were selected to build an Enrichment Map in 

Cytoscape (Merico et al., 2010; Reimand et al., 2019). Because of the technical differences 

in the mRNA enrichment strategy between infected (rRNA depletion) and uninfected (polyA 

selection - Huang et al., 2018) samples, for the host cell infected versus uninfected 

comparisons (Table S5) genes known to be non-polyadenylated have been excluded from the 

downstream analysis with GSEA and Cytoscape. The protein-protein interaction network for 

the Mtb “in vivo signature” was created in Cytoscape using the STRING app (1.4.1). Only 

high-confidence interactions (co-expression, experiments, neighborhood, co-occurrence with 

a score > 0.7) relative to query proteins were considered. The entire data pipeline (Linux 

commands, software settings and R code) is provided in Supplementary Materials.

Data mining to define the Mtb in vivo gene-signature—Using our own datasets (14 

days AM and IM in vivo, 6hr BMDM cultures and 7H9-OADC broth cultures) we 

performed differential gene expression to identify a list of 274 genes that were specifically 

upregulated in one or both in vivo host macrophage populations (IM and AM) but not in 

either short-term BMDM or broth culture conditions. After that, we mined the microarray 

datasets from previous studies (Rohde et al., 2012; Schnappinger et al., 2003) to generate 

another list of genes that have been reported to be specifically upregulated in BMDM 

cultures (at different time points – 24h, 48h up to 14 days of cell culture infection in the 

Rohde et al., 2012, or under different conditions – activated versus resting BMDM in 

Schnappinger et al., 2003) but not in broth cultures (7H9-OADC). Finally, we compared our 

274 gene-list with this microarray-derived list and all the genes that overlapped were 

excluded from the “in vivo signature.” We ended up with 180 genes specific to the in vivo 
infection environment. This certainly represents a conservative approach, however it allowed 

us to identify Mtb expression signatures unique to the in vivo lung macrophage environment.

Statistical Analysis—Statistical testing for the differential gene expression analysis 

(DGE) was performed as described (Love et al., 2014). Shrinkage of effect sizes (LFC 

estimates) has been performed using the APEGLM method (Zhu et al., 2019). Unless 

specified otherwise, genes having a false discovery rate (FDR) < 0.05 and a fold change > 
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1.5 were considered significant. Visualization and clustering (PCA, heatmaps of sample-to-

sample distances) were performed on variance stabilized counts (vst) (Anders and Huber, 

2010) with the option “blind = TRUE” in the DESeq2 package in order to compare samples 

in an unbiased manner. Heat-maps for specific groups of genes were generated using the 

normalized counts obtained from the DESeq2 analysis, which have been log-transformed 

and Z-scaled using the package heatmap2 in R.

DATA AND CODE AVAILABILITY

The datasets supporting the conclusions of this article are available in GEO: GSE132354 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132354

The data analysis pipeline (Linux code and R scripts) is provided as a zip file in the 

supplemental materials.

The datasets for the uninfected AM and IM samples are available in GEO: GSE108844 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108844

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Dual RNA-seq analysis of M. tuberculosis infected macrophages

• Infected macrophages were isolated directly from mouse lung

• Transcriptional signatures of host and pathogen varied with macrophage 

ontogeny

• Data highlighted a key role for nutritional immunity in limiting bacterial 

growth
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Figure 1. In Vivo Dual RNA-Seq Pipeline for the Enrichment of Bacterial RNA from Flow-Sorted 
Lung Macrophages
(A) Flow gating strategy used to identify the two different lung macrophages lineages. 

CD64+ and MerTk+ macrophages were separated from the rest of the immune population 

and the AM and IM lineages identified by the level of expression of Siglecf. IM- and AM-

infected macrophages constituted ~9% and ~2%, respectively, of the total macrophage 

population. The experimental infection and cellular isolation was repeated three times 

independently (n = 3), each time pooling and processing lung tissue from three infected 

mice.
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(B) Diagram of the RNA extraction process. Samples were sorted in Trizol to release host 

RNA and pelleted, and the supernatant (containing most of the host RNA) was removed and 

placed aside. Fresh Trizol was added to the tube containing the bacterial pellet, and the 

bacteria were disrupted through mechanical lysis. A percentage of the host RNA (nominally 

50%) was then transferred back to the tube containing the lysed bacteria and the resulting 

total RNA, now enriched for bacterial transcripts, processed following the Trizol protocol.

(C) Example of an Agilent Bioanalyzer 2100 plot shows how physical separation of the host 

RNA from the bacterial pellet prior Mtb homogenization preserves RNA quality and 

integrity, as evidenced by the intact rRNA peaks and higher quality score (RNA quality 

number [RQN] 7.5 versus 4.8).

(D) Bar chart illustrating the percentage of total reads that map to the Mtb Erdman genome 

for the test and in vivo samples.

