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Adaptation with transcriptional 
regulation
Wenjia Shi1, Wenzhe Ma2, Liyang Xiong1,3, Mingyue Zhang1,3 & Chao Tang1,3,4

Biochemical adaptation is one of the basic functions that are widely implemented in biological systems 
for a variety of purposes such as signal sensing, stress response and homeostasis. The adaptation 
time scales span from milliseconds to days, involving different regulatory machineries in different 
processes. The adaptive networks with enzymatic regulation (ERNs) have been investigated in detail. 
But it remains unclear if and how other forms of regulation will impact the network topology and 
other features of the function. Here, we systematically studied three-node transcriptional regulatory 
networks (TRNs), with three different types of gene regulation logics. We found that the topologies of 
adaptive gene regulatory networks can still be grouped into two general classes: negative feedback 
loop (NFBL) and incoherent feed-forward loop (IFFL), but with some distinct topological features 
comparing to the enzymatic networks. Specifically, an auto-activation loop on the buffer node is 
necessary for the NFBL class. For IFFL class, the control node can be either a proportional node or an 
inversely-proportional node. Furthermore, the tunability of adaptive behavior differs between TRNs 
and ERNs. Our findings highlight the role of regulation forms in network topology, implementation and 
dynamics.

Current biology has moved into a quantitative era. Mathematical models are increasingly used in researches to 
help elucidating underlying mechanisms of biological processes. Among different models, the biological network 
is a natural way to represent complicated biological regulations, and straightforward to translate into a mathe-
matical model. One interesting feature of network model is that the network topology and network function are 
related. For example, bistable1,2 and excitable systems3 often have positive feedback loops whereas oscillating 
systems often come with negative feedback loops4,5. The relationship has significant meaning to biology research 
because it shines light on understanding the complex regulation diagrams and predicts new regulations. Our pre-
vious study has shown that there is a relationship between biological function and network topology but it is not 
one-to-one mapping, instead, a small set of different network topologies can lead to the same function. For exam-
ple, the adaptation networks has either negative feedback loops or incoherent feedforward loops6. Other groups 
have also shown similar properties of function-topology relationship in other biological systems7–13. One remain-
ing question of this kind of study is whether specific regulation forms or rules could change the function-topology 
relationship. Different reactions such as phosphorylation, degradation and gene regulation have different time 
scales and regulation characteristics. Mathematically, different regulations are represented with different func-
tion forms. For example, enzymatic reactions follow Michaelis-Menten forms while gene regulations follow Hill 
functions.

Adaptation exists in a broad range of biological systems. Typical examples of adaptation include the adapta-
tion of signal transduction pathway14,15, adaptation of neuron activity16,17, stress response18–20, bacteria chemot-
axis21–23 and homeostasis24. In this work, we still use adaptation as the model system to study function-topology 
relationship of biological networks. A typical adaptation process contains two parts, a pulse phase indicating 
the sensing of stimulus, where we define a quantity- response to represent it, and a recovery phase indicating 
adaptation to the environment, where adaptation error is defined (Fig. 1A). Perfect adaptation is achieved if the 
output of the system recovers to the exact original value before stimulation. In our previous work, by investigating 
the whole three-node ERNs, we found two classes of network topologies that are capable of perfect adaptation: 
a negative feedback loop with a buffer node (NFBLB) and an incoherent feedforward loop with a proportioner 
node (IFFLP)6. Both of these two classes have an intermediate node which serves as a controller to determine the 
mechanism of adaptation. In the NFBLB class, the intermediate node is an integral feedback controller which 
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buffers the change of output by integrating the error of the output node. In the IFFLP class, the intermediate node 
is a proportioner which balances the influence of the input on the output by responding to input signal propor-
tionally (Fig. 1C).

Gene transcriptional expression changes in cellular adaptation to short- or long-term environmental changes, 
with extensive regulation occurring at the transcriptional level25,26. So here, we used the framework of enzy-
matic adaptation6 to study the general design principles of gene regulatory networks for adaptation and explored 

Figure 1. (A) Functional characterization of adaptation used in this study. (B) Models of transcriptional 
regulation with different logics. (C) Two families of perfectly adaptive networks among ERNs. The node A 
(white circle) and C (black circle) act as the input and output node, respectively. The node B (grey circle) is a 
control node which plays the role of an integrator in the NFBLB family and a proportioner in the IFFLP family. 
Right side is the transcriptional regulation model of IFFLP with AND logic.
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the differences affected by regulatory rules. We studied three different types of transcriptional regulation logics. 
For all the rules, we obtained the same two general classes of adaptive core topologies: negative feedback loops 
(NFBLs) and incoherent feedforward loops (IFFLs) as in the ERNs. However, there are important differences 
between the adaptive TRNs and ERNs, in terms of how the control node gets involved and tuning of the response.

