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Abstract
Purpose: The objective of this study was to fabricate an anthropomorphic multi-
modality pelvic phantom to evaluate a deep-learning-based synthetic computed
tomography (CT) algorithm for magnetic resonance (MR)-only radiotherapy.
Methods: Polyurethane-based and silicone-based materials with various sili-
cone oil concentrations were scanned using 0.35 T MR and CT scanner to deter-
mine the tissue surrogate.Five tissue surrogates were determined by comparing
the organ intensity with patient CT and MR images. Patient-specific organ mod-
eling for three-dimensional printing was performed by manually delineating the
structures of interest. The phantom was finally fabricated by casting materials
for each structure. For the quantitative evaluation, the mean and standard devi-
ations were measured within the regions of interest on the MR, simulation CT
(CTsim), and synthetic CT (CTsyn) images. Intensity-modulated radiation ther-
apy plans were generated to assess the impact of different electron density
assignments on plan quality using CTsim and CTsyn. The dose calculation accu-
racy was investigated in terms of gamma analysis and dose-volume histogram
parameters.
Results: For the prostate site, the mean MR intensities for the patient and phan-
tom were 78.1 ± 13.8 and 86.5 ± 19.3, respectively. The mean intensity of the
synthetic image was 30.9 Hounsfield unit (HU), which was comparable to that
of the real CT phantom image. The original and synthetic CT intensities of the
fat tissue in the phantom were −105.8 ± 4.9 HU and −107.8 ± 7.8 HU, respec-
tively. For the target volume, the difference in D95% was 0.32 Gy using CTsyn
with respect to CTsim values.The V65Gy values for the bladder in the plans using
CTsim and CTsyn were 0.31% and 0.15%, respectively.
Conclusion: This work demonstrated that the anthropomorphic phantom
was physiologically and geometrically similar to the patient organs and was
employed to quantitatively evaluate the deep-learning-based synthetic CT
algorithm.
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1 INTRODUCTION

The integration of on-board magnetic resonance (MR)
imaging with a radiotherapy treatment machine is an
emerging technique for image-guided radiotherapy.1–4

Compared with computed tomography (CT),2 MR imag-
ing affords superior soft tissue contrast. This can
enhance the visibility of gross tumors and adjacent nor-
mal organs and improve the identification of the inter-
nal structure without exposing a patient to additional
radiation. However, MR images do not provide the elec-
tron density information that is required for patient dose
calculation.3

Several attempts have been made to utilize the
electron density map in MR images for MR-only
radiotherapy.5–11 The MR images are fused with the CT
image using the image registration algorithm for dose
calculation. The use of this method is inevitable with the
uncertainty of the image registration and the additional
radiation exposure. Another approach is the conversion
of MR intensity into a Hounsfield unit (HU),referred to as
synthetic CT (sCT) or pseudo-CT.11 Typically, an atlas-
based method is used for sCT generation.12 To match
the atlas MR images, deformable registration is per-
formed, followed by the conversion of the intensity to the
HU information of the corresponding atlas CT images.

In learning-based approaches, statistical learning or
model fitting has been employed by training the rela-
tionship between CT and MR intensities.11,13 Recently,
a deep learning model has been developed for deriving
highly accurate sCT estimation from MR images in near
real time.5,14–20 Han5 used a fully convolutional neural
network to train the mapping from the MR images to
corresponding CT images.To produce more realistic CT
data, generative adversarial networks have been intro-
duced with a discriminator distinguishing sCT images
from real CT images.15 These techniques were eval-
uated by comparing sCT images with CT images that
were deformed to MR images by the image registration
algorithm. For accurate verification of deep-learning-
based models, it would be ideal to collect data from real-
world clinical practice.21 However, the test dataset of the
sCT model composed of deformed CT images inher-
ently contained image registration uncertainty. Thus, it
is necessary to quantitatively verify the sCT generation
models with an independent dataset scanned from a
standardized phantom that is free of deformation and
applicable to both CT and MR scanners.

