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Mouse mast cells and mast cell proteases
do not play a significant role in acute tissue
injury pain induced by formalin
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Abstract

Subcutaneous formalin injections are used as a model for tissue injury-induced pain where formalin induces pain and

inflammation indirectly by crosslinking proteins and directly through activation of the transient receptor potential A1

receptor on primary afferents. Activation of primary afferents leads to both central and peripheral release of neurotrans-

mitters. Mast cells are found in close proximity to peripheral sensory nerve endings and express receptors for neuro-

transmitters released by the primary afferents, contributing to the neuro/immune interface. Mast cell proteases are found in

large quantities within mast cell granules and are released continuously in small amounts and upon mast cell activation. They

have a wide repertoire of proposed substrates, including Substance P and calcitonin gene-related peptide, but knowledge of

their in vivo function is limited. We evaluated the role of mouse mast cell proteases (mMCPs) in tissue injury pain responses

induced by formalin, using transgenic mice lacking either mMCP4, mMCP6, or carboxypeptidase A3 (CPA3), or mast cells in

their entirety. Further, we investigated the role of mast cells in heat hypersensitivity following a nerve growth factor

injection. No statistical difference was observed between the respective mast cell protease knockout lines and wild-type

controls in the formalin test. Mast cell deficiency did not have an effect on formalin-induced nociceptive responses nor nerve

growth factor-induced heat hypersensitivity. Our data thus show that mMCP4, mMCP6, and CPA3 as well as mast cells as a

whole, do not play a significant role in the pain responses associated with acute tissue injury and inflammation in the formalin

test. Our data also indicate that mast cells are not essential to heat hypersensitivity induced by nerve growth factor.
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Introduction

When tissue injury occurs, a cascade of responses includ-

ing inflammation and pain sensation is initiated to min-

imize harm and facilitate healing. Subcutaneous

formalin injection serves as a translational model for

tissue injury-induced pain where formalin causes injury

and inflammation by interacting with the transient

receptor potential (TRP) A11 and by covalently cross-

linking proteins in a nonspecific fashion, thus disrupting

cell membranes.2 TRPA1 is expressed on a subpopula-

tion of TRPV1-positive primary afferents,3,4 and activa-

tion leads to action potential formation and subsequent

transmitter release in both the central and peripheral

terminals of the afferents, thereby causing pain sensation
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and activation of immune cells, including mast cells. In
the skin, this process is generally referred to as cutaneous
neurogenic inflammation5 (also reviewed in the study by
Gouin et al.6)

Nerve growth factor (NGF) is a neurotrophic factor
essential for the development and survival of sympathet-
ic and sensory neurons.7 NGF injections have been used
in a translational model of inflammation-induced hyper-
sensitivity toward both thermal and mechanical stimuli,
a hypersensitivity that persist for hours and days, respec-
tively, after injection.8,9 NGF activates the high-affinity
tropomysin kinase A receptor (TrkA) on nociceptive
neurons, promoting upregulation and intracellular mod-
ifications of TRPV1 receptors via the mitogen-activated
protein kinase and phosphatidylinositide 3-kinase sig-
naling pathways,10,11 which subsequently leads to ther-
mal and mechanical hypersensitivity.

Mast cells are immune cells that are considered to be
of particular importance in tissue injury responses, as
they are widely distributed throughout the body, express
receptors capable of recognizing various different sub-
stances of exogenous and endogenous origin, and can
respond quickly by producing and releasing appropriate
mediators, many of which are inflammatory, such as
cytokines.12,13 Besides cytokines, mast cells also contain
proteases that are stored in their active form in large
amounts within the mast cell secretory granules, which
are released upon mast cell activation.14–16 Furthermore,
granular content is continuously released at baseline
conditions by the so-called piecemeal degranulation.17

Consequently, mast cell proteases are found in the cir-
culation18 as well as in biologically active form19,20 on
mast cell surfaces at baseline conditions and can have an
impact in vivo in the absence of mast cell stimuli. This
has for instance been demonstrated for chymase, which
has been shown to increase intestinal permeability at
homeostatic conditions21 and to decrease bone mass in
the absence of any mast cell activation stimulus.22

Hence, mast cell proteases are biologically active in the
tissue both in inflammatory conditions as described
below and in the absence of stimuli that cause mast
cell degranulation.

