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Abstract

Life expectancy of individuals in both developed and undeveloped nations continues to rise at an 

unprecedented rate. Coupled to this increase in longevity for individuals is the rise in the incidence 

of chronic neurodegenerative disorders that includes Alzheimer’s disease (AD). Currently, almost 

ten percent of the population over the age of 65 suffers from AD, a disorder that is presently 

without definitive therapy to prevent the onset or progression of cognitive loss. Yet, it is estimated 

that AD will continue to significantly increase throughout the world to impact millions of 

individuals and foster the escalation of healthcare costs. One potential target for the development 

of novel strategies against AD and other cognitive disorders involves the mammalian forkhead 

transcription factors of the O class (FoxOs). FoxOs are present in “cognitive centers” of the brain 

to include the hippocampus, the amygdala, and the nucleus accumbens and may be required for 

memory formation and consolidation. FoxOs play a critical role in determining survival of 

multiple cell types in the nervous system, drive pathways of apoptosis and autophagy, and control 

stem cell proliferation and differentiation. FoxOs also interface with multiple cellular pathways 

that include growth factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1 (WISP1), 

and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) 

that ultimately may control FoxOs and determine the fate and function of cells in the nervous 

system that control memory and cognition. Future work that can further elucidate the complex 

relationship FoxOs hold over cell fate and cognitive function could yield exciting prospects for the 

treatment of a number of neurodegenerative disorders including AD.
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 Assessing the role of FoxO transcription factors for Alzheimer’s disease 

and cognitive loss

 Increased life expectancy of the global population with increased prevalence of 
cognitive disorders

Life expectancy throughout the globe continues to rise in both developed nations as well as 

in large nations that are under development [1]. For example, in China, the number of 

elderly individuals will continue to grow from current levels of five percent to levels of 

approximately ten percent over subsequent decades [2]. Accompanied by this rise in age and 

lifespan of the world’s population is the increased incidence of chronic neurodegenerative 

disorders that includes Alzheimer’s disease (AD) [3, 4]. AD can be of familial or sporadic 

origin. Familial cases of AD occur as an autosomal dominant form of a mutated amyloid 

precursor protein (APP) gene as well as mutations in the presenilin 1 or 2 genes. Occurrence 

of familial cases of AD is relatively rare, usually presents prior to age 55 [5], and is present 

in less than 2 percent of all presentations [6]. Familial AD has been reported in 

approximately two hundred families throughout the world. Variable single-gene mutations 

on chromosome 1 lead to altered presenilin 2, mutations on chromosome 14 result in altered 

presenilin 1, and mutations on chromosome 21 lead to altered APP. For sporadic AD, almost 

ten percent of the population over the age of 65 suffers from this disorder [7].

 Targeting novel therapies for Alzheimer’s disease with forkhead transcription factors

With the advancing age of the global population and the progressive increase observed in 

life span, it is estimated that the incidence of sporadic AD will significantly increase 

throughout the world [7–9]. In addition, healthcare resources will be greatly impacted. In the 

Unites States (US) alone, greater than five million individuals are diagnosed with sporadic 

AD and approximately four million are under treatment at an annual cost of 3.8 billion US 

dollars. The onset and progression of AD is multifactorial. Underlying mechanisms that may 

lead to cognitive impairment involve cellular injury from β-amyloid (Aβ), tau, excitotoxicity, 

mitochondrial damage, acetylcholine loss, astrocytic cell injury, oxidative stress, and cellular 

metabolic dysfunction [10–20]. In light of the multiple pathways that may be responsible for 

the onset of AD, developing therapies are designed to focus on a variety of targets that 

include DNA methylation, deployment of monoclonal antibodies against Aβ, prevention of 

Aβ and tau aggregation, increased cytokine and growth factor signal transduction, 

mammalian target of rapamycin (mTOR) modulation, and the application of metal chelators 

[14, 15, 17, 18, 21–27]. However, included in this growing arsenal of potential targets are 

mammalian forkhead transcription factors of the O class. FoxOs may represent one of the 

most exciting and novel strategies for the development of therapies against AD.

