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Abstract: This study aimed to explore novel inertial measurement unit (IMU)-based strategies to
estimate respiratory parameters in healthy adults lying on a bed while breathing normally. During the
experimental sessions, the kinematics of the chest wall were contemporaneously collected through
both a network of 9 IMUs and a set of 45 uniformly distributed reflective markers. All inertial
kinematics were analyzed to identify a minimum set of signals and IMUs whose linear combination
best matched the tidal volume measured by optoelectronic plethysmography. The resulting models
were finally tuned and validated through a leave-one-out cross-validation approach to assess the
extent to which they could accurately estimate a set of respiratory parameters related to three
trunk compartments. The adopted methodological approach allowed us to identify two different
models. The first, referred to as Model 1, relies on the 3D acceleration measured by three IMUs
located on the abdominal compartment and on the lower costal margin. The second, referred to
as Model 2, relies on only one component of the acceleration measured by two IMUs located on
the abdominal compartment. Both models can accurately estimate the respiratory rate (relative
error < 1.5%). Conversely, the duration of the respiratory phases and the tidal volume can be more
accurately assessed by Model 2 (relative error < 5%) and Model 1 (relative error < 5%), respectively.
We further discuss possible approaches to overcome limitations and improve the overall accuracy of
the proposed approach.

Keywords: breathing; IMUs; optoelectronic plethysmography; respiratory rate; tidal volume; accuracy

1. Introduction

The development of wearable technology for the assessment of respiratory activity has
grown in the last decades due to the broad range of available sensors [1–4]. Lightweight
sensors and electronics embedded in customized gear (e.g., pants and t-shirts) or accessories
(e.g., belts and bras) are designed to gather relevant information from the users to monitor
their respiratory activity and recognize early signs of abnormal physiological conditions,
such as cardiac or respiratory arrest [4], chronic respiratory diseases [5,6], or other psycho-
physiological stressors [7].

Several recent review studies provide an overview of the currently available wearable
technology to assess the most relevant features of respiratory mechanics. Among those
reviews, Dinh and colleagues provided an up-to-date summary of stretchable respiration
sensors based on different sensing principles [1]. The authors noted that the integration of
sensors with other electronics and power sources into a single wearable device represents
acurrent challenge that needs to be addressed. In addition, they noted that additional effort
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is required to improve the stretchability and wearability of respiration sensors without
causing performance degradation. Soon and colleagues provided an overview of devices
that are currently available on the market and designed for the remote monitoring of
vital signs, including respiration, particularly in outpatient settings [3]. These authors,
in accordance with other ones [4], noted that the routine use of these devices, in both
outpatient and healthcare settings, is still limited. In addition, they pointed out that
the literature lacks solid evidence to verify the effectiveness of some of the reviewed
products. Massaroni and colleagues focused their attention on contact-based methods
for measuring the respiratory rate [7]. The authors identified a wide taxonomy of the
available technology and provided a detailed analysis of their metrological properties,
characteristics, and potential applications. Finally, in one of our recent works, we collected
research that supports the use of wearable devices to continuously monitor tidal volume
in both daily activities and clinical settings [8]. We concluded that some of the proposed
methodological approaches (i.e., optical, resistive, and inductive stretch sensors) have been
widely investigated in the literature, while others are at an early stage. However, in both
cases, the accuracy of the proposed wearable solutions might not be sufficient. Overall,
current evidence does support the use of wearable technology to monitor respiratory
activity, particularly in subjects affected by respiratory diseases outside the clinical setting.
However, additional effort is required to overcome the limits documented in earlier reports.

The use of inertial measurement units (IMUs) has become popular in all branches
of human biomechanics, such as in sports [9,10], clinical applications [11,12], biomedical
engineering [13,14], and virtual reality [15,16]. These sensors are typically composed of a
multi-axial accelerometer and a multi-axial gyroscope; thus, they are sensitive to the linear
acceleration and angular velocity of the body segment they are attached to. During the
last two decades, several studies have investigated the accuracy of different algorithms,
parsing the output (acceleration and/or angular velocity) of one or more IMUs to assess
respiratory activity as well.

Authors have adopted a single dual- or tri-axial accelerometer as an inclinometer
to reconstruct the slow angular movement of either the chest or the abdomen and to
extract some of the features (i.e., respiratory rate and tidal volume) related to respiratory
activity [17–19]. Others determined the respiratory-related variation in the trunk orientation
by fusing signals from a tri-axial accelerometer and a tri-axial gyroscope by means of a
Kalman filter [20–23]. These approaches focus on the variation in the trunk orientation
determined by the respiratory activity based on the evidence that the respiratory-related
magnitude of the inertial acceleration is relatively small compared to a change in the
gravitational components. Other authors analyzed the frequency content of signals from
a single dual- or tri-axial accelerometer located on either the chest or the abdomen to
estimate the respiratory rate [24–26]. Fekr and colleagues adopted a similar sensory setup
(i.e., one tri-axial accelerometer located on the sternum) to reconstruct respiratory patterns
and, accordingly, recognize respiratory disorders [27,28]. Two studies dealt with the use
of either two tri-axial accelerometers or two tri-axial IMUs located on the anterior and
posterior chest walls [29,30]. By using differential approaches, these authors estimated the
respiratory-related chest expansion by reducing the effects of the translational movements
of the user, particularly during dynamic motor tasks. Finally, De la Fuente and colleagues
adopted a network of 13tri-axial accelerometers to develop an automatic strategy revealing
costal-superior and costal-abdominal respiratory patterns [31].