The mast cell proteases are generally divided into
three groups based on their peptide bond cleavage spe-
cificities: chymases, tryptases, and carboxypeptidases.23

The mouse mast cell proteases (mMCPs) mMCP4 (chy-
mase), tryptase mMCP6, and carboxypeptidase A3
(CPA3) are considered the closest functional homologs
to the human mast cell chymase, tryptase, and carboxy-
peptidase and are all expressed in connective tissue mast
cells.24 Chymases and tryptases have an extensive reper-
toire of proposed substrates, mostly based on in vitro
experiments, while the cleavage profile of CPA3 is
more limited.23 Several of the mast cell protease sub-
strates are pro-inflammatory mediators, which are

inactivated upon protease cleavage. Mast cell protease
substrates also include pro-inflammatory precursor pro-
teins, which the proteases activate by enzymatic cleav-
age. For instance, mast cell chymase has been shown to
degrade the neuropeptides Substance P (SP) and vaso-
active intestinal peptide (VIP),25 pro-inflammatory
mediators that are released from primary afferents
upon their activation, and can induce mast cell degran-
ulation.26 Chymase also degrades bradykinin,27 the
interleukin (IL) precursors Pro-IL-18 and Pro-
IL-1b28,29 as well as IL-6, IL-13, IL-33, HMGB1 (high
mobility group protein B1), and heat shock protein
70.30,31 Mast cell tryptase cleaves VIP25,32 and is efficient
in degrading the neuropeptide calcitonin gene-related
peptide (CGRP).32 Additionally, tryptase activates the
protease-activated receptor 2 (PAR2), which mediates
inflammation as well as itch33,34 and has been reported
to generate NGF by cleaving its precursor peptide pro-
NGF.35 CPA3 is the least studied of the three proteases
but has been shown to cleave endothelin-1 (ET-1),36 a
neurotransmitter capable of transmitting pain and itch
by activating the ETA receptor on sensory neurons37,38

as well as degranulating mast cells.39

Information about the exact in vivo role of the mast
cell proteases is limited; however, they have been linked
to both protective and harmful effects in inflammatory
conditions.16,23,40 Studies in mice have shown that
mMCP4 has a pro-inflammatory role in arthritis41 and
contributes to skin inflammation together with the elas-
tase mMCP5 after epidermal burn injury.42,43 In allergic
airway inflammation, however, mMCP4 modulates IL-
33 levels and has a protective effect.44 PAR2 activation
by mMCP6 contributes to intestinal inflammation in
mice,33 and human tryptase contributes to joint inflam-
mation via the same receptor when injected in mice.45

Based on the reported roles of the mast cell-specific pro-
teases in neurotransmitter degradation and inflammato-
ry conditions, the individual contributions of chymase
mMCP4, tryptase mMCP6, and carboxypeptidase
CPA3 to tissue injury-induced pain behavior were inves-
tigated in this study by performing the formalin test on
mMCP4�/�, mMCP6�/�, and CPA3�/� mice. The role
of intact mast cells was studied as well by performing
the formalin test on the mast cell-deficient mouse line
Mcpt5Creþ;R-DTA. The same mouse line was used in
investigating the role of mast cells in heat sensation and
heat hypersensitivity by performing the Hargreaves test
coupled with a subcutaneous NGF injection.

Materials and methods

Generation of transgenic animals and genotyping

Mouse lines deficient in the mast cell proteases mMCP4,46

mMCP6,47 and CPA348 as well as a mast cell-deficient
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mouse line (Mcpt5Creþ;R-DTA (diphtheria toxin A))49

were generated as previously described. In the
Mcpt5Creþ;R-DTA mice, Cre recombinase expression is
controlled by the Mcpt5 promoter, inducing diphtheria
toxin gene expression through Cre-mediated deletion of
a loxP-flanked stop cassette. As Mcpt5 (coding for the
chymase mMCP5) is exclusively expressed by connective
tissue mast cells, only those cells are affected and undergo
cell death as a consequence of activated diphtheria toxin
expression.49 The mMCP4�/�, mMCP6�/�, and CPA3�/