Methods
Model Construction. Gene expressions are regulated by other genes’ products that work as transcription 
factors (TFs). Commonly more than one TF binds to the respective gene regulatory sequences27, with the involve-
ment of RNA polymerase complex, to determine the transcriptional activity. Simple logic model can be used to 
model multiple TF regulations28–31. In the following text, in characterizing a transcriptional network topology, 
every node stands for the transcriptional gene product and each link represents a transcriptional regulation by the 
gene product (as a TF) from which the link originates. The transcription activity is a function of the concentration 
of TFs. In equation (1), fx or dx

dt
 denotes the rate of concentration change of the gene product. We assume that gene 

activation is regulated while all the gene products undergo unregulated degradation. Gx is a function of all TF 
regulatory terms g, with the Hill function =

+
g A

A
A Ki

i
n

i
n n  and =

+
g I

K
I Kj

n

j
n n  denoting the ith activation and jth 

repression terms on gene x. vx is the maximal production rate of gene x. τx is the half-life of this gene product.

τ
= = ... ... −f dx

dt
v G g g g g x( , , , , )

(1)x x x A A I I
x

1 2 1 2

Here we considered three logics for multiple TFs (Fig. 1B): (1) AND logic, where gene expressions are only 
turned on when all the activators are at high concentrations and the repressors are at low concentrations; (2) 
AND&OR logic, in which turning on any of the activators is enough to turn on the downstream genes, provided 
that the repressors are low; (3) Competitive Inhibition logic, in which the relative weight of repressor and activa-
tor together determines the downstream gene activation. Here, activators and repressors compete for the same 
binding sites, and the repressors decrease the effect of activators instead of blocking gene expression. The IFFLP 
modeled with AND logic is shown in Fig. 1C as an example.

Results and Discussion
Computationally Searching for Circuits Capable of Adaptation with Transcriptional Regulation.  
Searching for adaptive topologies can be achieved by two complementary approaches. One approach is compu-
tational enumeration, which is feasible for relatively small-size networks. The other one is theoretical analysis 
around the system’s steady state, which can give rigorous conditions for perfect adaptation.

We firstly computationally searched all possible networks with three nodes: the input (A), the output (C), 
and the control (B) nodes. Each node can regulate three nodes (two other nodes and self), so that each network 
contains up to nine links (positive, negative or none regulation). We have 16038 networks in total (there are 19683 
topologies in the whole three-node network space, but the topologies that have no direct or indirect links from 
the input to the output are excluded). Each node has a maximal production rate v and a decay rate τ as parame-
ters, and each regulatory link has a Hill coefficient n and an activation/repression threshold K as parameters. For 
each network, 10,000 sets of parameters and three transcriptional regulatory logics are used in the ordinary dif-
ferential equations (ODEs) simulation. During our simulations, an architecture is referred as a functional solution 
of perfect adaptation when it has: adaptation error <0.005, response >0.2 (Input changes from 0.06 to 0.6). The 
main results do not change with different criteria for function (Fig. S1).

Adaptive TRNs Have Different Features and Parameter Constraints from ERNs. Our first ques-
tion is whether all the functional solutions also converge on the NFBLB and IFFLP families. We separated the 
functional solutions of all three logics into two families: the NFBL family, which includes all solutions that contain 
a NFBL but no IFFL; the remaining family, the rest topologies in functional solutions except for the NFBL family. 
Interestingly, the topologies in the remaining family all contain the skeleton of an IFFL. Thus the core families to 
achieve adaptation both in TRNs and ERNs are all NFBLs and IFFLs. However, when we looked into more topo-
logical details, we found there are also some differences.

We analyzed the simulation results under AND logic as an example. 425 out of 16,038 topologies are func-
tional, including 206 (48.47%) topologies belonging to the NFBL family and 219 (51.53%) the IFFL family 
(Fig. 2A and B). We separately clustered the networks from these two families using Hamming distance between 
architectures (Fig. 2C). Each column represents one specific regulation, and each row represents one architecture. 
The motifs extracted from each sub-cluster (listed on the right of each panel) indicate that: IFFLs work as a core 
structure and are very tolerable on additional regulations, and all the topologies in the NFBL family contain an 
auto-activation loop on regulatory node B (Fig. 2C).