 The FoxO family of proteins and modulation of FoxO transcription factor activity

More than one hundred forkhead genes and 19 human subgroups that range from FOXA to 

FOXS are now known to exist since the discovery of the Drosophila melanogaster gene 
forkhead [28]. Mammalian FOXO proteins that are of the O class of the forkhead box class 

transcription factors have the members FOXO1, FOXO3, FOXO4, and FOXO6 [29]. In 

relation to the nomenclature for forkhead box class transcription factors, an Arabic number 
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is used with the designation of "Fox", followed by a subclass or subgroup letter, and then the 

member number is listed within the subclasses of the Fox proteins [30]. For human Fox 

proteins, all letters are capitalized. Only the initial letter is listed as uppercase for the mouse 

and for all other chordates the initial and subclass letters are in uppercase [31–34]. FoxO 

proteins are transcription factors and bind to deoxyribonucleic acid [DNA] through the 

FoxO-recognized element in the C-terminal basic region of the forkhead DNA binding 

domain [35, 36]. It is important to note that multiple mechanisms may affect forkhead 

protein binding to DNA. These mechanisms can involve variations in the N-terminal region 

of the recognition helix, changes in electrostatic distribution, and blockade of nuclear 

translocation of FoxO proteins [37–40]. Following forkhead binding to DNA, target gene 

expression is repressed or activated through fourteen protein-DNA contacts with the primary 

recognition site located at α-helix H3 [41]. In addition, phosphorylation or acetylation of 

forkhead proteins can block FoxO activity and alter the binding of the C-terminal basic 

region to DNA to prevent transcriptional activity [42].

Phosphorylation of forkhead transcription factors can be controlled by the serine-threonine 

kinase protein kinase B (Akt) [7, 43–48]. Akt phosphorylates FoxO proteins that result in 

the binding of FoxOs to cytoplasmic 14-3-3 proteins. This action prevents nuclear 

translocation of FoxOs and blocks the transcription of target genes that promote apoptosis 

[49–52]. Other pathways in addition to Akt also can lead to the phosphorylation and 

inactivation of FoxO proteins. The serum- and glucocorticoid-inducible protein kinase 

(SgK), a member of a family of kinases termed AGC (protein kinase A/protein kinase G/

protein kinase C) kinases that includes Akt, phosphorylates FoxO3a to sequester forkhead 

proteins in the cytoplasm [53]. Since Akt and SgK phosphorylate FoxO proteins at different 

sites, it may be possible to exploit this knowledge to allow for increased options for 

controlling forkhead protein activity. Yet, some protein kinases such as mammalian sterile 

20-like kinase-1 (MST1) can phosphorylate FOXO proteins and disrupt the binding to 

14-3-3 which then allows FOXO nuclear translocation and subsequent death in neurons [38], 

further suggesting that the phosphorylation site of FoxO proteins is crucial in determining 

the activity of forkhead transcription factors.

Ubiquitylation and acetylation also control post-translational modification and activity of 

FoxO proteins [54, 55]. For example, Akt also leads to the ubiquitination and degradation of 

FoxO proteins through the 26S proteasome [55, 56]. Agents that can prevent the 

ubiquitination and degradation of FoxO proteins may serve as important entities to induce 

apoptotic cell death in cancers that can be tied to silent mating type information regulation 2 

homolog 1 (Saccharomyces cerevisiae) (SIRT1) [57, 58]. In a similar vein, SIRT1 activity 

also can lead to enhanced cell survival such as in the nervous system through modulation of 

FoxO activity [59–63].

FoxO proteins are acetylated by histone acetyltransferases that include p300, the CREB-

binding protein (CBP), and the CBP-associated factor. Once acetylated, FoxO proteins 

translocate to the cell nucleus but have diminished activity since acetylation of lysine 

residues on FoxO proteins has been shown to limit the ability of FoxO proteins to bind to 

DNA [64]. Furthermore, acetylation can increase phosphorylation of FoxO proteins through 
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Akt [64]. In contrast, increased activity of FoxO proteins such as during deacetylation can 

lead to cytochrome c release and caspase-induced apoptotic death [37, 48, 63, 65–68].