Based on the current literature, the main strengths of an IMU-based approach to
monitoring respiratory activity are: (i). the low cost of sensors that are widely available on
the market; (ii). their low power consumption, allowing for a long lifespan between charges;
(iii). the inherent lightweight and small dimensions of hardware modules embedding
sensors, a microcontroller, power supply, and memory and/or wireless data transmission
technologies, which make these devices unobtrusive and potentially powerful for human
wellbeing monitoring during daily activities; and iv. the respiratory activity assessment
through IMUs can be considered one of the most convenient and noninvasive strategies to
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monitor subjects, such as children, who lack cooperation when undergoing mildly invasive
approaches, such as spirometry.

Despite the mentioned, though non-exhaustive, array of studies dealing with IMU-
based approaches to monitoring respiratory activity, a wide variability can be found
among them. This variability mainly refers to the adopted sensors (e.g., accelerometers
vs. gyroscopes), the sensory location (e.g., chest vs. abdomen and sternum vs. left costal
margin), the algorithms for the assessment of the most relevant features of breathing
patterns (e.g., trigonometric vs. Kalman filter-based data fusion), and the application-
related approach (e.g., static vs. dynamic motor tasks and single vs. differential sensory
strategy). In addition, some of the proposed strategies have been roughly validated, so the
outcomes of these studies appear to be quite preliminary [7,8].

The aim of this study was to evaluate the feasibility of an IMU-based strategy to
estimate respiratory patterns in subjects lying on a bed. In this respect, our study was
designed to overcome some of the main methodological limits of the current literature
(e.g., limited number of enrolled subjects, subject-specific tuning of algorithms, and different
experimental setups) to achieve robust results that unequivocally support or reject the
use of IMUs for the estimation of respiratory patterns. In addition, since our results
corroborated the former hypothesis (i.e., feasibility of an IMU-based strategy to estimate
respiratory patterns), the accuracy that we achieved with the proposed approach represents
a benchmark to compare other algorithms. In the long term, we would like to contribute
to the development of an alternative, noninvasive methodology to monitor significant
variations in respiratory activity (e.g., changes in lung elasticity and progression of chronic
respiratory diseases) in bedridden patients.

To achieve this multifaceted goal, our work was structured in two steps. During the
first step, we analyzed the kinematics captured by a network of 9IMUs and 45 reflective
markers equally distributed on the anterior wall of the trunk of subjects lying on a bed
(Sections 2.1–2.3). Then, we estimated the respiratory patterns by means of optoelectronic
plethysmography and used them as reference variables (Section 2.4). After that, through
principal component analysis (PCA), we searched for the minimal set of signals coming
from the network of IMUs where there was a match with linear combinations for the
respiratory patterns of the whole chest wall, the rib cage compartment, and the abdominal
compartment as a function of time (Section 2.5). This last task was based on the evidence
that signals collected by an IMU as a function of time likely follow chest movements during
respiratory activity [17–19]. The second step consisted in developing a model relating the
retained minimal set of signals coming from the network of IMUs to respiratory patterns.
This model was finally validated by using the leave-one-out cross-validation (LOOCV)
procedure (Section 2.6). Notably, the adopted two-step strategy was designed to prevent
any significant effect of anatomical dimorphisms due to gender and subject-specific features
on the accuracy of the estimates.

2. Materials and Methods
2.1. Enrolled Participants

Eighteen healthy young adults were enrolled in this study. Participants had no
history of diseases (e.g., respiratory, postural, or neurological) that could interfere with
the experimental sessions. Age and anthropometrical features are reported in Table 1. All
participants signed an informed consent form before starting the experimental sessions.
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Table 1. Age and anthropometrical features of enrolled participants (mean ± standard deviation).
The p-value is the outcome of the unpaired t-test comparing the effect of the factor gender on the
independent variables. The p-values are highlighted in bold when reaching significance (p < 0.05).

7 Female 11 Males p-Value

Age (years) 32.7 ± 7.7 31.3 ± 7.3 0.696
Body mass (kg) 57.3 ± 9.0 74.0 ± 11.4 0.005

Height (m) 1.66 ± 0.05 1.76 ± 0.06 0.002

2.2. Experimental Setup and Protocol

The participants were asked to lie supine on a bed at rest while the respiratory move-
ments of the chest and abdomen were contemporaneously recorded by an optoelectronic
system (8-camera optical system Smart-DX, BTS Bioengineering, Milano, Italy) and nine
IMUs (Xsens wireless Motion Tracker Awinda system [32]), as depicted in Figure 1. A set
of 45 reflective markers (diameter of 10 mm) were located on the anterior wall of the trunk,
from the collarbone to the segment connecting the anterior iliac spines. The location of the
marker set likely resembled that reported in earlier studies dealing with optoelectronic
plethysmography [33–35]. Nine of the markers were attached in the case of the nine IMUs
(Figure 1). The axes of all IMUs were oriented as follows: the x-axis ran longitudinally,
towards the head; the y-axis was the latero-lateral axis, towards the right side; and the
z-axis was arranged according to the right-hand role (vertical, upward orientated). Data
collected by the optoelectronic system and the IMUs were digitalized at 50 Hz and 100 Hz,
respectively.
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Figure 1. The left panel (a) shows the grid adopted to uniformly span the anterior trunk wall with
reflective markers. Horizontal lines are craniocaudally identified as follows: A connects the lateral
ends of both clavicles, B is equally distant from A and C, C connects the nipples, D crosses the xiphoid
process, E connects the lower costal margins, F crosses the umbilicus, and G connects the anterior
iliac spines. Vertical lines are identified as follows: K and O cross the right and left anterior iliac
spines, respectively; M is the midline crossing the umbilicus; L and N cross the nipples; and J and
Pare right and left midaxillary lines, respectively. The right panel (b) shows the adopted marker set.
Note that markers are located on the nodes of the grid shown in the left panel except for those related
to line A, which are positioned along the clavicles. The panel also shows the location of the nine
IMUs (orange boxes) and their orientation (see x- and y-axes in the bottom right corner).
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During the experimental sessions, participants were asked to breathe normally fora
2 min time window. At the beginning of each trial, IMU1 (Figure 1) was delicately beat
about three times to induce quasi-impulsive variations in the kinematics measured by
the optoelectronic system and the inertial sensors. These impulsive signals were used
for offline synchronization of both data streams, as described elsewhere [36] and in Sec-
tion 2.3. For each participant, data related to 2 repetitions were collected. The time gap
between the repetitions was about 2 min. Overall, we collected 36 pairs of data streams
(i.e., 18 subjects × 2 repetitions).