(E) Venn diagram showing the overlap of the genes (abs[log2 FC > 1], false discovery rate 

[FDR] < 0.05) detected as differentially expressed on the full reference datasets by DESeq2, 

IHW, edgeR, and limma-voom. We nominally defined this set of genes as “true DE.”

(F) Percentage of false positives (genes detected as differentially expressed; abs[log2 FC > 

1], FDR < 0.05) in the subset of 1 M reads but not part of “true DE”) for the most common 

used statistical approaches in RNA-seq analysis. APEGLM outperformed all other methods, 

with a false-positive rate of <3.5%. p values were calculated using one-way ANOVA 

followed by Tukey’s post hoc test.
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Figure 2. Identification of an Mtb In Vivo Signature in Mice
(A) Principal-component analysis (PCA) of the Mtb transcriptome from three different 

environmental conditions: in vivo, cell culture (BMDM), and broth (7H9-OADC).

(B) Heatmap showing relative expression levels for the “in vivo signature,” a set of 180 

genes upregulated only during growth in lung macrophages.

(C) Functional characterization of the in vivo gene signature shows how many of the genes 

belong to the “conserved hypothetical” class with undefined function.
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(D) Protein-protein network analysis of the “in vivo signature” reveals a cluster of genes 

involved in cholesterol degradation (Kstr2), response to nitrosative and oxidative stresses 

(ergothioneine), and nitrogen assimilation and export machinery (Esx-5). Only high-

confidence (>0.7) interactions were used to build the network.

(E) Heatmap showing relative expression levels for the genes in the cholesterol degradation 

pathway Kstr2.

(F) Boxplot of the main genes related to the MMP (MutA, MutB) and MCC (PrpC, PrpD) 

pathways. The transcriptional profile of Mtb from in vivo samples shows upregulation of the 

genes related to the MMP pathway but not of those involved in the recycling of the 

propionyl-CoA pool through the MCC.

(G and H) Heatmaps showing relative expression levels for genes in the inorganic nitrogen 

(G) and ESX-5 (H) pathways in Mtb.

(I) Violin plots showing expression levels (in log-normalized counts) of genes involved in 

the ergothioneine biosynthesis pathway.

Where appropriate, for all plots the statistical significance is shown on the picture (*adjusted 

p value [p-adj.] < 0.05, **p-adj. < 0.01, ***p-adj. < 0.001, and ****p-adj. < 0.0001). q 

values for comparisons among the groups were calculated using the Wald test as 

implemented in the DESeq2 pipeline.

Pisu et al. Page 27

Cell Rep. Author manuscript; available in PMC 2020 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Analysis of Different Host-Pathogen Transcriptional Patterns in Mtb-Infected and 
Uninfected AMs and IMs
(A) MA plot for the transcriptome of Mtb in the AM and IM lineages. The top 50 genes 

ordered by log2 fold change are highlighted. Genes with adjusted p < 0.05 are considered 

statistically significant.

(B) Volcano plot showing differential expression of macrophage genes in the IM- and AM-

infected populations. The top 50 genes ordered by p-adj. are shown. Genes with FDRs < 

0.05 are considered statistically significant.
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(C) Heatmap showing relative expression levels of monocyte and AM-lineage-associated 

genes.

(D) PCA comparing the transcriptomes of the macrophage populations. A clear separation 

between ontologically linked (PC1) and infection-associated (PC2) responses is observed.

(E) Enrichment map comparing pathways upregulated in infected AMs versus infected IMs. 

Only GSEA gene sets with enrichment p values < 0.01 were considered in the network.
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Figure 4. Identification of Host and Bacterial Transcriptional Responses in Mtb Growth-
Permissive AMs
(A) Boxplots showing relative expression levels (in log-normalized counts) of genes 

involved in cholesterol and triglyceride metabolism in the host and genes involved in lipid 

import, degradation, and biosynthesis in Mtb. Our dataset reveals a transcriptional signature 

correlated with high availability of lipid carbon sources for the bacteria in AM and 

consequent use of these nutrients by Mtb during growth in this macrophage lineage.

(B) Enrichment map comparing pathways upregulated in infected versus uninfected AMs.
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(C) Heatmap showing relative expression levels for the genes in the NRF2-oxidative stress 

response pathway.

(D) Extracellular flux analysis on AMs and IMs sorted from the mouse lung after 2 weeks of 

infection with 103 Mtb. (I) Oxygen consumption rate (OCR) was measured using the Cell 

Mito Stress Test Kit (Agilent). Oligo, oligomycin; FCCP, fluoro-carbonyl cyanide 

phenylhydrazone; eto, etomoxir; Rot/AA, rotenone and antimycin A. (II) Spare respiratory 

capacity (SRC) was calculated by normalizing maximum OCR to the basal level. (III) 

Reduction of maximum OCR after injection of etomoxir (Eto), a fatty acid oxidation 

inhibitor. p values were calculated using Student’s t test.