 FoxO proteins drive cellular survival through apoptosis and autophagy

FoxO proteins may play multiple roles in the nervous system [36, 69]. For example, 

forkhead transcription factors, such as FoxO3, may control cerebral endothelial vascular cell 

survival [70, 71], oxidative stress injury in mouse cerebellar granule neurons [72], neonatal 

hypoxic-ischemic encephalopathy [73], erythroid cell growth [74], and hippocampal 

neuronal injury [51, 75]. FoxO transcription factors also appear to be involved in memory 

formation and consolidation [76] especially since these transcription factors are present in 

several regions of the brain, such as the hippocampus, the amygdala, and the nucleus 

accumbens [77, 78].

FoxO proteins oversee cell survival in the nervous system through the programmed cell 

death pathways of apoptosis and autophagy [79, 80]. Under a number of conditions, FoxO 

transcription factors lead to apoptotic cell death that can involve oxidative stress [81]. In 

regards to FoxO1 or FoxO3a, inhibition or gene knockdown of these transcription factors 

leads to stroke reduction by estradiol [52], protects against microglial cell demise during 

oxidative stress [82] and β-amyloid (Aβ) exposure [83], promotes the protective effects of 

metabotropic glutamate receptors [65], increases neuronal cell survival through nicotinamide 

adenine dinucleotide (NAD+) precursors [66], and provides trophic factor protection with 

erythropoietin (EPO) [37, 50, 70, 74] and neurotrophins [84–86]. Other pathways also rely 

upon the down-regulation of FoxO to foster cellular survival and block apoptosis. Wnt 

signaling pathways [87] with Wnt1 in microglial cells of the central nervous system prevents 

apoptosis through the post-translational phosphorylation and sequestration of FoxO3a in the 

cytoplasm to prevent the loss of mitochondrial membrane permeability, cytochrome c 

release, Bad phosphorylation, and activation of caspases [68]. Wnt1 inducible signaling 

pathway protein 1 (WISP1), a target of Wnt signaling [88, 89], also protects neurons through 

the post-translational phosphorylation of FoxO3a, sequestration of FoxO3a in the cytoplasm 

with protein 14-3-3, and limiting the deacytelation of FoxO3a [51]. Neuroprotective trophic 

factors and cytokines, such as EPO [30, 37, 70], also use Wnt signaling to offer cellular 

protection through the inhibition of FoxO proteins. However, other studies show that in 

some cellular populations, such as mouse hematopoietic stem cells, the conditional deletion 

of FoxO1, FoxO3a, and FoxO4 can lead to an increase in reactive oxygen species [ROS] 

[90], suggesting that FoxO proteins in some environments can be beneficial in the regulation 

of oxidative stress [91, 92].

During the induction of autophagy [93, 94], FoxO proteins may enhance cellular survival. In 

experimental models of full-length mutant Huntingtin (mHtt) transgenic mice, ectopic 

expression of FoxO1 enhances autophagy and toxic mHtt protein clearance in neuronal cell 

cultures [95]. Activation of FoxO proteins and autophagy also may prevent apoptotic cell 

injury during oxidative stress such as in chondrocytes [96]. Loss of FoxO activity with 

reduction of autophagy during aging may contribute to neuronal dysfunction and the 

induction of Aβ production [97]. However, during development, repression of FoxO activity 

and blockade of autophagy may be necessary for improved cell survival. For example, loss 
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of Foxo that prevents autophagy induction and the combined inhibition of reaper pro-

apoptotic genes leads to long-term survival of neuroblasts and neurogenesis in centers 

responsible for learning and memory in Drosophila [98].

 FoxO proteins oversee stem cell survival development and differentiated cell survival

FoxO proteins can influence neuronal precursor development and the maintenance of 

neurons [3, 99]. Loss of Foxa1 and Foxa2 in mice results in reduced striatal dopamine 

metabolites, loss of dopaminergic cells, and progressive locomotor deficits [100]. In 

signaling pathways that involve WISP1, FoxO may be detrimental to stem cell development. 