The study was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the Ethics Committee of the Scuola Superiore Sant’Anna, Pisa
(IT) (protocol code: 01/2021; date of approval: 11 February 2021).

2.3. Pre-Processing

Both the 3D kinematics of the 45 reflective markers and the output of each of the 9IMUs
(3 linear accelerations and 3 angular velocities) were pre-processed offline according to the
following pipeline: i. gap filling, if any; and ii. zero-lag, low-pass filtering (Butterworth, 4th
order) with cut-off at 10 Hz. Notably, although the literature agrees on the evidence that
most of the power spectral density of chest motion kinematics while breathing normally
falls within 1.5–2 Hz [18,27,30], we decided to account for a wider frequency bandwidth,
i.e., 0–10 Hz, to prevent any lack of information that could negatively affect the outcome of
the PCA.

After that, spline interpolation was applied to the 3D kinematics of the reflective
markers to virtually double its sample rate and match that of the IMUs (i.e., 100 Hz). This
step was required to minimize the error associated with the estimated time lag during the
time alignment procedure.

Data from the camera system and the IMUs were time-aligned by assessing the time
lag between them. Specifically, we computed the cross-correlation between the second
time derivative of the vertical component of the marker on IMU1 and the Z-component
of the acceleration detected by the same IMU within a time window including the quasi-
impulsive artifacts induced by the beats. The time lag between the data streams coincided
with the abscissa of the maximum of their related cross-correlation function.

2.4. Assessing the Tidal Volume as a Function of Time by Optoelectronic Plethysmography

The approach to estimating tidal volume as a function of time based on the 3D kine-
matics of the trunk, namely, optoelectronic plethysmography, is widely described in earlier
literature [33,34]. Briefly, this method consists of approximating the chest wall in a series of
non-overlapped triangles in which the vertexes coincide with three neighboring markers.
Then, the frame-by-frame variation in chest wall volume, namely, VCW, is computed as the
summed contribution of all volumes enclosed by these triangles.

With respect to our study, we assumed that the respiratory activity was mostly reflected
in the movement of the frontal view of the chest, since the posterior wall was constrained
due to the subject’s supine position on the bed. In addition, we assumed that the bias due
to the thickness of the IMUs (~13 mm) on the vertical component of the related markers
did not substantially alter the tidal volume estimation. Then, based on our marker set,
we defined 64 non-overlapped triangles that were symmetrically arranged with respect
to the midline (vertical line M in Figure 1). After that, VCW was estimated as the volume
enclosed by all these triangles and split with respect to the rib cage (where VRC is the
volume enclosed between lines A and E) and the abdomen (where VAB is the volume
enclosed between lines E and G) compartments.

2.5. Principal Component Analysis (PCA) of IMU Outputs

The PCA was run to reduce the dimensionality of the input dataset consisting of
the output from the IMUs. In particular, it was carried out to identify a subset of IMU-
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related homologous signals (i.e., either accelerations or angular velocities) where a linear
combination allowed for an optimal match with VCW, VRC, and VAB.

For each subject and each trial, we initially defined eight data matrices by pooling
homologous signals related to all IMUs as follows:

AX = [A1
X, A2

X, . . . , A9
X], (1)

AY = [A1
Y, A2

Y, . . . , A9
Y], (2)

AZ = [A1
Z, A2

Z, . . . , A9
Z], (3)

AToT = [A1
ToT, A2

ToT, . . . , A9
ToT], (4)

ΩX = [Ω1
X, Ω2

X, . . . , Ω9
X], (5)

ΩY = [Ω1
Y, Ω2

Y, . . . , Ω9
Y], (6)

ΩZ = [Ω1
Z, Ω2

Z, . . . , Ω9
Z] (7)

ΩToT = [Ω1
ToT, Ω2

ToT, . . . , Ω9
ToT] (8)

where:

- Aj
i and Ωj

i represent the ith component (i.e., X, Y, or Z components) of acceleration and
angular velocity, respectively, measured by the jth IMU (j = 1, 2, . . . , 9);

- Aj
ToT and Ωj

ToT represent the Euclidean norm of the three components of the accelera-
tion and angular velocity, respectively, related to the jth IMU.

Each of these eight data matrices was first z-scored and then parsed by the PCA.
Briefly, the PCA projects the initial dataset (e.g., AX, AY, AZ, and AToT) in a new domain of
orthogonal (i.e., uncorrelated) variables, namely, the principal components (PCs), through
a squared weight coefficient data matrix reflecting the degree of association between the
initial data and PCs [37]. Next, we retained the PCs that had the best match with VCW,
VRC, and VAB according to the Pearson correlation coefficient ($). The whole process is
described in Figure 2.

After that, we pooled data among the subjects and trials and identified the subset
of IMUs sharing more variance with the retained best-matching PCs, i.e., those more
correlated with respiratory patterns (i.e., VCW, VRC, and VAB). Specifically, we assumed
that the outcome of an IMU was significantly associated with one of the retained best-
matching PCs when the related absolute weight coefficient, as averaged across participants
and trials, was ≥0.32. This threshold implies that the observed variable (i.e., output of the
IMU) shared more than 10% of its variance with that PC [37].