To clearly figure out the differences between adaptive networks among TRNs and ERNs respectively, we then 
compared our clustering results with the simulation of ERNs (data from Ma et al., Fig. 2C), we found:

(1) The minimal solutions contain three links within three nodes. That is to say, neither one-node nor two-node 
network is capable of performing adaptation in both these two regulatory conditions.

(2) NFBLs and IFFLs are two families that can achieve adaptation in both these two regulatory conditions.
(3) An auto-activation on the buffer node in the NFBL family is necessary for TRNs but optional for ERNs. This 

auto-activation results in a special kind of adaptive network: negative feedback loop with an exponential 
buffer node (NFBLEB) which helps NFBLs buffer the adaptation error in a logarithmic way6 (detailed ex-
ample can be seen in next section). Meanwhile, all the negative feedback loops in both these two regulation 
conditions go through the buffer node rather than feedback from the output node to the input node directly.
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(4) All four types of IFFLs are adaptive in TRNs (Fig. 2C), while in ERNs there are only two (type 1 and 3) that 
are adaptive.

The simulation results of the other two transcriptional logics agree with the first 3 conclusions above, but differ 
in the 4th one: AND&OR logic has 3 types of adaptive IFFLs and Competitive Inhibition logic has only two types 
of adaptive IFFLs as in the enzymatic regulation (Fig. S2).

Mechanisms for Transcriptional Adaptation. Distinct topological features between TRNs and ERNs 
lead us to investigate the origin of these differences analytically. We addressed this question by performing a lin-
ear analysis of the transcriptional systems. Theoretically, the equations for any three-node network dA/dt = fA(A, 
B, C, I), dB/dt = fB(A, B, C), and dC/dt = fC(A, B, C) can be linearized around their steady state A*, B*, and C* 
(provided that the system has a steady state). The deviation ΔA, ΔB and ΔC from the steady state, when the input 
changes from I to I + ΔI, satisfy the following linearized equation:
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Figure 2. Comparison of adaptive networks with gene regulation and enzymatic regulation. (A) Categories 
of adaptive motifs. (B) Motifs compositions of adaptive solutions in TRNs. Bars in green and pink backgrounds 
are for NFBL and IFFL families, respectively. (C) Clustering results of adaptive TRNs (AND logic) and ERNs. 
The network motifs associated with each of the sub-clusters are shown on the right.
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The requirement for perfect adaptation is ΔC*  =  0, which means that after the input change the output value 
exactly returns to its original state. All the topologies satisfied the requirement fall into two classes that both have 
three nodes within (Fig. 3): (1) NFBLs with ∂fB/∂B =  0. At least one NFBL is required in this family (colored loop 
in Fig. 3B NFBL family); and (2) IFFLs with ∂fB/∂B < 0 (colored loop in Fig. 3B IFFL family)6. These conclusions 
have no restrictions on the specific form of the system’s function except that they should have stable steady states 
(see Supplementary materials for one and two- node system’s derivations). Thus the B node equation (equa-
tion (3)), which we denote as B-equation, plays a very important role for achieving perfect adaptation as ∂fB/∂B 
is the key point. The mathematical form of B-equation determines how the system achieves the requirement of 
perfect adaptation both in topological design and parameter constraints.

τ
= = −f dB

dt
v G A B C B( , , )

(3)B B
B

Exponential Buffer Node in the Negative Feedback Loop. In B-equation (equation (3)), there is a linear decay 
term. For NFBLs, the condition for perfect adaptation requires ∂fB/∂B = 0, which can be satisfied robustly if the 
production term of B-equation also contains the variable B so that it can be factored out:

τ
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The way to achieve this is to have node B positively regulating itself with nBB = 1 and B ≪ KBB. As an example of 
NFBL (Fig. 4A) with AND logic, the ODEs of the system are:

τ

τ

τ

=
+

−

=



 + +





−

=



 + +





−

dA
dt

v I
I K

A

dB
dt

v B
B K

C
C K

B

dC
dt

v A
A K

K
B K

C

(5)

A

n

n
IA
n

A

B

n

n
BB
n

n

n
CB
n

B

C

n

n
AC
n

BC
n

n
BC
n

C

IA

IA IA

BB

BB BB

CB

CB CB

AC

AC AC

BC

BC BC

If the buffer node B works with B ≪ KBB and in a non-cooperating form (the Hill coefficient being 1, the rate 
equation for B can be approximated by:
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where G(C) is a function of only C. So in steady state G(C*) = 1 and C* = constant, independent of the input. The 
node B integrates the relative difference between the output activity C and its input-independent steady-state 

value in a logarithm form: = ∫


 −



τ⁎ ⁎( )B t B e( ) dt1B

C t
C

nCB1 ( )

 (assuming KCB ≫ C for simplicity). Here, node B plays the 
role of an exponential integrator of the adaptation error. All the adaptive NFBLs share this characteristic.