To date, only a few studies have fabricated mul-
timodality phantoms applicable to CT and MR
scanners.22–28 Sun et al.28 developed an MR-compatible

pelvic phantom for end-to-end testing procedures using
the MR simulation process. They evaluated the geo-
metric distortion using grid pattern parts and validated
the simulation process with simplified models of human
organs. Niebuhr et al.25,29 investigated the tissue-
surrogate materials for MR and CT images and fabri-
cated an anthropomorphic phantom for the MR-based
workflow. They used agarose gels with gadolinium-
based contrast agents and sodium fluoride (NaF) as
the soft tissue surrogate. However, the NaF mate-
rial caused imaging artifacts in the T2-weighted MR
images. Singhrao et al.24 developed an anthropomor-
phic pelvic phantom with carrageenan-based materials
to validate MR-based workflows; this phantom allowed
incorporation of film and ion chamber slots for radiation
measurement. They quantified the MR and CT imag-
ing characteristics of the phantom and evaluated the
commercial sCT image generated by the scanned MR
images. Although studies on the fabrication of multi-
modality phantoms have been previously performed, no
investigation has ever evaluated a learning-based sCT
algorithm for MR-only radiotherapy using a phantom.
Deep-learning-based algorithms are trained using real
patient image datasets; hence, it is necessary for the
evaluation phantom to be similar to the patient in terms
of geometry and imaging characteristics.

In this study, tissue-surrogate materials combined
with silicone oil were utilized as the MR signal modifier,
and an anthropomorphic multimodality phantom was
developed using a three-dimensional (3D) printing tech-
nique. The sCT generation model was evaluated using
the multimodality phantom by analyzing the intensity
and dosimetric accuracy in an intensity-modulated
radiation therapy (IMRT) plan for prostate cancer.

2 MATERIALS AND METHODS

2.1 Material properties for phantom
fabrication

To develop a multimodality phantom, the materials
should be visible on both CT and MR images and should
have similar image intensities to the patient’s images.

The materials selected for the phantom are silicone-
based and urethane-based materials,which are typically
used for molding and coating in various applications.
These materials are suitable for phantom fabrication
because of their physical properties, that is, ade-
quate hardness and durability. Four materials were
tested for MR and CT compatibility: Dragon Skin 10
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MEDIUM, VytaFlex 20, PMC-780 DRY, and Smooth-
Cast 385 (Smooth-on Inc.,USA).Silicone oils of various
viscosities (i.e., 100–3000 centistokes) at different con-
centrations were mixed to cure the phantom materials.

The materials were scanned using the MR-guided
radiotherapy system (ViewRay Inc., Cleveland, OH,
USA) and Brilliance Big Bore CT simulator (Philips,
Cleveland, OH, USA), which were employed for clin-
ical radiation treatment planning. The materials were
selected for phantom fabrication based on the evalua-
tion of their MR and CT image characteristics.

2.2 Phantom design

A prostate cancer case was retrospectively selected for
phantom construction.The CT scan for the phantom was
conducted with a 120 kVp tube voltage and 1.5 mm
slice thickness; it was reconstructed with a standard ker-
nel. The same patient MR images were obtained using
the 0.35 T ViewRay system. A true fast imaging with
steady-state precession (TrueFISP; TRUFI) sequence
that yields a T2/T1-weighted contrast was used for all
MR scanning.A predefined field of view with an in-plane
resolution of 1.5 mm × 1.5 mm and a slice thickness of
1.5 mm was selected.

