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Abstract

We investigated the contribution of host immune cells to bacterial killing in a whole-blood

bactericidal activity (WBA) assay, an ex vivo model used to test efficacy of drugs against

mycobacterium tuberculosis (Mtb). We performed WBA assays with immuno-magnetic

depletion of specific cell types, in the presence or absence of rifampicin. Innate immune

cells decreased Mtb growth in absence of drug, but appeared to diminish the cidal activity of

rifampicin, possibly attributable to intracellular bacterial sequestration. Adaptive immune

cells had no effect with or without drug. The WBA assay may have potential for testing

adjunctive host-directed therapies acting on phagocytic cells.

Introduction

A variety of drugs (old/ re-purposed and new) with potential anti-mycobacterial activity

require testing alone and in combinations, but there are limited options for initial screening in

humans prior to launching expensive and laborious clinical trials [1]. There is also increasing

interest in drugs that modulate the host immune response to mycobacterium tuberculosis

(Mtb), which survives as a successful intracellular pathogen by evading host immune defence

mechanisms. Approaches for initial testing of such host-directed therapies for TB are not

established. The whole-blood bactericidal activity (WBA) assay is an established ex vivo model

which tests the anti-mycobacterial efficacy of drugs, in the context of an additional contribu-

tion made by host immune cells found in whole blood [2–4]. Whilst this model has a theoreti-

cal advantage over testing in cell-free assays, the nature of the contribution of the host cells in

controlling Mtb growth, with and without antibacterial drugs, has not been well described [5].

We performed this study to determine the magnitude of the contribution of immune cells to

measured WBA in this assay.
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Materials and methods

Eight healthy volunteers were recruited over a five-month period from December 2016 to May

2017. WBA assays were performed on blood drawn (63ml, taken in sodium-heparin tubes) on

the morning of the study day. Each sample was depleted of cells, in separate parallel experiments,

using a magnetic platform (STEMCELL EasySep, STEMCELL Technologies Singapore, Pte Ltd,

Singapore) and specific monoclonal antibodies against monocytes (CD14+), neutrophils

(CD66b+, CD15+), natural killer (NK) (CD56+), CD4+ T cells, CD8+ T cells, B (CD19+) and

dendritic cells (DCs) (CD11c+, CD123+). The extent of depletion was measured by flow cytome-

try. Fluorochrome-conjugated antibodies (S1 Table) were added to 100ul whole blood and incu-

bated for 20 minutes before red blood cell lysis using FACS lysis solution (BD Biosciences). Cells

were then washed twice with PBS and resuspended in FACS buffer (PBS + 0.2% BSA) before

data acquisition. To determine depletion purity, staining panels were designed to detect specific

populations of immune cell subsets in whole blood using the LSR Fortessa (BD Biosciences) for

data acquisition and FlowJo (Treestar) for data analysis. Samples were first gated for single cells,

then by size and by granularity using forward scatter and side-scatter. Finally to target the cell

subtype a gating strategy was employed looking specifically at the listed cell differentiation mark-

ers (S2 Table). Samples with less than 75% depletion were not included in further analyses.

The WBA assay was performed as described in detail previously [2, 3, 6]. In brief, a standard

stock was made for all experiments using Mycobacterium tuberculosis (H37Rv) grown in 7H9

medium to mid-log phase, and a standard curve was generated that related volume of that

stock to the time to positivity (TTP) in culture in the MGIT960 detection system (Becton Dick-

inson, Franklin Lakes, USA). The volume of mycobacterial stock calculated from the standard

curve to give a TTP of 5.5 days (0.5μL) was added to 300μL of the test blood sample (control

without cell depletion, or sample following specific cell depletion) and topped up with sufficient

tissue culture medium (RPMI-GlutaMAX) to make up total culture volume of 600μL. Rifampi-

cin was added in half of the samples in each cell depletion group to make up a total concentra-

tion of 1ug/ml (approximating the levels seen in plasma approximately 1 hour after a standard

oral dose of 10mg/kg of rifampicin, representing about 25–50% peak WBA of the drug; level

selected to avoid dominating the contribution of the immune cells to bacterial control).