Finally, for all subjects and all trials, the signals related to the selected subset of IMUs
and the VCW, VRC, and VAB values as a function of time were low-pass filtered (zero-lag,
Butterworth, and 4th order) with a cut-off at 2.5 Hz, demeaned, and used to develop and
validate a model relating IMU outputs to tidal volumes.
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Figure 2. Summary of the algorithm that we used to identify the principal components (PCs) that best
matched the time course of respiratory volumes (i.e., VCW, VRC, and VAB). For this representative
example, all data refer to the first repetition of subject #5. In addition, data reported in Panel (A) were
computed from matrix AX. The red box in Panel (A) identifies the PC that best matches (in this
representative case) respiratory volumes according to the Pearson correlation coefficient. The volumes
shown in Panel (B) are shifted along the vertical axis to set their minimum values in the whole data
stream to 0. The valleys and peaks refer to onset of the inhalation and exhalation phases, respectively.
The data reported in Panel (C) were z-scored (see apex * in the legend) to make the comparison
straightforward.

2.6. Developing IMU-Based Models for Tidal Volume Estimation

In this study, we assumed that a linear combination of signals collected by a minimal
set of IMUs can accurately estimate respiratory volumes, in accordance with previous
findings [17–19]. We adopted the LOOCV strategy to test the ability of the designed model
to predict new data that were not used to tune the model itself [38]. According to LOOCV,



Sensors 2022, 22, 2185 8 of 20

datasets (i.e., both volumes and retained IMUs outputs) related to 17 out of 18 subjects
were selected to train the model. The training process consisted in finding optimal n-tuples
of model coefficients that minimized the residuum between the measured and estimated
volumes across those subjects and throughout the entire time window. After that, the
optimal n-tuples of the model coefficients were used to estimate the respiratory volumes
related to the 18th subject for both repetitions.

For both the measured and estimated volumes, we identified the relative minima and
maxima within the entire time window, which represented the onsets of the inhalation and
exhalation phases, respectively. Based on these time events, the respiratory rate (where
RR is the number of respiratory cycles per minute), the duration of the inhalation and
exhalation phases (DI and DE, respectively), and the inhaled and exhaled volumes (VI and
VE, respectively) for the chest wall, ribcage, and abdomen compartments were computed
and averaged across cycles. Finally, the relative error between measured and estimated
respiratory variables (i.e., ∆RR%, ∆DI%, ∆DE%, ∆VI%, and ∆VE%) was computed and
analyzed across conditions (see Section 2.7).

The next paragraphs provide a detailed description of both the algorithm that we used
to develop the model relating the tidal volume to the output of the retained IMUs and
the strategy that we used to validate it through the LOOCV. For the sake of simplicity, the
following sections report the procedure adopted for the estimation of VCW only. The same
procedure was separately implemented for VRC and VAB.

The relationship between the estimated chest wall volume and signals collected by the
minimal set of IMUs (outcome of the PCA) is represented by the following equation:

ṼCW(t) = m ·
(

kCW
1 · var1(t) + kCW

2 · var2(t) + . . . + kCW
n · varn(t)

)
(9)

where:

- m refers to the body mass of the subject and was introduced to account for the
monotonic relationship between body mass and volume capacity [39,40];

- t refers to the time;
- ṼCW(t) is the estimated chest wall volume as a function of time;
- var1(t), var2(t), and varn(t) represent the n-tuple of signals collected by the retained mini-

mal set of IMUs as the outcome of the PCA, where these variables are subject-dependent;
- k1

CW, k2
CW, and kn

CW, namely, the model coefficients, are the coefficients of the linear
model, where the training procedure consisted of tuning these coefficients.

A system of 34 (i.e., 2 repetitions × 17 subjects) non-linear equations was then formu-
lated as follows:

RMSDi,j = rms
(

Vi,j
CW(t)− Ṽ

i,j
CW(t)

)
(10)

where:

- Vi,j
CW(t) and Ṽ

i,j
CW(t) are the measured and estimated VCW, respectively, for the ith

subject and jth repetition;
- RMSDi,j is the root mean square (rms) of the difference between the measured and

estimated VCW for the ith subject and jth repetition.

After that, a minimum search algorithm (see fminsearch in Matlab) was run to find the
optimal n-tuple for the model coefficients (i.e., k1

CW, k2
CW, . . . , and kn

CW) that minimized
the norm of the vector [RMSD1,1, RMSD1,2, . . . , RMSD17,1, and RMSD17,2].

Once the optimal n-tuple for the model coefficients (i.e., k1
CW, k2

CW, . . . , and kn
CW)

was found, it was used to estimate the volume of the 18th subject for both repetitions. This
process was complemented by a comparison of respiratory parameters (i.e., the respiratory
rate and inhalation and exhalation durations and volumes) between the values obtained
through optoelectronic plethysmography and those estimated by the model in terms of
relative error percentage (i.e., ∆RR%, ∆DI%, ∆DE%, ∆VI%, and ∆VE%).
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2.7. Statistical Analysis

The mean and standard deviation were used as the main descriptive statistics to
refer to the central tendency and dispersion of all independent variables (i.e., age and
anthropometrical features of the enrolled participants, outcomes of the PCA analysis,
respiratory variables, and errors). After that, inferential statistics, especially unpaired t-test
and analysis of variance (ANOVA) with repeated measures, were used to investigate the
effects of gender, IMU-related outputs, compartments, and models on all independent
variables. Notably, when the data distribution of independent variables did not meet
the requirements for a normal distribution (Kolmogorov–Smirnov normality test) and
homogeneity of variance (Levene’s test), these statistical tests were carried out on the Log10
transformed data.

The significance for all statistical tests was set at p < 0.05. The data analysis was carried
out using Matlab (The MathWorks, Inc., Natick, MA, USA).

3. Results

The enrolled participants consisted of 7 females and 11 males with a comparable age
between groups, although, as expected, the males were taller and heavier than their female
counterparts (Table 1).