Inversely Proportional Node in the Incoherent Feedforward Loop. For transcriptional IFFLs, adaptation is 
achieved by a balance between the transcriptional production rate change caused by two signal-transmitting 
pathways acting on node C and the linear decay of C. Thus at steady state the production rate should maintain 
constant that is independent of the input to balance the unchanged decay term, which means the co-regulators 
of output, node A and B must establish certain relationship to satisfy the above requirement. In the three-node 
network, the B-equation undertakes the task to establish this relationship (Fig. 3C). In the case of A activating B, 
a robust proportional relationship can be established with the regulatory TF working with A ≪ KAB:
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At steady state, k′A*n = B*, where ′ = τk v
K
B B

AB
n . In the case that A inhibits B, a robust inversely proportional relation-

ship can be established with A ≫ KAB:
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Figure 3. Theoretical analysis of TRNs. (A) The requirement of zero adaptation error around a stable steady 
state results in the equations that are shown for one-, two- and three-node networks. One- and two- node 
systems cannot satisfy the requirement, so there are no topologies to achieve adaptation in these two systems. 
Two kinds of three-node topologies can satisfy the requirement: NFBL and IFFL. (B) The NFBL family achieves 
perfect adaptation with ∂fB/∂B = 0 and the Jacobian determinant |J| < 0 (stability requirement). With the 
condition ∂fB/∂B = 0, the terms in the determinant |J| correspond to different feedback loops as colored in the 
figure. So at least one NFBL is required in this family. Two NFBLs would result in a more negative |J|, which can 
lead to a smaller adaptation error. No feedforward loop can be present in this family. The condition ∂fB/∂B = 0 
can be satisfied in the TRN model with the buffer node B auto-activating itself with Hill coefficient 1.  
(C) The IFFL family achieves perfect adaptation with ∂fB/∂B ≠ 0 and also |J| < 0, which implies ∂fB/∂B < 0. 
For this family, the links colored in the figure are necessary to be present and constitute an IFFL. Two opposing 
regulations on C need to be cancelled out which requires certain input-independent relationship between 
A and B at their steady state. The proportionality relationship with A activating B or inverse proportionality 
relationship with A inhibiting B can be established by the equation of node B.
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At steady state, A*nB* = k′, where τ′ =k v KB AB
n

B. These relationships lead to incoherent feed-forward loops with a 
proportional node (IFFLP) or an inversely proportional node (IFFLIP). Here, the node B can be a proportioner 
or an inverse proportioner, whereas in enzymatic regulation, B can only be a proportioner in IFFLP6.

Let us analyze one specific IFFLIP in detail (Fig. 4B). Assuming the AND rule, the ODEs of the system are:

Figure 4. The amplitude of response changes with parameters’ perturbations in two adaptation motifs. 
Each dot shows the result with a perturbation of the corresponding numbered parameter (circle and triangle 
for increase and decrease respectively). The performance of the system without perturbations is marked 
with the red star. Parameters are grouped into colored groups. Purple, blue and yellow for Hill coefficients, 
transcriptional thresholds and basic dynamic parameters, respectively. (A) The NFBLEB system. nBB is 
perturbed with 10% and other parameters with 50% increase and decrease. (B) The IFFLIP system. All the 
parameters are perturbed with 50% increase and decrease.
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with A ≫ KAB, the equation of node B becomes:
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Note that the Hill coefficients do not have to be 1, as long as they satisfy equation (12), the system will adapt. 
This more relaxed condition on Hill coefficient differs from that of the adaptive IFFLPs with enzymatic regulation 
where the Hill coefficients have to be 16.