WISP1 expression is up-regulated during stem cell migration [101] and affects induced 

pluripotent stem cell reprogramming [102, 103]. Since WISP1 requires β-catenin for the 

differentiation of marrow derived mesenchymal stem cells [104], FoxO may interfere with 

this process and bind to β-catenin that ultimately blocks stem cell development [88, 105]. In 

addition, the growth factor EPO [106] requires control of FoxO3a activity to promote 

eythroid progenitor cell development [74, 107–109]. Glial cell line-derived neurotrophic 

factor also inhibits FoxO1 and FoxO3a activity to promote rat enteric nervous system 

precursor development [110].

In differentiated cells of the nervous system, FoxO activation may impair cellular survival 

[111]. Toxin exposure in cortical neurons that activates FoxO3a and p27 (kip1) transcription 

leads to apoptosis [112]. In addition, FoxO3a association with cell cycle induction proteins 

has been suggested to result in neuronal apoptotic cell death [72]. Manganese toxicity, a 

potential factor in neurodegenerative disorders such as Parkinson’s disease [113], has been 

tied to astrocyte cell death through increased expression and activation of FoxO proteins 

[114]. Protection of cells in the nervous system occurs with the inhibition of FoxO activity 

and the blockade of FoxO translocation to the nucleus [115]. Furthermore, FoxO3 

inactivation is necessary during antioxidant administration for the protection of cortical 

neurons and hippocampal neuronal cell lines in the presence of excitotoxicity [116] and in 

experimental models of AD with Aβ toxicity [75]. Protection of primary hippocampal 

neurons by group I metabotropic receptors during oxidative stress also requires the 

phosphorylation and inactivation of FoxO3a and the blockade of caspase activation by 

FoxO3a [65]. EPO has been shown to offer neuronal and vascular cell protection [117, 118] 

through pathways that inactivate FoxO proteins, such as FoxO3a [50, 74]. Knockdown of 

FoxO3a and prevention of nuclear shuttling leads to the increased survival in microglial cells 

and neurons of the nervous system [51, 68]. Cortical neurons [119] and vascular cells [37, 

70, 120, 121] also are protected through inhibitory phosphorylation of FoxO3a and the 

nuclear export of this protein during periods of elevated glucose.

On the flip-side, FoxO protein activity is sometimes necessary for neuronal protection. FoxO 

proteins such as FoxO3 may be important for the control of autophagic flux in Parkinson’s 

disease [122]. A small degree of FoxO3 activity blocks nigral neuron cell death by reducing 

α-synuclein levels and fostering the accumulation of autophagic vacuoles containing 

lipofuscin [122]. FoxO3a may be necessary for cochlear auditory activity and the 

maintenance of synaptic function [123]. Increased FoxO protein expression prevents 

neurodegenerative disease and adverse behavioral deficits during selenium exposure that 
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may linked to the development of amyotrophic lateral sclerosis [124]. Activation of FoxO 

proteins also may be protective during aging such that loss of FoxO3a activity results in 

decreased manganese-superoxide dismutase and enhanced cell injury with aging [125]. Loss 

of FoxO results in decreased survival and locomotive activity in Drosophila models of Aβ 

toxicity [126]. Yet, it should be noted that the level of FoxO activity as well as associated 

pathways that involve SIRT1 may be critical for survival and function of cells in the nervous 

system. If one considers other systems of the body, it has been suggested that a controlled 

up-regulation of FoxO3a and SIRT1 expression in cardiac tissue may be beneficial during 

exercise [127]. Levels of SIRT1 that are less than 7.5-fold are associated with catalase 

expression that is also controlled by FoxO1a to possibly reduce cell injury during oxidative 

stress. In contrast, elevated levels of SIRT1 at 12.5-fold can result in cardiomyocyte 

apoptosis and decreased cardiac function [128].