The images were anonymized and exported from the
treatment planning system (TPS). The 3D-Slicer, a free
platform for biomedical research, was used to delin-
eate the structures, that is,pelvic bone,prostate,bladder,
rectum, soft tissue, and adipose tissue. The segmented
structures were converted into the standard tessella-
tion language (STL) format for 3D printing. The STL file
was then modified using an open editing software pro-
gram (Meshmixer, Autodesk); the model was hollowed
out to form a 0.8-mm-thick structure wall. The phantom
mold was manufactured from an amorphous thermo-
plastic material using a Zortrax M300 3D printer (Zor-
trax, Olsztyn, Poland). Following the 3D printing of the
phantom mold, the support structures were removed,
and selected materials were cast to each organ region.
The phantom was placed in a pressure chamber to
reduce bubble formation as the materials cured.

2.3 Generation of synthetic CT
phantom images and validation of the
image characteristics

The CT images (CTsim) of the phantom were acquired
using the same CT simulator with the 120 kVp tube volt-
age, 200 mAs tube current–time product, 1.5 mm slice
thickness, and standard kernel. The TRUFI MR images
(MRsim) were acquired using the ViewRay scanner. The
low-frequency intensity and nonuniformity present in
MRsim were corrected using the N4 bias field correc-
tion algorithm.30 Synthetic CT phantom images (CTsyn)

were generated from a deep learning model using the
MRsim images. The sCT generation model trained in a
previous study was used. The model consists of the 2D
convolutional neural network, called U-net by the shape
of the learning structure.The details of the model hyper-
parameters and training datasets were described in the
study.14 The CTsim,CTsyn,and MRsim imaging character-
istics were quantified by measuring the CT HU and MR
intensities of the prostate, bladder, soft tissue, adipose
tissue, and cortical bone in the phantom. The region of
interest (ROI) in the homogenous areas of target struc-
tures was defined to measure the mean and standard
deviation values.

2.4 Validation of synthetic CT phantom
images in treatment planning

The MR-only simulation was performed using CTsyn to
demonstrate the feasibility of the phantom in the quality
assurance of treatment planning. The CTsim and CTsyn
were imported into the TPS of the ViewRay system, that
is, the MRIdian system (ViewRay Inc.). We performed
rigid registration from CTsim to MRsim to achieve elec-
tron density in the TPS. All contours in the MRsim were
delineated to define the normal organs and targets. To
quantify the dosimetric analysis, the 3D dose distribution
was calculated on the CTsim images; then, the dose dis-
tribution of CTsyn images was calculated without chang-
ing the treatment plan parameters. The dose calculation
was performed using the Monte Carlo dose algorithm
of MRIdian TPS with magnetic field correction; the grid
size was 3 mm, and the Monte Carlo uncertainty was
0.5%. Both CTsim and CTsyn plans were normalized to
include 95% of the target volume by at least 100% of
the prescription dose.

For each of the plans, the dose-volume histograms
were extracted to derive the dose-volume metrics. The
mean, minimum, and maximum doses delivered to the
target were calculated. The minimum doses (D1%, D2%,
D95%, D98%, and D99%) that were delivered to at least
1%, 2%, 95%, 98%, and 99%, respectively, of each
target volume between the CTsim and CTsyn plans were
calculated. For the bladder, the values of D55%, D30%,
D25%, V65Gy, V60Gy, V55Gy, and the maximum dose
were calculated. For the rectum, the values of D50%,
D20%, V65Gy, V60Gy, V55Gy, and the maximum dose were
calculated. The maximum dose for the femoral heads
was also calculated.

3 RESULTS

3.1 Imaging properties of materials

Table 1 summarizes the intensities of the CT and
MR images of the silicone-based and urethane-based
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TABLE 1 Testing materials of the multimodality phantom for
magnetic resonance (MR) and computed tomography (CT)
compatibility

CT number (HU)