� lines were all backcrossed for a minimum of 10 gener-
ations to the wild-type strain used (C57BL/6) and were
maintained in a homozygous state. To avoid genetic drift,
the respective knockout strains were routinely re-
backcrossed to the wild-type C57BL/6 line. For detecting
mast cell-deficient mice, the following primers were used:
50- ACAGTGGTATTCCCGGGGAGTGT-30 (forward),
50- GTCAGTGCGTTCAAAGGCCA-30 (reverse), and
50- TGAGAAGGGCTATGAGTCCCA-30 (reverse,
mutant allele). For detecting mMCP4-, mMCP6-,
CPA3-null genotypes, the following primers were used:
mMCP4: 50-CAAGGTCCAACTAACTCC
CTTTGTGCTCC-30 (forward), 50-GGTGATCTCCAG
ATGGGCCATGTAAGGGCG-30 (reverse), and 50-GG
GCCA GCTCATTCCTCCCACTCATGATCT-30

(reverse, mutant allele); mMCP6: 50-TTTAGC TGGA
CTCAGGCTGTGCTCCTCACT-30 (forward), 50-CTC
CTGAATTGG AGCTAACCCTGGGATTCT-30

(reverse), and 50-GACCATGTGATCGCGCTTCT-30

(reverse, mutant allele); and CPA3: 50-GGACTG
TTCATCCCCAGGAACC-30 (forward), 50-CTGGCG
TGCTTTTCATTCTGG-30 (reverse), and 50-GTCC
GGACACGCTGAACTTG4-30 (reverse, mutant allele).

Behavior

All behavioral tests were performed on adult (>7 weeks
old) male mice with the exception of the NGF-associated
heat hypersensitivity test where one female couple was
used together with five male couples. The tests were per-
formed in the day (light) part of the cycle and by the same
female investigator. The mast cell-deficient mice were
observed by two female investigators in the formalin test.
Controls for protease-deficient mice were age-matched
wild-type mice (C57BL/6) housed in the same animal
room; for the mast cell-deficient Mcpt5Creþ;R-DTA
mice, littermate Mcpt5-Cre�;R-DTA mice were used as
controls. All behavior analyses were performed in a con-
trolled environment of 20�C–24�C, 45%–65% humidity,
and 12-h day/night cycle. All animal procedures were
approved by the local ethical committee in Uppsala and
followed the Directive 2010/63/European Union of the
European Parliament and of the Council, The Swedish
Animal Welfare Act (SFS (Svensk f€orfattningssamlingar)
1988:534), The Swedish Animal Welfare Ordinance (SFS

1988:539), and the regulations regarding the use of animals
for scientific purposes: SJVFS (Statens jordbruksverks
f€orfattningssamlingar) 2017:40 (L150). The observers
were blinded to the genotype when measuring pain behav-
ior in the mast cell-deficient mice. However, this was not
possible when working with the protease-deficient animals
due to the organization of the animals in the facility, so the
risk of observational bias cannot be excluded.

Formalin test

Each mouse was gently restrained using a paper towel
before 20 ml of 5% formalin (37% formaldehyde (Sigma-
Aldrich, St. Louis, MO) diluted in 0.9% saline) was
injected subcutaneously into the plantar surface of the
right hind paw with a microsyringe (1710 TLL (PTFE
luer lock) 100ll; Hamilton Central Europe, Ghiroda,
Romania) using a 30-G needle (BD Microlance, Beckton,
Dickinson& Co. Ltd., Drogheda, Ireland). Themousewas
then observed in a transparent cage surrounded bymirrors
on three sides for the following 60 min to measure pain
behavior defined as licking and biting of the injected paw,
using a stopwatch. The results were expressed as the mean
amount of pain behavior (in seconds) for each group
during every 5-min interval� standard error of mean
(SEM) and during the first 10 min (Phase 1), the following
50 min (Phase 2), and over the whole hour.

Hargreaves test

Prior to the experiment, the mice were acclimatized to
the Hargreaves setup (transparent acrylic glass chambers
with a glass floor) on two separate occasions for 30 min
in order to minimize stress caused by new surroundings.
On the day of the experiment, the mice were acclimatized
in the setup for 60 min or until no exploratory behavior
was observed. The Hargreaves heat source (IITC Life
Science, Woodland Hills, CA) was placed with the
guide light pointing toward the plantar surface of the
right hind paw, and the thermal beam was started.
Paw withdrawal would stop the test, and the response
time was noted. The cut-off time was set to 20 s. The test
was repeated two or three times per animal, allowing at
least 5 min between each measurement.