3.1. Outcomes of the PCA
3.1.1. Identification of Homologous Data Matrices That Best Match PCs with the
Respiratory Volumes

The outcomes of the PCA in terms of the correlation coefficients between the best-
matching retained PCs and respiratory volumes (i.e., VCW, VRC, and VAB) are reported in
Tables 2–4, respectively. The results revealed that the PCs obtained by parsing acceleration
matrices (i.e., AX, AY, AZ, and AToT) were well correlated (ρ > 0.71) with VCW, VRC, and
VAB. Conversely, the correlations between volumes and PCs related to the angular velocity
matrices (i.e., ΩX, ΩY, ΩZ, and ΩToT) were typically poor (ρ < 0.43). Notably, no differences
between the groups of subjects (i.e., F vs. M) were observed.

Based on these findings, we investigated possible differences in terms of ρ among
the acceleration data matrices (i.e., AX, AY, AZ, and AToT) only (the angular velocity
data matrices were excluded from further analysis since they correlated poorly with the
respiratory volumes, as shown in Tables 2–4). This analysis was undertaken to identify
which among the homologous acceleration data matrices (i.e., AX, AY, AZ, and AToT)
more accurately reproduced the respiratory patterns. The outcome of one-way ANOVA
with repeated measures revealed that the distribution of ρ reported in Tables 2–4 was
significantly (p < 0.001) different across the acceleration data matrices (i.e., AX, AY, AZ,
and AToT). In this respect, Tukey’s post hoc test highlighted that ρ obtained by processing
AZ was lower than the values related to the other acceleration data matrices (i.e., AX, AY,
and AToT).

Table 2. Pearson correlation coefficient between best-matching retained PCs and VCW

(mean ± standard deviation). The p-value is the outcome of the unpaired t-test comparing the
effect of the factor gender on the independent variables. The p-values are highlighted in bold when
reaching significance (p < 0.05).

Input Data Matrix Female Males p-Value

AX 0.87 ± 0.10 0.85 ± 0.09 0.707
AY 0.86 ± 0.12 0.93 ± 0.06 0.086
AZ 0.75 ± 0.11 0.80 ± 0.09 0.210

AToT 0.90 ± 0.09 0.92 ± 0.05 0.443
ΩX 0.38 ± 0.13 0.32 ± 0.13 0.191
ΩY 0.36 ± 0.13 0.36 ± 0.09 0.914
ΩZ 0.27 ± 0.10 0.29 ± 0.06 0.480

ΩToT 0.43 ± 0.11 0.39 ± 0.07 0.254
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Table 3. Pearson correlation coefficient between best-matching retained PCs and VRC

(mean ± standard deviation). The p-value is the outcome of the unpaired t-test comparing the
effect of the factor gender on the independent variables. The p-values are highlighted in bold when
reaching significance (p < 0.05).

Input Data Matrix Female Male p-Value

AX 0.84 ± 0.11 0.78 ± 0.09 0.124
AY 0.85 ± 0.12 0.83 ± 0.0.8 0.607
AZ 0.71 ± 0.15 0.71 ± 0.12 0.870

AToT 0.86 ± 0.12 0.83 ± 0.09 0.395
ΩX 0.37 ± 0.14 0.30 ± 0.13 0.201
ΩY 0.33 ± 0.14 0.36 ± 0.08 0.626
ΩZ 0.26 ± 0.09 0.26 ± 0.06 0.788

ΩToT 0.41 ± 0.10 0.37 ± 0.07 0.204

Table 4. Pearson correlation coefficient between best-matching retained PCs and VAB

(mean ± standard deviation). The p-value is the outcome of the unpaired t-test comparing the
effect of the factor gender on the independent variables. The p-values are highlighted in bold when
reaching significance (p < 0.05).

Input Data Matrix Female Male p-Value

AX 0.84 ± 0.13 0.86 ± 0.09 0.534
AY 0.87 ± 0.11 0.93 ± 0.08 0.084
AZ 0.74 ± 0.11 0.86 ± 0.08 0.050

AToT 0.89 ± 0.14 0.93 ± 0.07 0.297
ΩX 0.38 ± 0.11 0.33 ±0.12 0.204
ΩY 0.39 ± 0.10 0.36 ± 0.09 0.394
ΩZ 0.27 ± 0.11 0.30 ± 0.06 0.397

ΩToT 0.42 ± 0.10 0.39 ± 0.07 0.380

The variance explained by the best-matching retained PCs greatly changed based on
the input data matrix and, in some cases, with respect to gender (Figure 3). Specifically, the
explained variance was higher for the acceleration data matrices (i.e., AX, AY, AZ, and AToT)
than for the data matrices accounting for angular velocity (i.e., ΩX, ΩY, ΩZ, and ΩToT).
Specifically, for the acceleration data matrices (i.e., AX, AY, AZ, and AToT), the explained
variance averaged across subjects was typically close to or greater than 50% for AX, AY, and
AToT, while it dropped to approximately 30% or less for AZ. For ΩX, ΩY, ΩZ, and ΩToT, the
explained data variance was, on average, always lower than 32%. For a limited set of data
matrices, we also observed significant differences between females and males (p < 0.05 for
the outcome of the paired t-test).

To summarize, the outcome of the PCA on the IMU outputs revealed that the linear
accelerations as a function of time, especially those referring to AX, AY, and AToT, had the
best associations with the respiratory patterns related to all compartments (i.e., VCW, VRC,
and VAB) assessed by ρ (Tables 2–4). In this respect, the data variance explained by the
best-matching retained PCs was, on average, about 50% (Figure 3).
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Figure 3. The three panels depict the variance explained by the best-matching retained PCs related
to volumes VCW, VRC, and VAB, respectively. Bars and error bars respectively refer to mean and
standard deviation of the explained variance across subjects. Data reported in magenta and blue
refer to male and female. The label * represents the outcome of the unpaired t-test when significant
(i.e., p < 0.05).