 Determining the role of FoxO proteins in alzheimer’s disease and cognitive impairment

FoxO proteins are deacetylated by histone deacetylases, such as SIRT1 [56, 129–131], that 

can be beneficial under certain conditions. SIRT1-mediated deacetylation of FoxO1 leads to 

starvation-induced increases in autophagic flux that can maintain cardiac left ventricular 

function during periods of starvation [132]. SIRT1 can promote cortical bone formation with 

osteoblast progenitors by deacetylation of FoxOs and preventing FoxO protein from 

inhibiting Wnt signaling through the binding of FoxO to β-catenin [133]. In addition, it is 

important to note that SIRT1 also can modulate activity of FoxOs under other conditions to 

increase cell survival in the brain [15] through the inhibition of FoxOs [51, 70, 121, 134].

Sirtuins and FoxO proteins also may function synergistically to promote neuronal cell 

survival [3, 61]. In experimental cell culture models, FoxO proteins in conjunction with 

SIRT1 pathways may offer protection against Aβ toxicity [135]. Forkhead transcription 

factors, such as FoxO3a, may be dependent upon SIRT1 to reduce oxidative stress and cell 

injury during exposure to Aβ [136]. SIRT1-mediated deacetylation of FoxO1 can protect 

cells from ischemic injury [137]. In microglia, overexpression of SIRT3 has been linked to 

antioxidant expression through enhanced activity of FoxO3a [138]. FoxO proteins also can 

regulate SIRT1 transcription and increase SIRT1 expression [139]. Loss of FoxO and SIRT1 

activity with a reduction in autophagy activity, at least in models of Drosophila, may lead to 

increased neuronal induction of Aβ [97].

In other studies, FoxO proteins may assist with cell injury during Alzheimer’s disease. 

Nuclear translocation of FoxO3 is associated with DNA damage [140] and Aβ toxicity that 

leads to dephosphorylation and mitochondrial translocation of FoxO3a with subsequent 

mitochondrial dysfunction [141], suggesting that down-regulation of FoxO3a could block 

Aβ toxicity. In addition, astrocyte cell death during Aβ exposure has been associated with 

activation of FoxO3a and the pro-apoptotic target Bim and caspase 3 [142]. Histone 

deacetylase 2 [HDAC2] has been shown to form a physical complex with FoxO3a that plays 

a role with oxidative stress-induced cerebellar granule neuron apoptosis [72]. Inhibition of 

forkhead transcription factor activity protects against oxidative stress and A toxicity [83, 

126] that may point to new therapeutic targets for Alzheimer’s disease [7]. Furthermore, 
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blockade of a calcineurin/FoxO3 interaction in astrocytes during Aβ exposure may decrease 

pro-inflammatory cytokines and protect neurons [143].

 Future perspectives

Mammalian forkhead transcription factors of the FoxO family offer exciting prospects for 

the treatment of cognitive neurodegenerative disorders and AD. FoxOs are present in 

multiple regions of the brain that can influence cognition and memory to include the 

hippocampus, the amygdala, and the nucleus accumbens. In addition, FoxOs may be 

necessary for memory formation and consolidation. In regards to cell survival, FoxOs 

control both apoptotic and autophagic pathways. For the most part, limiting FoxO activity is 

necessary to block apoptotic cell death. However, the degree that specific FoxO protein 

activity is reduced appears to be critical, since under some circumstances FoxO activity is 

necessary to protect against oxidative stress. In addition, fostering the induction of 

autophagy by FoxOs is required for conditions that involve neurogenesis and memory 

development. FoxOs are intricately involved with multiple pathways that include growth 

factors, such as EPO and neurotrophins, Wnt signaling, WISP1, and SIRT1. With each of 

these pathways, post-translational modification of FoxO proteins and subsequent FoxO 

cellular activity can influence how FoxOs drive cellular survival and potentially affect 

cognitive function. Future work that continues to tease apart the complex relationship that 

FoxOs hold for cognitive function should bear significant fruits for the development of new 

strategies to treat neurodegenerative disorders such as AD.
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