Cultures were incubated at 37˚C for 72 hours, then the liquid phase was removed, the cells

were lysed, and the pellet re-suspended and inoculated into MGIT tubes. The TTP was

recorded (to the nearest minute). WBA cultures were set-up in duplicate for each experimental

condition and the mean TTP calculated. Control cultures (in duplicate) were set-up on the

same day by inoculating the standard volume of stock directly into MGIT tubes. The WBA at

each of the individual cell depletion experiments was obtained from the difference between the

log of the volume on the standard curve that corresponded to the TTP for that cell depletion

experiment and the log of the volume corresponding to the TTP of the control culture. This is

equivalent to the difference in log of bacterial colony forming units (CFU) between the sample

and the control, reported as ΔlogCFU.

Participants also had an interferon gamma release assay (IGRA) (QuantiFERON–TB Gold

(QFT), Qiagen, Hilden, Germany) performed and participants were classified as positive or

negative based on the manufacturer’s recommendations. The study was approved by the

National Healthcare Group Domain Specific Review Board (Singapore) and volunteers gave

written informed consent.

Results

Cell depletion was successful (>75% depletion) in 4–8 assays for all cell types (median

depletion 94.4%, range 75.2–100%; S3 Table) except for CD15+ neutrophils and CD123+
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DCs (median depletion 25.8% and 35.1% respectively; these assays were not analysed

further).

In the absence of rifampicin, depletion of CD66b+ neutrophils, CD11c+ DCs, monocytes

and NK cells increased the rate of growth of Mtb compared to un-depleted whole blood (Fig

1). The largest effect was seen with depletion of neutrophils. There was also a trend to

increased Mtb growth with depletion of adaptive immune cells (CD4+ T-cells and CD19+ B-

cells) but this did not reach statistical significance (Fig 1 and S4 Table).

In the presence of low-dose (1ug/ml) rifampicin, depletion of neutrophils and monocytes

decreased the rate of growth compared to the un-depleted whole blood (i.e. enhanced drug-

related bactericidal activity) (Fig 1). Depletion of DCs also showed a trend to reducing the rate

of growth of Mtb. Depletion NK cells, CD4+ T-cells and CD8+ T-cells and B cells did not have

a significant impact (Fig 1 and S4 Table).

There was no significant difference in growth in any of the WBA experimental conditions

comparing assay results for volunteers who were IGRA positive or negative (4 and 3 respec-

tively; 1 not determined) (S1 Fig).

Discussion

We found that immune cells influence mycobacterial growth in the WBA assay, although the

relationship is complex, varying by cell type and by the presence or absence of rifampicin.

Without rifampicin, innate immune cells controlled Mtb growth, with neutrophils having the

greatest impact (i.e. their depletion lead to the greatest enhancement of growth). In human

tuberculosis, neutrophils are the most abundantly infected phagocytic cell in respiratory sam-

ples [7]. The depletion of neutrophils from ex vivo whole blood has previously been found to

enhance the growth of Mtb, and as in our study, neutrophilic depletion had a greater impact

on Mtb growth than the depletion of other immune cell subtypes [8, 9]. However the role

Fig 1. Effect of selective cell subtype depletion on Mtb growth in the presence or absence of low-dose rifampicin.

Neutrophils are CD66b+ cells. Dendritic cells are CD11c+ cells. WBA values were compared between undepleted

culture and selective cell depletion culture using a paired-sample t-test. Error bar represents one SD. � for< 0.05,
�� for< 0.01, ��� for< 0.001, ���� for< 0.0001.

https://doi.org/10.1371/journal.pone.0216616.g001
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neutrophils play in TB disease is complex and has been associated with “failed immunity” and

the excessive pathology of tuberculosis [10, 11]. Whilst neutrophils may act to control early

infection through antigen presentation and the ensuing initiation of adaptive immunity, neu-

trophils undergo necrotic cell death brought about by virulent Mtb infection, are phagocytosed

by macrophages, and it has previously been shown in a whole blood model that it is this pres-

ence of necrotic neutrophilic debris (as opposed to intact neutrophils) which propagate and

enhance Mtb replication [9, 10, 12]. CD11c+ DCs, having differentiated from inflammatory