3.1.2. Selecting the Minimum Set of IMUs

To define the minimal set of IMUs, we analyzed the weight coefficients relating the
best-matching retained PCs to the IMU outputs and identified those ≥0.32. The results
reported in Figure 4 highlight a significant association between both VCW and VRC and
the norm of the 3D acceleration measured by IMU7 and IMU9. In addition, a significant
association was also observed between VAB and the norm of 3D acceleration assessed by
IMU5, IMU7, and IMU9. Alternatively, VAB, VCW, and VRC were significantly associated
with the Y-component of the acceleration measured by IMU7 and IMU9.

Concerning the weight coefficients obtained after parsing AX, the results showed that
their average across subjects was always below the threshold (i.e., 0.32), suggesting that
the X-component of the acceleration of all IMUs on average shared less than 10% of the
variance with the retained PCs (Figure 4).

Overall, the results revealed that two minimal sets of IMUs are expected to accurately
estimate the respiratory patterns as a function of time. The first set accounted for two IMUs
that were laterally located on the abdominal compartment (see IMU7 and IMU9 in Figure 1)
and one IMU centrally located on the segment connecting the lower costal margins (see
IMU5 in Figure 1). According to this configuration, the IMUs were expected to collect
all acceleration components to finally estimate AToT. The second set accounted for only
two IMUs that were laterally located on the abdominal compartment (see IMU7 and IMU9
in Figure 1) and designed to collect the Y-component of the acceleration.
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where: 
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Figure 4. The subplots show the weight coefficients relating IMU outputs (from left to right: homol-
ogous data matrices AToT, AX, and AY) to retained PCs that best match with respiratory patterns
(from top to bottom: VCW, VRC, and VAB). The bars and error bars refer to the averaged and standard
deviations across subjects, respectively.

3.2. Model Validation

According to the outcomes of the previous analysis, two alternative IMU-based models
appeared suitable to contemporaneously estimate the volumes related to all compartments
(i.e., VCW, VRC, and VAB). The first model (Model 1) relies on the 3D acceleration measured
by IMU5, IM7, and IMU9 as follows:

ṼCW(t) = m ·
(

kCW
7 · A7

ToT(t) + kCW
9 · A9

ToT(t)
)

ṼRC(t) = m ·
(

kRC
7 · A7

ToT(t) + kRC
9 · A9

ToT(t)
)

ṼAB(t) = m ·
(

kAB
5 · A5

ToT(t) + kAB
7 · A7

ToT(t) + kAB
9 · A9

ToT(t)
) (11)

where:

- m and t are body mass and time, respectively;
- A5

ToT, A7
ToT, and A9

ToT are the 3D acceleration measured by IMU5, IMU7, and IMU9,
respectively; and

- kCW
7 , kCW

9 , kRC
7 , kRC

9 , kAB
5 , kAB

7 , and kAB
9 are the model coefficients.

The second model (Model 2) relies on the Y-component of acceleration measured by
IM7 and IMU9, as follows:

ṼCW(t) = m ·
(

hCW
7 · A7

Y(t) + hCW
9 · A9

Y(t)
)

ṼRC(t) = m ·
(

hRC
7 · A7

Y(t) + hRC
9 · A9

Y(t)
)

ṼAB(t) = m ·
(

hAB
7 · A7

Y(t) + hAB
9 · A9

Y(t)
) (12)

where:

- m and t are body mass and time, respectively;
- A7

Y and A9
Y are the Y-components of the acceleration measured by IMU7 and IMU9,

respectively;
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- hCW
7 , hCW

9 , hRC
7 , hRC

9 , hAB
7 , and hAB

9 are the model coefficients.

For both models, we analyzed the accuracy of the estimation of the five respiratory
parameters (i.e., RR, DI, DE, VI, and VE) extracted from VCW, VRC, and VAB as a function
of time.

Analysis of Accuracy

Figure 5 shows a representative example of VCW, VRC, and VAB as a function of time
measured by optoelectronic plethysmography and estimated by both Model 1 and Model 2.
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Figure 5. From top to bottom, the panels show a representative example of the tidal volume measured
by optoelectronic plethysmography (black curves) and estimated by both Model 1 (red curves) and
Model 2 (green curves) and related to the chest wall (VCW), rib cage (VRC), and abdominal (VAB)
compartments.

Figure 6 reports the average and data dispersion for all respiratory parameters grouped
by compartment (i.e., VCW, VRC, and VAB) and gender (i.e., F and M) measured by opto-
electronic plethysmography.

Two-way ANOVA with repeated measures was carried out to investigate the effects
of gender (two levels: female and male) and compartment (three levels: CW, RC, and AB)
on the respiratory parameters (i.e., RR, DI, DE, VI, and VE) measured by optoelectronic
plethysmography (Figure 6). The results (Table 5) revealed that variables related to the
respiratory timing (i.e., RR, DE, and DI) were not different between the groups or among the
compartments. However, as expected, both factors significantly affected the volumes (factor
for gender: p-value = 0.002; factor for compartments: p-value < 0.001). In particular, the
values related to the inhalation and exhalation volumes were larger in males. In addition,
volumes related to sub-compartments RC and AB were smaller than those observed for the
whole CW compartment.
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Figure 6. From top to bottom, the panels show mean and one standard deviation error bar for all respi-
ratory variables (i.e., RR, DI, DE, VI, and VE), as measured by optoelectronic plethysmography, across
compartments (i.e., CW, RC, and AB) for both female and male groups (pink and blue, respectively).