(E) (I) GSEA enrichment plot of infected versus uninfected AM for the “organic acid 

transport” pathway. (II) Boxplots showing relative expression levels (in log-normalized 

counts) of genes involved in the transport of molecules needed to prevent inflammation-

associated intracellular damages: Slc7A11, which promotes cystine uptake and glutathione 

biosynthesis (Bannai, 1986), and Abcc1, involved in the extrusion of reduced glutathione 

(Cole, 2014).

Unless otherwise specified, the statistical significance is provided for each plot (*p-adj. < 

0.05, **p-adj. < 0.01, ***p-adj. < 0.001, and ****p-adj. < 0.0001). q values for comparisons 

among the groups were calculated using the Wald test as implemented in the DESeq2 

pipeline.
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Figure 5. Transcriptional Signatures Specific to Mtb in AM and Enrichment map for the 
Infected versus Uninfected IMs
(A) (I) Heatmaps showing relative expression levels for genes related to cell growth and 

division, ribosomal protein synthesis, cell wall synthesis, and TCA cycle and beta oxidation 

pathways for Mtb in AM. (II) Boxplots showing the expression levels (in log normalized 

counts) of the sigD and anti-sigma factor sigD (rv3413c) in Mtb.

(B) Enrichment map comparing pathways upregulated in infected versus uninfected IMs. 

Only GSEA gene sets with enrichment p values < 0.01 were considered in building the 

network.
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(C) Violin plots showing the expression levels (in log-normalized counts) of the host genes 

Nos2 and Hif1a.

Statistical significance is provided for each plot (*p-adj. < 0.05, **p-adj. < 0.01, ***p-adj. < 

0.001, and ****p-adj. < 0.0001). q values for comparisons among the groups were 

calculated using the Wald test as implemented in the DESeq2 pipeline.
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Figure 6. Transcriptional Signatures Specific to Mtb in IMs and Iron Metabolism
(A) (I) Boxplots showing the expression levels (in log-normalized counts) of genes related to 

the dosR operon and HigA1 toxin/antitoxin system. (II) Heatmap showing the relative 

expression levels of genes involved in DNA repair and protein-folding processes in Mtb. 

(III) Violin plots showing the relative expression levels (in log-normalized counts) of the 

hspX and ppe37 genes for Mtb in the AM and IM lineages.
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(B) Heatmaps showing the relative expression levels of iron-related genes in both the host 

and Mtb. The divergent transcriptional response to iron metabolism in the AM and IM 

populations correlate with a different iron-response phenotype in Mtb.

(C) Boxplot showing the expression levels (in log-normalized counts) of the host Nramp1 
gene involved in the transport of iron into the cytoplasm and suppression of bacterial growth.

(D) Boxplots showing the expression levels (in log-normalized counts) of the Mtb genes 

irtA, mbtN, and eccA3, involved in carboxymycobactin uptake, synthesis, and ESX-3 

secretion system (Serafini et al., 2013), respectively.

Where appropriate, statistical significance is associated with each plot (*p-adj. < 0.05, **p-

adj. < 0.01, ***p-adj. < 0.001, and ****p-adj. < 0.0001). q values for comparisons among 

the groups were calculated using the Wald test as implemented in the DESeq2 pipeline.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD64 Biolegend Cat# 139307, RRID:AB_2561962

Mertk Thermo Fisher Cat# 12–5751–82, RRID:AB_257262

SiglecF BD Bioscience Cat# 564514, RRID:AB_2738833

Bacterial and Virus Strains

M.tuberculosis Erdman mCherry Originally from Tanya Parish lab https://dx.plos.org/10.1371/
journal.pone.0009823

N/A

Critical Commercial Assays

Ribo-Zero Gold rRNA Removal 
Kit (Epidemiology)

Illumina Cat# MRZE724

Glycoblue Thermo Fisher Cat# AM9515

Seahorse XFp Cell Mito Stress Test 
Kit

Agilent Cat# 103010–100

Deposited Data

Bystander AM and IM populations GEO: GSE108844 N/A

MicroArray studies Rohde et al., 2012; Schnappinger et al., 2003 N/A

Experimental Models: Organisms/Strains

C57BL/6J mice The Jackson Laboratory Cat# JAX:000664, 
RRID:IMSR_JAX:000664

Software and Algorithms

DESeq2 Love et al., 2014 N/A

ApeGLM Zhu et al., 2019 N/A

GSEA Broad Institute http://software.broadinstitute.org/gsea/
index.jsp

N/A

EnrichmentMap Reimand et al., 2019 N/A

FastQC (v. 0.11.5) https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ N/A

Flexbar (v. 3.4) Roehr et al., 2017 N/A

Bowtie2 Langmead and Salzberg, 2012 N/A

Hisat2 (v. 2.1.0) Kim et al., 2015 N/A

HTSeq (v. 0.11.0) Anders et al., 2015 N/A
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