circulating monocytes, have been shown to enter the lung parenchyma where they acquire

then transport intact Mtb to draining lymph nodes, where they have a well-established role in

initiating adaptive immunity [13–15]. The corollary of this study’s finding of increased Mtb

growth in the absence of myeloid (CD11c+) DCs is that DCs in whole blood result in the

reduced survival of Mtb. This has been previously shown in cell culture assays, but not in a

whole blood culture model [16, 17]. Circulating monocytes were shown to have modest effects

on controlling replication. This is consistent with the finding that monocytes themselves may

not have a significant function in the control of Mtb, however their function of differentiating

into tissue-resident macrophages and DCs in vivo contributes significantly to the control of

Mtb [14, 18, 19]. Consistent with our findings that NK cells can control Mtb in WBA, the

depletion of NK cells in PBMCs taken from blood of healthy TB exposed individuals, and

depletion of the cell type in mice post BCG vaccination resulted in an increased Mtb burden,

an impact likely to have been driven by the effect NK cells have on specific T cell responses

against Mtb [20, 21]. Additionally recent evidence shows that despite being categorised as part

of the innate immune system, NK cells have memory (after vaccination or after prior Mtb

exposure), and these memory-NK cells can expand to provide protection against Mtb infec-

tion[22, 23]. In our study there was no difference seen between IGRA positive and negative

individuals, however the numbers of participants were small and therefore not adequately

powered to investigate this possibility.

Our findings agree with a previous WBA study where the depletion of CD4+ or CD8+ T-

cells individually or together had no impact on control of virulent strains of Mtb (although

depletion did have an effect on control of an attenuated stain) [24]. In another WBA study

CD4+ T-cells depletion was shown to have affected the growth of the less virulent BCG organ-

ism, and this too only in tuberculin positive children and not those who were tuberculin nega-

tive [25]. We saw no difference in IGRA positive and negative individuals in our study.

Our results suggest that neutrophils and monocytes limit the bactericidal activity of rifam-

picin in the WBA assay (cell depletion increased the observed bactericidal activity of rifampi-

cin). This may seem paradoxical given the observation that these cells controlled bacterial

growth in the absence of rifampicin. A possible explanation is that these innate immune cells

phagocytose Mtb and thereby protect from exposure to cidal levels of drug; or the intracellular

environment induces the bacteria to enter a dormant state, with less metabolic activity and

greater drug tolerance [26, 27].

Our findings support the belief that the WBA assay measures, at least in part, the sterilising

activity of drugs against dormant, intracellular bacteria [28]. This could be an advantage com-

pared to the standard early bactericidal activity (EBA) paradigm, currently used as the initial

screen for cidal activity of new TB drugs and which measures predominantly extracellular

drug activity [29]. Furthermore the assay may have the potential to assess drugs which target

host immune pathways, an area of increasing interest [1]. In particular WBA might be a good

platform to test drugs which affect immuno-metabolic pathways involved in autophagy, which

is a key mechanism through which phagocytic cells induce intracellular killing of Mtb [30].

Whole-blood mycobacterial growth-inhibition assays (MGIA) such as WBA are also a good

paradigm for testing the functional efficacy of Mtb vaccination and have been applied in this
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way in one clinical trial [5, 31, 32]. The most obvious limitation of the WBA paradigm is the

uncertainty over which findings translate to in vivo outcomes. Key cell types for TB control in

vivo, such as macrophages (long considered to be the primary niche for Mtb residence and

replication), MAIT (mucosal associated invariant T) cells and γδ-T cells are scarce in periph-

eral blood [33–35] and the immune response in WBA is not representative of immune

response at a tissue level [18].

The limitations of this study are the small sample size (although it was sufficient to demon-

strate significant effects of depletion of some cell types); the lack of power to examine effect

modification by IGRA status; the inability to deplete all cell types known to be relevant for TB

control; and that we examined depletion of single cell types but not multiple cell-type deple-

tions. Nevertheless, we found evidence to indicate that immune cells make an important con-

tribution to cidal activity in the WBA assay. This assay may therefore be of value as an initial

screening test for putative host-directed therapy drugs prior to their evaluation in definitive

clinical trials.
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