Table 5. Outcomes of two-way ANOVA for the analysis of gender (2 levels: female and male) and
compartment (3 levels: CW, RC, and AB) on the respiratory parameters measured by optoelectronic
plethysmography (data reported in Figure 6). The p-values are highlighted in bold when reaching
significance (p < 0.05).

p-Values/Factor Gender Compartment

RR 0.259 0.990
DI 0.277 0.145
DE 0.285 0.633
VI 0.002 <0.001
VE 0.002 <0.001

Figure 7 shows the relative error percentage concerning all assessed respiratory vari-
ables (i.e., RR, DI, DE, VI, and VE) related to the IMU-based Model 1 and Model 2.

A three-way ANOVA with repeated measures was carried out to investigate the effects
of gender (two levels: female and male), compartment (three levels: CW, RC, and AB),
and model (two levels: Model 1 and Model 2) on the relative error percentages reported
in Figure 7. The outcome of this test (Table 6) revealed that the relative error percentage
related to RR was not significantly affected by the three factors (p > 0.05). In this respect,
both IMU-based models accurately estimated the respiratory rate with an absolute relative
error that was below 1.5% among groups and compartments when averaged across subjects.
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Notably, the gender factor did not significantly affect (p > 0.05) the relative error related to
any of the respiratory variables (i.e., ∆RR%, ∆DI%, ∆DE%, ∆VI%, and ∆VE%).
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Figure 7. From top to bottom, the panels show the error percentage (mean and one standard deviation
error bar) concerning all assessed respiratory variables (i.e., RR, DI, DE, VI, and VE) related to IMU-
based Model 1 (on the left) and Model 2 (on the right) for both female and male groups (pink and
blue, respectively).

Table 6. Outcomes of three-way ANOVA for the analysis of gender (2 levels: female and male),
compartment (3 levels: CW, RC, and AB), and model (2 levels: Model 1 and Model 2) on the relative
error percentage of respiratory parameters assessed with IMU-based models (data reported in
Figure 7). The p-values are highlighted in bold when reaching significance (p < 0.05).

p-Values/Factor Gender Compartment Model

∆RR% 0.209 0.808 0.179
∆DI% 0.881 0.026 <0.001
∆DE% 0.939 0.008 <0.001
∆VI% 0.470 0.267 <0.001
∆VE% 0.487 0.280 <0.001

On the other hand, the compartment and model factors significantly (p < 0.05) affected
the relative error related to the estimated duration of both the inhalation and exhalation
phases (i.e., ∆DI% and ∆DE%, as shown in Table 6). The values of ∆DI% and ∆DE%
related to Model 1 (CW: ∆DI% = 14.5 ± 8.2;∆DE% = −11.9 ± 6.3; RC: ∆DI% = 15.0 ± 8.6;
∆DE% = −13.0 ± 7.6; AB: ∆DI% = 14.4 ± 8.7; and ∆DE% = −11.6 ± 6.7) were typically
larger than those associated with Model 2 (CW: ∆DI% = 0.7 ± 5.0;∆DE% = −0.9 ± 4.2; RC:
∆DI% = 4.5 ± 10.4; ∆DE% = −4.2 ± 10.4; AB: ∆DI% = −0.8 ± 5.1; and ∆DE% = 0.6 ± 4.2).
Moreover, the absolute values of ∆DI% and ∆DE% were smaller for the abdominal com-
partment and increased for the chest wall and the rib cage.
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For the tidal volume estimation, the statistical analysis revealed that ∆VI% and ∆VE%
were significantly (p < 0.05) affected by the model factor. Specifically, the accuracy of
the relative error associated with Model 1 was typically about seven times smaller than
that related to Model 2 (Model 1: ∆VI% = 3.9 ± 41.2 and ∆VE% = 4.3 ± 41.0.9; Model 2:
∆VI% = 28.7 ± 56.4 and ∆VE% = 28.7 ± 56.1).

4. Discussion

This study evaluated novel IMU-based strategies to estimate respiratory parameters
in subjects lying on a bed while breathing normally.

Our approach consisted in contemporaneously collecting data from both a network of
9 IMUs and a set of 45 reflective markers uniformly distributed on the frontal chest wall
(Figure 1). The inertial kinematics were initially parsed by PCA to identify them inimum
set of signals and IMUs whose linear combination best matched the tidal volume measured
by optoelectronic plethysmography. The results (Tables 2–4; Figures 3 and 4) revealed that
linear accelerations as a function of time related to two different subsets of IMUs had the
best contemporaneous associations with tidal volumes related to the whole chest wall, rib
cage, and abdominal compartments.

Based on these findings, two different models were developed: i. the first model,
namely, Model 1, consisted of the linear combination of the 3D acceleration measured by
two IMUs laterally located on the abdominal compartment (see IMU7 and IMU9 in Figure 1)
and one IMU centrally located on the segment connecting lower costal margins (see IMU5
in Figure 1); ii. the second model, namely, Model 2, consisted of the linear combination of the
Y-component of two accelerometers symmetrically located on the abdominal compartment
(see IMU7 and IMU9 in Figure 1). The models were assumed to depend on the body mass of
the subjects. They were finally tuned and validated through a LOOCV approach to assess
the extent to which subject-independent models can accurately estimate five respiratory
parameters (i.e., RR, DI, DE, VI, and VE) related to three trunk compartments (i.e., the
whole chest wall, rib cage, and abdominal).

The results revealed that both models accurately estimated the respiratory rate with
an average relative error lower than 1.5% across subjects and conditions (Figure 7). The
duration of the inhalation and exhalation phases (i.e., DI and DE) was more accurately
assessed by Model 2, where the amplitude of the average relative error across subjects
was lower than 5% for all compartments (Figure 7). Finally, the values of the tidal volume
during the inhalation and exhalation phases were more accurately estimated by Model 1. In
this case, the absolute relative error averaged across subjects was lower than 5%, with no
difference among the compartments (Figure 7 and Table 6).