Material

Silicone oil
viscosity

Weight percentage of signal
modifier

(centistokes) 10% 20% 30% 40%

Dragon Skin
10 MEDIUM

3000 204.19 189.21 178.20 170.20

1000 204.30 189.09 178.20 168.98

500 204.00 188.36 177.00 167.75

100 204.05 188.48 177.25 169.64

PMC-780
DRY

3000 55.22 64.43 71.58 –

1000 55.08 64.35 – –

500 55.08 63.87 – –

100 54.72 – – –

VytaFlex 20 3000 −0.11 14.74 19.86 27.25

1000 −0.14 14.77 19.47 26.90

500 0.08 14.99 20.47 26.94

100 −0.48 14.28 17.88 25.14

MR intensity

Dragon Skin
10 MEDIUM

3000 227.46 254.80 280.53 287.88

1000 247.26 279.72 308.07 313.73

500 238.22 265.64 301.92 315.73

100 230.30 271.31 301.59 312.64

PMC-780
DRY

3000 79.46 114.78 152.18 –

1000 90.81 133.65 – –

500 89.18 130.48 – –

100 89.20 – – –

VytaFlex 20 3000 208.47 223.84 248.49 250.95

1000 217.92 236.90 255.41 267.83

500 197.60 221.43 244.85 249.31

100 197.71 224.63 233.93 240.84

Note: The CT and MR intensities of the materials were measured using a CT
simulator and 0.35 T MR scanner, respectively, because silicone oils of various
viscosities were mixed with materials of different concentrations.
Abbreviation: HU, Hounsfield unit.

materials mixed with various weight percentages of
silicone oil. As the concentration of the silicone oil
increased, the HU values approached that of the sili-
cone. The viscosity of the silicone oil was not markedly
affected by the CT intensities. In the case of the MR
signal, the intensity tended to increase gradually as the
weight percentage of the signal modifier for all materi-
als increased. It was observed that the PMC-780 mate-
rial, that is, the polyurethane rubber compound, was not
homogeneously cured with silicone oil because the vis-
cosity of the latter was lower than that of the former.

Based on the results, three materials were selected
as tissue surrogates for the prostate, namely, soft tissue,
urinary bladder, and spongy bone, by comparing the
pixel intensities of the patient’s image. In CT imaging,
plastic-based materials exhibit low signals; this is not

suitable for parts with high attenuation, for example,
cortical bone. The gypsum bandage, which can be an
alternative for cortical bone, contains large amounts
of calcium similar to human bone. For the adipose
tissue simulation, olive oil with a hardening agent was
selected as the tissue-surrogate material. The selected
materials for phantom construction are summarized in
Table 2.

3.2 Validation of phantom imaging
properties

The computer modeling for 3D printing and the fabri-
cated pelvic phantom image is presented in Figure 1;
the CTsim and MRsim images of the phantom are shown
in Figure 2a,b, respectively. For comparison, the CTsyn
image from the MRsim is shown in Figure 2c.

The measured HUs of the phantom in both CTsim
and CTsyn and the corresponding MRsim signal for sev-
eral ROIs defined within the structures are summa-
rized in Table 3; for comparison, the measured HUs of
patient organs are also listed. The CT number for the
prostate-surrogate material was 28.5± 7.2 HU,whereas
that for the patient was 38.9 ± 12.9 HU; the HU differ-
ence between CTsim and CTsyn was 2.4. In the MRsim
images, the difference between the patient and phan-
tom was 8.4. For the urinary bladder-surrogate mate-
rial, the measured CT numbers were 4.9 ± 30.6 HU and
6.8 ± 11.6 HU for the phantom and patient, respectively.
The MR intensity of the bladder was 309.1 ± 17.8, com-
parable to that of the patient. In the case of spongy
bone, the HU difference between the patient and phan-
tom was relatively higher than that of other organ sur-
rogates. However, a signal difference of only 4.4 was
measured in the corresponding MR image. For the cor-
tical bone, the CT numbers were 603.4 ± 186.4 HU
and 626.4 ± 89.3 HU for the simulation CT and sCT,
respectively. The MR signals measured in the region
were 38.3 and 12.4, respectively. The measured CT
number for the adipose tissue region of the phantom
was −105.8 ± 4.9 HU. Only a 2.0 HU discrepancy was
observed between the simulation CT and sCT images.
The maximum absolute difference in the CT number
between the simulation CT and sCT was 23.0 HU for
the organ surrogates.