NGF–evoked hypersensitivity

Baseline measurements were performed using the
Hargreaves test as previously described. The mice were
then injected subcutaneously with 50 ng human recom-
binant b-NGF (MBL International, Woburn, MA) dis-
solved in 20 ml 0.9% saline into the plantar surface of the
right hind paw with a microsyringe (1710 TLL 100 ll,
Hamilton Central Europe, Ghiroda, Romania) using a
30-G needle (BD Microlance, Beckton, Dickinson & Co.
Ltd., Drogheda, Ireland). Hargreaves measurements
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were repeated at 30 min and at 1, 2, 4, and 24 h after

NGF injection to follow the development of hypersensi-

tivity. The test was repeated two or three times per

animal at each time point, allowing at least 5 min

between measurements. The results were expressed as

the mean withdrawal latency time at each time point

for each group�SEM. Development of hypersensitivity

for each group was evaluated as the difference between

the mean response time at baseline (before the NGF

injection) versus the mean response time at each time

point after the injection.

Toluidine blue staining

Naı̈ve adult Mcpt5Creþ;R-DTA mice and Cre-negative

controls (one female and one male per genotype) were

sacrificed and plantar surfaces of hind paws were collect-

ed and fixed in 4% paraformaldehyde in phosphate-

buffered saline (PBS) for 2 h. Subsequently, the skin

was transferred to a stepwise gradient of sucrose solu-

tions in PBS, ending with 30% sucrose overnight at 4�C.
Skin samples were embedded in optimal cutting temper-

ature (OCT) compound (Richard-Allan Scientific,

Kalamazoo, MI) on dry ice and cut using a cryostat

(CryoCut 1800, Leica Reichert-Jung, Wetzlar,

Germany) into 12-mm-thick sections. Staining of tissue

sections started with 10-min incubation in acetone at

�20�C, followed by rehydration in PBS (twice for

5min) and stained in toluidine blue (Sigma-Aldrich, St.

Louis, MO) solution (0.1% toluidine blue in 171mM

NaCl (pH 2)) for 2 min. Tissue sections were washed

in distilled water, dehydrated, and mounted. Mast cells

were observed with a Nikon Eclipse 90i bright field

microscope (Nikon Instruments Europe, Amsterdam,

Netherlands) using a 10� and 20� objective.

Statistics

For all sets of data, normality of variance was assessed

by a Shapiro–Wilks test. When comparing two groups,

parametric calculations were conducted with two-tailed

Student’s t test, and nonparametric calculations were

performed using a two-tailed Mann–Whitney test.

Nonparametric calculations of p values (>2 groups)

were conducted with Kruskal–Wallis (one-way analysis

of variance (ANOVA)) followed by Dunn’s post hoc

test. For the NGF/Hargreaves test, development of

hypersensitivity for each group was compared using

repeated measurement ANOVA with Dunnett’s post

hoc multiple comparison. All calculations were per-

formed using Prism version 5.04 (GraphPad Software,

Inc., San Diego, CA). Values of p< 0.05 were consid-

ered significant.

Results

mMCP4�/�, mMCP6�/�, and CPA3�/� mice do not
differ significantly from controls in pain behavior at
any time point of the formalin test

To evaluate if single mast cell protease deficiency plays a
role in the pain responses to tissue injury and acute
inflammation, the formalin test was performed on mast
cell protease knock-out mice mMCP4�/�, mMCP6�/�,
and CPA3�/�, together with age-matched wild-type con-
trols (Figure 1). The accuracy of the three knockout lines
has been evaluated in previous analyses where each null
mutation was shown to result in absence of the respec-
tive protein.46–48 The mMCP4�/� mice did not differ
significantly from the controls at any 5-min interval,
but a slight trend toward higher pain responses during
the last 15 min of the formalin test was observed; at
45–50 min, they demonstrated 124.0� 17 s of pain
behavior versus 69.5� 20 s for controls (Figure 1(a)).
The mMCP6�/� mice did not differ significantly from
controls either at any time point, but contrary to the
mMCP4�/� mice, the mMCP6�/� mice had a tendency
to show lower pain responses than controls during the
inflammatory phase; at 40–45 min, they exhibited on
average 54.8� 16 s of pain behavior versus 101.2� 18 s
for controls (Figure 1(b)). The pain behavior of CPA3�/�

mice did not differ from controls in either direction
(Figure 1(c)). The total pain responses in Phase 1 and
Phase 2 were also compared, with no difference observed
between genotypes (Figure 1(d)).