4.1. Achieved Accuracy

Several studies tested IMU-based strategies to assess respiratory parameters under
comparable experimental conditions. Certain authors estimated the respiratory rate from
the output of a tri-axial accelerometer by using different approaches and reported either
a relative error ranging from 0.53% [27,28] to 10% [26] or an absolute error falling in the
range 0.38–0.50 breaths/min [18,24]. Other authors working with the output of a gyroscope
reported an absolute error in the respiratory rate ranging from 0.3 to 7.9 breaths/min [21,22].
As far as the inhalation and exhalation volume estimation is concerned, earlier studies
mainly showed a correlation coefficient between the measured tidal volume and that
estimated through IMU-based methods (range: 0.77–0.96) as a function of time [18,27].
However, no information concerning breath-by-breath accuracy was reported.

Compared to results in the literature, our findings appear to be more accurate and may
even be further improved. The accuracy underlying the estimation of RR obtained in our study
(mean relative error equal to 1.5%, roughly corresponding to 0.24 ± 0.06 breaths/min) can be
considered comparable to or even better than that reported in previous papers [21,22,26–28].
In addition, the error related to the chest wall tidal volume estimation, which was lower than
5% on average, is equivalent to that achieved by the most accurate wearable-based strategies
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reviewed in our recent study [8]. In our opinion, this performance can be further improved by
adopting suitable expedients. For instance, it is worth noting that wearable-based strategies
for the assessment of respiratory parameters typically rely on a subject-specific calibration
procedure. Conversely, we evaluated the feasibility of subject-independent strategies to assess
the main respiratory parameters. In this respect, we envisage that a subject-specific tuning
of the models can result in improved accuracy for the estimation of respiratory parameters.
Moreover, the PCA-based approach that we used to identify a minimal set of signals and
IMUs can potentially represent another factor limiting the overall accuracy of the developed
models. Other data reduction strategies (e.g., factor analysis) or decomposition procedures
(e.g., wavelet decomposition) in conjunction with a non-linear combination of IMU signals
may allow for the development of more accurate models that match the tidal volume as a
function of time. Overall, the accuracy that we achieved when estimating RR can be considered
acceptable, but that related to the tidal volume is not yet in the range of ±3.5%, which has
been recommended for calibration checks during spirometry [41]. However, some of the weak
points of our methodological strategy can be strengthened, and this strategy deserves to be
further investigated to verify whether the overall accuracy can be improved.

4.2. Comparison of Model 1 and Model 2

One of the unexpected outcomes of our study was the identification of two alternative
models to contemporaneously estimate respiratory activity among trunk compartments:
the first relies on the 3D acceleration measured by three IMUs (i.e., IMU5, IMU7, and
IMU9 in Figure 1), and the second relies on the Y-component only of the acceleration
measured by two IMUs located on the abdominal compartment (i.e., IMU7 and IMU9). It
is worth remarking that there is a significant overlap between them; that is, both models
mostly rely on the respiratory-related movements of the abdominal compartment. This
result corroborates findings in the literature, where the authors documented a significant
association between respiratory movements of the abdominal compartment and the supine
position [42,43]. As such, others concluded that abdominal movements can be used to
represent diaphragmatic excursion in a healthy population while lying supine [35].

Model 1 resulted in a more accurate estimation of the tidal volume, whereas Model 2
provided a more accurate estimation of the duration of the inhalation and exhalation phases
(Figure 7 and Table 6). This evidence suggests that rib cage movements, in conjunction with
a more informative set of signals due to the 3D components of acceleration, can better fit
the tidal volume across compartments, as highlighted by Model 1 (i.e., VCW, VRC, and VAB;
see Figure 7). However, the 3D components of acceleration and the physiological phase
shift between rib cage and abdominal movements [44] would result in a superimposition of
components with a different frequency content (compare Model 1 and Model 2 in Figure 5)
that involve a fictive shift in either the peaks or valleys of the tidal volume as a function
of time. Accordingly, the onset of either the inhalation or exhalation phases in Model 1
would artificially appear to be premature or delayed. In turn, the duration of both the
inhalation and exhalation phases would be reciprocally biased (see Figure 7, Model 1, ∆DI%
and ∆DE%).

4.3. Limitations of This Study

The main limitation of our study is that the models that we developed to estimate the
respiratory parameters during normal breathing in a supine position cannot be generalized
to either different motor tasks or breath patterns. The performance of IMU-based strategies
to assess the main respiratory parameters decreases during dynamic tasks (e.g., walking,
running, and cycling) due to body motion artifacts [7,8]. In addition, pathological breath
patterns (e.g., bradypnea, tachypnea, Cheyne–Stokes, Kussmaul, and Biot’s) can be char-
acterized by arrhythmias or different movements of the chest wall compared to normal
breathing. Accordingly, in both cases, we envisage that the final models that we used
to estimate respiratory parameters might not be optimal to accurately assess respiratory
parameters in different experimental conditions. Despite this, the approach that we used
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to identify the minimal set of IMUs and how to relate their output to respiratory activity
deserves to be fully investigated and validated across different experimental conditions.

5. Conclusions

Our work suggests that the estimation of respiratory parameters for subjects in a
supine position can be accurately carried out by using a limited set of sensors mainly
located on the abdominal compartment and, if needed, on the lower costal margin. It
is worth remarking that the approach that we used to develop and validate IMU-based
models was quite conservative. Accordingly, we envisage that the achieved accuracy can
be further improved.

We also observed that different sensor configurations (i.e., two IMUs vs. three IMUs)
allowed for the contemporaneous estimation of respiratory parameters among trunk com-
partments with different accuracies. Although the sensory network incorporating three
IMUs may represent a suitable approach to take advantage of both the models, we believe
that the final design of any IMU-based system aimed at accurately assessing respiratory
activity should consider both the need to contemporaneously gather information among
all trunk compartments and other features, particularly those related to wearability and
appearance. In this respect, further research is required to identify an optimal compromise
between the accuracy of the measurement tool and usability.
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