Tuning Response of Adaptive TRNs. For an adaptive system, the transient response to an input change transduces 
information to the downstream molecules or pathways. Thus, the ability of tuning the response of an adaptive 
network is important. In the analysis above, we noticed that the adaptive NFBL and IFFL families have different 
parameter constraints both within TRNs and compared with ERNs. For the NFBLEB system, only the parameters 
in the auto-activation term in B-equation, KBB and nBB are critical for ensuring small adaptation errors. While for 
the IFFLIP system, constraints of more parameters are required to achieve adaptation. To investigate the tuna-
bility of the response for these two families, we performed a single parameter perturbation analysis. Specifically, 
we increased or decreased only one parameter each time by 20% or 50%, and monitored the adaptation behavior 
(Fig. 4). We (arbitrarily) grouped all the parameters into three groups: Hill coefficients n (purple), transcriptional 
thresholds K (blue), and the basic dynamic parameters (yellow), which include half-life τ and maximal produc-
tion rate v (Fig. 4).

As can be seen from Fig. 4A, for the NFBLEB system, a small adaptation error can be maintained with respect 
to changes of many parameters, with the exception of nBB. We zoomed in those parameter changes that resulted in 
small adaptation errors (grey region in Fig. 4A, which is shown on the right on a different scale). The most efficient 
parameters for tuning the response are τA and vA. The decrease of τA and vA decrease C, but also decrease the inhib-
itor B. The weaker inhibition from node B after the input change leaves more time for node C to increase tran-
siently, thus contributes to a larger response. The second best group is τB, vB and KAC. Decreasing τB or vB leads to a 
decrease in B, while an increase of KAC slows down the signal transmission from node A to C and decreases B at the 
beginning. Through the decrease of B, these perturbations leave more time for the output to transiently increase 
and thus contribute to a larger response. The Hill coefficients can also alter the response by changing the reaction 
dynamics. For example, the increase of nAC speeds up the transient increase of C, thus contributes to an increase of 
response. However, the Hill coefficient group shows weaker tunability than the other two groups. In summary, in 
this specific system, the concentration of the inhibitor B is sensitive to tune for the response. We rank the efficiency 
of tuning the response among parameter groups: KAC > KCB > KBC; τA > τB > τC (v and τ have similar effects). The 
more upstream in the signaling feedback loop, the more efficient to tune the response (In the loop A ->C->B->C, 
A is the first to receive the signal, B is the second one, C is the last one that needs to integrate A and B).

In Fig. 4B, for the IFFLIP system, a small adaptation error cannot be maintained with respect to changes of 
many parameters. We also zoomed in those parameter changes with relative smaller adaptation error for the 
IFFLIP system (grey region in Fig. 4B). The Hill coefficient group performs the worst because they should satisfy 
certain relationship mentioned in the previous section. Not all the transcriptional thresholds tolerate poorly 
in the perturbations, although they are all required to work in certain regions. Among them, KBC is a potential 
adjuster that can maintain a small adaptation error and tune the response. The decrease of KBC speeds up B’s 
activation on C and thus promote C’s transient increase (and vice versa). Meanwhile, owing to the inhibition by 
node A, B always maintains at low concentration, so it is easy for B to work with B ≪ KBC, which contributes to 
the tolerance of parameter perturbation for KBC. The basic dynamic parameters, especially τB, vB, τC and vC are 
efficient for tuning the response. Larger τB or vB increases B, thus B waits for longer time to be inhibited by A till it 
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reaches a low concentration and cannot activate node C. It leaves more time for C to transiently increase and leads 
to a larger response. vA and τA behave poorly with perturbations at maintaining a small adaptation error, because 
A needs to satisfy both A ≫ KAB (as an inhibitor of node B) and A  ≪ KAC (as an activator of node C). In summary, 
fewer parameters in the IFFLIP systems performed well at tuning the response than the NFBLEB system. The 
Hill coefficient group is the worst option to tune. Tuning the binding affinity of TF B of gene C, or changing the 
half-lives or maximal transcriptional rate of protein B and C can improve the IFFLIP system’s response.

The Roles of Transcription Logic. When a node is transcriptionally regulated by more than one link, 
different transcription logics have different mathematical forms, which may have different consequences on 
the topological requirement for adaptation. Following the theoretical analysis, we derived the minimal design 
table with three transcriptional logics (Fig. 5). Every minimal topology is labeled with yellow, pink and green 
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A A A A
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C

B
C

B
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A A A A

A A A A

A A A A

B B B B
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AND AND&OR Competitive Inhibition
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Parameter constraint
Unconstrained X<<K X>>K 
At least one of the two purple lines should 
satisfy X>>K

X is the concentration of regulating TF

Figure 5. Minimal topologies of perfect adaptation with three regulatory logics. Yellow, pink and green tags 
represent AND, AND & OR and Competitive Inhibition logics, respectively. Colored lines represent constraints 
on the parameters as indicated in the legend.
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tags representing its feasibility in AND, AND&OR, and Competitive Inhibition logics, respectively. There are 12 
NFBLs and 4 IFFLs in total, but not all of them are feasible for all logics.