3.3 Dose–volume evaluation

Dose–volume histogram curves for the planning target
volume and organ at risk of the two IMRT plans are
represented in Figure 3. Table 4 summarizes the dose-
volumetric parameters of the target and normal organs
from the plans. For the target volume, the D1%, D2%,
D95%, D98%, and D99% of the simulation CT-based plan
were slightly higher than those of the sCT-based plan.
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TABLE 2 Summary of materials for tissue surrogates

Tissue type Tissue-surrogate material

Silicone oil
Viscosity (centistokes) Weight percentage (%)

Prostate PMC-780 DRY 1000 10

Soft tissue PMC-780 DRY 1000 10

Urinary bladder VytaFlex 20 1000 40

Spongy bone Dragon Skin 10 MEDIUM 1000 20

Cortical bone Gypsum bandage – –

Adipose tissue Olive oil, hardener – –

F IGURE 1 (a) The front of the phantom computer modeling for three-dimensional printing and (b) the fabricated anthropomorphic pelvic
phantom

F IGURE 2 Phantom images scanned using (a) 0.35 T magnetic resonance (MR) with TRUFI sequence and (b) computed tomography (CT)
simulator; (c) image derived from the image in (a) using synthetic CT generation model

TABLE 3 Mean and standard deviations of computed tomography (CT) numbers and magnetic resonance (MR) intensities determined
within defined regions of interest (ROIs) in patient, phantom, and synthetic CT phantom images of various anatomical regions

CT number (HU) MR intensity
Organ CTpatient CTsim CTsyn MRpatient MRsim

Prostate 38.9 ± 12.9 28.5 ± 7.2 30.9 ± 10.1 78.1 ± 13.8 86.5 ± 19.3

Urinary bladder 6.8 ± 11.6 4.9 ± 30.6 17.5 ± 6.1 319.2 ± 17.7 309.1 ± 17.8

Spongy bone 379.8 ± 104.8 164.7 ± 9.0 145.8 ± 24.0 260.4 ± 49.1 256.0 ± 9.4

Cortical bone 740.4 ± 318.0 603.4 ± 186.4 626.4 ± 89.3 38.3 ± 9.1 12.4 ± 11.4

Soft tissue 48.9 ± 14.1 56.8 ± 7.3 51.0 ± 2.5 85.1 ± 39.8 94.3 ± 7.7

Adipose tissue −93.2 ± 8.0 −105.8 ± 4.9 −107.8 ± 7.8 532.6 ± 25.1 607.4 ± 15.9

Abbreviation: HU, Hounsfield unit.
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F IGURE 3 Comparison of dose–volume histograms between
simulation computed tomography (CTsim) (solid line) and synthetic
computed tomography (CTsyn) (dashed line) plans

For the bladder, the D55% and D30% dose values and the
percent volumes of the bladder receiving at least 65 Gy
(V65Gy), 60 Gy (V60Gy), and 55 Gy (V55Gy) indicated
that both the original IMRT plan and sCT-based plan
were acceptable. For the bladder, the maximum abso-
lute difference among the dose-volumetric parameters
was less than 0.38 Gy. For the rectum, the V65Gy, V60Gy,
and V55Gy of the original plan were smaller than those of
the sCT; however, the differences were less than 0.21%.
The maximum doses for the bladder in CT-based IMRT
and MR-based IMRT with sCT were 8.46 and 8.08 Gy,
respectively. The gamma analysis of dose distribution in
CTsim and CTsyn within 2%/2 mm at a 10% dose thresh-
old exhibited a 99.6% pass rate.

4 DISCUSSION

In this study, a multimodal anthropomorphic phantom
with a compatible tissue surrogate was designed and
fabricated. The quantitative imaging characteristics of
the phantom compared with those of the patient case
were further analyzed. Finally, the application of the
phantom for the evaluation of the deep-learning-based
sCT image generation technique with the IMRT plan ver-
ification procedures was demonstrated.