Mast cell deficiency does not affect pain responses
in the formalin test, Hargreaves test, or
inflammation-induced heat hypersensitivity

After establishing that the individual mast cell proteases
do not contribute significantly to the behavioral pheno-
type observed in the formalin test, we wanted to inves-
tigate if mast cell deficiency would have an effect.
To study the role of mast cells in formalin-induced noci-
ception, the connective tissue mast cell-deficient line
(Mcpt5Creþ;R-DTA) was used. Previous experiments
have shown that Mcpt5Creþ;R-DTA mice have an
almost complete depletion of mast cells in the peritoneal
cavity as well as in the skin of the abdomen, back, and
ears.49 In this study, it was confirmed that mast cells are
also absent in plantar hind paw skin (Figure 2(a)).
Moreover, an earlier study has shown that Mcpt5Creþ;
R-DTA animals completely lack mMCP6, which is
exclusively expressed by connective tissue type mast
cells.50 The pain responses of mast cell-deficient mice
(Mcpt5Creþ;R-DTA) and controls were not significantly
different at any time point (Figure 2(b)). However,
slightly lower pain responses for mast cell-deficient
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mice were observed at 30–35 min, where they demon-
strated on average 30.1� 8.5 s of pain behavior versus
55.8� 11 s for controls, but the difference was not sig-
nificant. When the total pain responses in Phase 1 and
Phase 2 were compared between genotypes, no differ-
ences were seen (Figure 2(c) and (d)).

To investigate if mast cell deficiency has an effect on
heat sensation and inflammation-induced heat hypersen-
sitivity, the Hargreaves test coupled with an injection of
the TrkA ligand bNGF was performed on Mcpt5Creþ;R-
DTA mice and controls. No differences between geno-
types were observed in the baseline response times before
injection; 5.7� 1.0 s for mast cell-deficient mice and 6.4
� 1.0 s for controls (Figure 2(e) and (f)). To follow the
development of heat hypersensitivity, Hargreaves meas-
urements were repeated at 30 min, 1 h, 2 h, 4 h, and 24
h after the injection and compared with the baseline

values. The controls did not develop significant hyper-

sensitivity, though there was a trend toward shorter

response times post-injection, with the shortest response

time measured at 2 h, 4.9� 1.0 s (Figure 2(e)). The

Mcpt5Creþ;R-DTA mice did develop hypersensitivity at

4 h, with a response time of 3.8� 0.3 s (Figure 2(e)).

Although the Mcpt5Creþ;R-DTA mice had a trend

toward shorter response times than controls (Figure 2

(f)) and developed significant heat hypersensitivity at one

time point, no statistically significant differences were

observed between the genotypes.

Discussion

Here, we have investigated the role of mast cell-specific

proteases and mast cells in the pain response associated

with the first (acute) phase and second (inflammatory)

Figure 1. mMCP4�/�, mMCP6�/�, and CPA3�/� mice do not differ from controls in the formalin test. Twenty microliters of 5% formalin
were injected subcutaneously into the right hind paw and the mouse was then observed for pain behavior for 60 min. (a) mMCP4�/� mice
(n¼ 8) show similar pain behavior to controls (n¼ 9) over the time course of the formalin test, except with a slight trend for higher pain
responses in the last 15 min of the test. (b) In contrast to the mMCP4�/� mice, the mMCP6�/� mice (n¼ 9) had a slight tendency to show
lower pain responses than controls during the inflammatory phase, but the difference was not significant (p> 0.05). (c) The pain behavior
of CPA3�/� mice (n¼ 6) was not significantly different from controls. (d) and (e) No differences were observed between genotypes in the
total pain behavior in Phase 1 (0–10 min) or in the inflammatory Phase 2 (10–60 min). The same set of control mice (n¼ 9) was used in all
comparisons and presented in (a), (b), and (c) to facilitate visual presentation. Kruskal–Wallis and Dunn’s post hoc tests were used. Data
are presented as mean� SEM. WT: wild type.
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Figure 2. Mast cell-deficient mice do not differ from controls in the formalin test or in heat hypersensitivity induced by NGF. (a) Toluidine
blue-stained cryo sections of hind paws. Plantar surfaces of hind paws of naı̈ve Mcpt5Cre-;R-DTA (controls, n¼ 2) and Mcpt5Creþ;R-DTA
(n¼ 2) were fixed with PFA, embedded in OCT compound, cut into 12-mm-thick sections, and subsequently stained with toluidine blue.
Red arrows point to metachromatically stained mast cells in control tissue, which are absent in tissue of Mcpt5Creþ;R-DTA mice. 10�
objective, scale bar¼ 50 mm. Inset represents metachromatically stained mast cell, 20� objective, scale bar¼ 20 mm. (b) The pain behavior
of mast cell-deficient mice (Mcpt5Creþ;R-DTA, n¼ 8) does not differ from controls (n¼ 10) over the time course of the formalin test.