For the NFBL family, there is one common feature that all NFBLs have an auto-activation of the buffer node B 
working with B ≪ KBB and nBB = 1.12 NFBLs are all capable of achieving perfect adaptation with the AND logic. 
For the AND&OR and Competitive Inhibition logics, no activation on node B other than the auto-activation is 
allowed. This is because with these logics (Fig. 1B), it is hard to factor out variable B with two or more activation 
terms in the B-equation. For the Competitive Inhibition logic, the requirement that each node should have at least 
one activator (Fig. 1B) further reduces the number of feasible topologies.

For the IFFL family, there are total of 4 topologies (Fig. 5). All 4 IFFLs are adaptable for the AND logic, two of 
which with proportional mechanism and the other two with inversely-proportional mechanism. For the AND&OR 
logic, node C can have at most one activating regulation, otherwise the summation of regulations from nodes A and 
B are hard to cancel out. This leaves 3 IFFLs for this logic. For the Competitive Inhibition logic, the simplest way to 
achieve a constant output is to establish a linear relationship between An and Bn from B-equation (the Hill coeffi-
cient n can be 1), and then to have the two nodes A and B regulating C oppositely (one activating and one inhibit-
ing). In the region A ≫ KAC and/or B ≫ KBC, the regulations from nodes A and B cancel out, making C a constant at 
steady state. This scenario only works with the proportional mechanism, so only two IFFLs are feasible for perfect 
adaptation with the Competitive Inhibition logic (Fig. 5 and see Supplementary materials for detailed derivations).

Discussion
Generating a comprehensive function-topology map can supply a complete design table as well as illustrate the 
underlying mechanism to achieve the function32,33. Nature provides a versatile toolbox for biochemical reactions 
and regulations. In this study, we focused on a well-studied function, perfect adaptation to investigate the conse-
quence of different regulation types and rules on topology, parameters constraints, and other functional features. 
We found that similar to the enzymatic networks, the topologies of the transcriptional adaptive networks belong 
to two general classes: negative feedback loop (NFBL) and incoherent feed-forward loop (IFFL). However, there 
are several distinct features for the adaptive TRNs. First, an auto-activation loop of the buffering control node 
with Hill coefficient 1 is necessary for the NFBL class. This is more restrictive compared with the adaptive ERNs of 
the NFBL class in which this loop is optional. The reason behind the auto-activation loop is that in TRNs there is 
always a (linear) decay term in each rate equation, including the one for the control node B. In order for the NFBL 
motif to satisfy the adaptation condition ∂fB/∂B = 0, the activation term in the rate equation should also contain a 
linear factor in B. Whereas, in ERNs the switch from activated to inactivated state can be done by other enzymes, 
so it is not necessary to have an auto-activation loop on B. On the other hand, there are more distinct topologies 
available for the adaptive TRNs of the IFFL class, in comparison to that of ERNs. For TRNs, the control node can 
be either a proportional node or an inversely-proportional node, although the tunability of the response in the 
IFFLIP class is quite limited. Adaptive TRNs also have fewer restrictions on Hill coefficients.

Biological systems often respond to signal changes in multiple time scales, e.g. with fast reactions at the begin-
ning and changes in gene expression at later stages34. In the budding yeast Saccharomyces cerevisiae, when facing 
with osmotic stress, cells adapt through the accumulation of glycerol35. They first close glycerol channels and 
rearrange metabolic activities in cytosol within minutes to promote glycerol accumulation, and then express 
more than 300 genes, including the cytosolic glycerol synthesis genes, GPD1 and GPD2, at a time scale about 
30 minutes and longer36. This adaptation process involves both enzymatic and transcriptional regulations34,37,38. 
Previous studies focused on the enzymatic regulations39,40, while it remains unclear what the role of transcription 
in this adaptive system is. Our study may provide some clues for transcriptionally involved adaptation systems.

From a synthetic biology point of view, type1 IFFL circuits with a proportional control node have been con-
structed and shown to perform adaptation41,42. It would be interesting to see if IFFLIP circuits can also be con-
structed and achieve the desired function.
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