In some studies related to tissue-equivalent MR
phantoms, a tissue-equivalent material using agarose
gel was produced.24,25,31–33 The relaxation time could
be adjusted by changing the concentrations of agarose
and paramagnetic ions. Agarose gel was also used
for the ultrasound phantom because of its elastic and
acoustic impedance characteristics.34 However, the
typical problem encountered in the use of agarose gel
materials was water loss, which led to changes in the
physical properties.34 This problem could be solved
using polymers made of siloxane or urethane; these
materials could achieve long stability similar to that of

TABLE 4 Dose-volumetric parameters of plans calculated based
on simulation computed tomography (CT) and synthetic CT images
of phantoms

CTsim CTsyn Difference

PTV

D1% (Gy) 76.83 76.74 0.09

D2% (Gy) 76.36 76.23 0.13

D95% (Gy) 69.68 69.36 0.32

D98% (Gy) 68.88 68.60 0.28

D99% (Gy) 68.48 68.15 0.33

Bladder

Maximum dose (Gy) 8.46 8.08 0.38

D55% (Gy) 29.96 30.00 −0.04

D30% (Gy) 40.37 40.57 −0.20

D25% (Gy) 43.26 43.22 0.04

V65Gy (%) 0.31 0.15 0.16

V60Gy (%) 3.04 2.90 0.14

V55Gy (%) 8.00 7.85 0.15

Rectum

Maximum dose (Gy) 10.96 11.32 −0.36

D50% (Gy) 27.71 27.75 −0.04

D20% (Gy) 36.93 36.95 −0.02

V65Gy (%) 0.27 0.23 0.04

V60Gy (%) 1.35 1.37 −0.02

V55Gy (%) 4.39 4.18 0.21

Femoral heads

Maximum dose (Gy) 7.86 8.10 −0.24

Abbreviations: Dn%, highest dose received by at least n% volume of a structure;
PTV, planning target volume; VnGy, percent volume receiving n Gy.

a hard solid. Steinmann et al.22 tested the reliability of
silicone-based and urethane-based materials by storing
them at room temperature for 3 months; the materials
exhibited no form of degradation. Hence, with the use
of the foregoing materials, the phantom could possess
long-term physical stability for quality assurance. The
silicone-based and urethane-based materials selected
for the multimodality phantom practically satisfy the
requirement.

Silicone fluids, such as polydimethylsiloxane oil, have
been used for simulating tissue phantoms because
the mechanical properties of the phantom could be
modified with the addition of silicone oil.35 In this study,
silicone oil was added prior to curing to modify the sig-
nal intensity across various ranges. With this approach,
imaging properties similar to those of the scans of soft
tissue structures and inner pelvic bone of the patient
from the CT and MR images were obtained. However,
the polymer network can only hold a limited weight
percentage of silicone oil before reaching saturation.
The material used to mimic the bladder, that is, 40 wt.%
silicone oil in VytaFlex, was not cured over the time
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reported by the manufacturer; hence, the curing time
was extended. The phantom CT images indicated that
air bubbles (possibly generated by the exuding silicone
oil) hardened the bladder region. Nevertheless, the pixel
intensities in the CT and MR of the region were not
remarkably affected; the measured intensities were
comparable to those of patient images.

Using the oil with a hardening agent, adipose tis-
sue simulation was achieved; imaging characteristics
similar to those of patient scans were obtained. The
viscous liquid materials can completely fill all voids
(i.e., no empty spaces) before hardening; hence, they
are suitable for manufacturing phantoms with complex
structures. However, these materials are affected by the
air bubbles generated by manual stirring. Accordingly,
to minimize bubble formation, the phantom was placed
in a pressure chamber for material curing.