(Continued)
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phase of tissue injury induced by formalin, as well as the
role of mast cells in heat sensation and inflammation-
induced heat hypersensitivity. No significant differences
in pain responses following the formalin test were
observed in neither mast cell protease-deficient nor
mast cell-deficient mice, compared with control mice.
In addition, noxious heat sensation and inflammation-
induced heat hypersensitivity as measured by the
Hargreaves test coupled with NGF injection were not
affected by mast cell deficiency.

Formalin as a translational model for tissue
injury-induced pain

Formalin, an aqueous solution of formaldehyde, is a
tissue fixative that covalently crosslinks proteins in a
nonspecific fashion, thus disrupting cell membranes,2

causing irreversible tissue injury. Furthermore, it has
been suggested that it can cause mast cell degranulation
directly.51 When formalin is injected into the mouse hind
paw, the paw quickly becomes inflamed and a two-
phased pain response can be observed. The pain
response is usually measured by the amount of time
mice spend licking or biting their paw52,53 as was done
in this study, or by quantifying the flinching of
the injected paw.1 Moreover, in the initial phase, it has
been shown that formalin immediately causes pain by
directly activating TRPA1,1 which is highly expressed
in a subset of C-fiber nociceptors that also express
TRPV1.3,4 The secondary pain phase usually appears
between 20 and 30 min after formalin injection52 where
cells injured by formalin crosslinking release damage-
associated molecular patterns that can activate immune
cells to initiate inflammation.13,54,55 Inflammatory medi-
ators released from immune cells or directly from dam-
aged tissue continue to activate TRPA1-expressing
primary afferents, contributing to pain sensitization of
the central nervous system.1,56 The formalin response is
also dependent on SP transmission. For instance,
Tachykinin 1 (SP precursor gene)-deficient mice show
markedly reduced responses to formalin in both the
first and the second phase57 and the SP antagonist sen-
dide attenuates the formalin response.58 SP is stored in
and released from primary afferents59 and contributes to
the second/inflammatory phase of the formalin response

by relaying the nociceptive signal to the central nervous
system and by interacting with immune cells such as
mast cells,5,60 thus promoting the inflammation.

mMCP4 in formalin-induced pain

Mast cell chymase (canine version of mMCP4) has been
shown to degrade the neuropeptides SP and VIP,25

which are pro-inflammatory mediators released by pri-
mary afferents that can induce mast cell degranulation.26

Mast cell chymase has also been shown to degrade bra-
dykinin in vitro,27 an oligopeptide which also activates
TRPA1.61,62 Tissue injury activates the kallikrein-kinin
cascade, where the precursor kininogen is converted
to the active pain mediator bradykinin by the serine pro-
tease kallikrein.53 Bradykinin has been shown to mediate
pain in the formalin test by acting through the bradyki-
nin 1 and 2 receptors expressed on peripheral nocicep-
tors.63 Furthermore, it has been reported that mMCP4
degrades IL-33,31,44 which has been shown to have a role
in mediating formalin-induced pain.64 Taken together,
the slight trend toward an increase in nociceptive behav-
ior observed in the later stages of the inflammatory
phase in mMCP4�/� mice, although not significant,
may be explained by the reported roles of mMCP4 in
degradation of pro-inflammatory mediators.

mMCP6 in formalin-induced pain

Tryptase also has a role in the kallikrein-kinin pathway,
as it has been demonstrated that human tryptase can
cleave prekallikrein, generating kallikrein and thus con-
tributing to bradykinin formation.65 It has been shown
that pain responses and paw edema in mice in both
phases of the formalin test can be greatly diminished
by inhibiting kallikrein.53 Also, human tryptase can
directly generate bradykinin by cleaving kininogen.65

The involvement of mMCP6 in the kallikrein-kinin path-
way might explain the statistically nonsignificant trend
of mMCP6�/� mice having lower pain responses in the
later phase of the formalin test. Despite the capabilities
of mast cell tryptase to cleave inflammatory neuropep-
tides CGRP and VIP in vitro,32 it has not been shown
that tryptase can have protective properties in inflamma-
tory conditions in vivo; it mainly has pro-inflammatory
effects in that context.66

Figure 2. Continued

Slightly lower responses were observed at 30–35 min, but the difference was not significant (Mann–Whitney: p¼ 0.10). (c) and (d) When
total pain behavior in Phase 1 (0–10 min) or in the inflammatory Phase 2 (10–60 min) was analyzed, no differences were observed between
genotypes. (e–f) Hargreaves test coupled with NGF injection on Mcpt5Creþ;R-DTA mice (n¼ 7), and controls (n¼ 6). (e) The baseline
Hargreaves values before NGF injection (“B” on the x-axis) did not differ between the two genotypes (Student’s t test: p¼ 0.64). After
NGF injection, only Mcpt5Creþ;R-DTA mice developed heat hypersensitivity compared with their baseline values, at 4-h post-injection
(one-way repeated measurement ANOVA: p< 0.05). (f) Despite the absence of significant hypersensitivity in the controls, there was no
difference observed between the two genotypes at any time point before or after the injection (Student’s t test: p> 0.05). All data are
presented as mean� SEM. NGF: nerve growth factor.
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CPA3 has no apparent effect in formalin-induced

pain responses

It has been suggested that IL-33 can initiate a

hypernociceptive signaling cascade, by upregulating the

production of TNFa which in turn triggers IL-1b !
interferon c (IFNc) ! ET-1 ! prostaglandin E2

(PGE2) production.67 CPA3 can cleave ET-1,36 and

ET-1 has been shown to induce sensitization to

formalin-induced nociception in mice, as well as contrib-

uting to paw edema.68 In this study, however, there was

no indication that CPA3 deficiency had any effect on

formalin-induced pain behavior, suggesting that the role

of CPA3 in ET-1 cleavage is of little consequence in the

pain responses observed in the formalin test. Studies of

the in vivo function of CPA3 are currently limited66 and

mainly indicate that it has protective effects by degrading

toxins found in bee and snake venom69 but no apparent

connection to inflammation. As previously mentioned,

CPA3�/� mice also lack the elastase mMCP5,48 which

has been shown to contribute to skin inflammation after

burn injury in mice.42,43 This might suggest that lacking

mMCP5 would have protective effects in inflammation

resulting from formalin-induced tissue injury, However,

no such effect was observed here.

Mast cells are not essential for tissue injury-induced

pain by formalin nor NGF-induced heat

hypersensitivity

Given the central role for mast cells in inflammatory con-

ditions,70,71 the close proximity between mast cells and

primary afferents and the ability of primary afferent

transmitters to activate mast cells, it was surprising to

find that mast cell deficiency did not affect the behavioral

phenotype induced by formalin injection. However, mast

cell-deficient mice were recently shown to develop normal

levels of heat and mechanically evoked hypersensitivity

associated with NGF or complete Freund’s adjuvant-

induced inflammation.72 This supports the theory that

mast cells do not significantly contribute to pain-

associated inflammatory processes originating in the

skin. In this study, mast cell-deficient mice (Mcpt5Creþ;
R-DTA) and their Cre-negative littermates were also

tested for their sensitivity to heat using the Hargreaves

test followed by NGF injection. Hargreaves testing was

then repeated to follow the development of heat hyper-

sensitivity. No difference was detected between the two

genotypes at any time point. The fact that the mast cell-

deficient mice did eventually develop heat hypersensitivity

following the NGF injection but their littermates did not

indicates that mast cells are not essential for the develop-

ment of inflammation-induced heat hypersensitivity.

Furthermore, other studies have found that mast cells

do not express NGF receptors72,73 and would thus have
a negligible role in NGF-evoked hypersensitivity.

Conclusion

Here, we have tested for the first time how acute
inflammation and tissue injury pain responses in a
formalin-based model are affected by the deficiency of
mMCPs: mMCP4, mMCP6, and CPA3, as well as mast
cell deficiency. Additionally, mast cell-deficient mice
were tested in a model for noxious heat sensation and
inflammation-induced heat hypersensitivity. Based on
the results, neither the proteases mMCP4, mMCP6,
CPA3 nor mast cells as a whole were found to be essen-
tial for the defined pain behavior.
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