Deep learning has exhibited remarkable performance
in processing large-scale image datasets in the field of
medical imaging.36 For the generation of sCT, various
convolutional neural network methods compared with
the atlas-based method were found to be more capable
of producing highly accurate sCT estimations in near
real time. A key feature in deep learning techniques
is not only the novel model architecture for extracting
data representations but also the superior quality of
the datasets processed.The consistency of the distribu-
tion between the training and test datasets is crucial to
ensure reliable performance.37 Therefore, the geometric
and imaging characteristics of the input image should
be similar to those of the training datasets for the eval-
uation of the sCT algorithm.

Three-dimensional printing technology has con-
tributed to advances in phantom fabrication for clini-
cal applications. Phantoms that are 3D printed are cost
efficient and customizable in terms of using various
types of materials; they are also extremely suitable for
generating the complex structures of human organs.
The anthropomorphic pelvic phantom in this study was
designed based on the organs of a patient; hence, its
use for evaluating the deep learning model trained with
patient datasets would be satisfactory.

The general procedures for the performance evalua-
tion of the deep-learning-based sCT generation model
are as follows.5 First, image registration is performed to
geometrically match the CT image to the MR image. We
then use the MR images as input to the trained model
to generate sCT images. Finally, the performance of the
model is analyzed by comparing the image intensities
between sCT and deformed CT. However, the dataset
inherently contained image registration uncertainty. In
addition, in the case of air pockets or fecal matter in
the bowel that may change in position between MR and
CT scans, the pixelwise difference metrics assess the
region as an error. Several studies of deep-learning-
based sCT models have tried to remove the impact of
mismatch of air pockets location by assigning the region

both CT and MR images with air or soft tissue or using
the CycleGAN model for the unpaired datasets.14–16

Even if the sCT algorithm well generates the inconsis-
tent regions between CT and MR images, the metrics
have difficulty evaluating the nonrigid organs and air
pockets. One of the solutions for these issues is the use
of a rigid phantom resembling the patients who ensures
consistency of the organ locations for deep learning
model verification.

As an application of the multimodality phantom, we
dosimetrically evaluated the sCT algorithm. An IMRT
plan was generated based on CTsim; then,the same plan
was copied for CTsyn. The study results indicated that
there was no remarkable clinical dosimetric difference
between the two plans. However, the phantom was not
designed for the dosimetric verification of the plan with
MR-compatible ion chambers or optically stimulated
luminescent dosimeters. Future work can be designed
with a modular phantom that incorporates inserts into
the dosimeter or radiochromic film for point or planar
dose verifications.

This study had several limitations. The design of the
phantom structure was rescaled to fit the 3D printer
size; nevertheless, no negative results in the gener-
ation of sCT images were observed. If the phantom
is to be widely employed in clinical procedures, a 3D
printer with a larger capacity can be used to increase
the geometric similarity with the patient case. In this
study, a phantom of the pelvic region was fabricated.
This area was selected because its phantom was rel-
atively simple to produce with 3D printing technology. A
phantom that closely resembled the patient organs was
necessary to appropriately evaluate the trained model
using patient images. Recently, sCT generation algo-
rithms have been applied to the study of the abdominal
area and other regions19,38,39; therefore, more complex
phantom fabrication will be necessary to evaluate the
algorithm in the future. Moreover, the tissue-surrogate
materials were selected based on the measurements
of the 0.35 T MR scanner with the TrueFISP sequence,
which is clinically available only in the ViewRay sys-
tem. If a sCT generation model was trained with images
acquired from a higher Tesla MR machine, such as an
Elekta Unity MR-linac system,it would be possible to use
the proposed procedure to evaluate the model in further
studies.

5 CONCLUSION

In this study, an anthropomorphic pelvic phantom, which
was physiologically and geometrically similar to the
patient’s organ, was fabricated using 3D printing tech-
nology; moreover, the sCT technique was evaluated
quantitatively.This proposed scheme is anticipated to be
useful for the quality assurance of deep-learning-based
algorithms that use CT and MR images in radiotherapy.
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