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Abstract
Amazonia combines semi-continental size with difficult access, so both current ranges 
of species and their ability to cope with environmental change have to be inferred 
from sparse field data. Although efficient techniques for modeling species distribu-
tions on the basis of a small number of species occurrences exist, their success depends 
on the availability of relevant environmental data layers. Soil data are important in this 
context, because soil properties have been found to determine plant occurrence pat-
terns in Amazonian lowlands at all spatial scales. Here we evaluate the potential for 
this purpose of three digital soil maps that are freely available online: SOTERLAC, 
HWSD, and SoilGrids. We first tested how well they reflect local soil cation concentra-
tion as documented with 1,500 widely distributed soil samples. We found that meas-
ured soil cation concentration differed by up to two orders of magnitude between 
sites mapped into the same soil class. The best map-based predictor of local soil cation 
concentration was obtained with a regression model combining soil classes from 
HWSD with cation exchange capacity (CEC) from SoilGrids. Next, we evaluated to 
what degree the known edaphic affinities of thirteen plant species (as documented 
with field data from 1,200 of the soil sample sites) can be inferred from the soil maps. 
The species segregated clearly along the soil cation concentration gradient in the field, 
but only partially along the model-estimated cation concentration gradient, and hardly 
at all along the mapped CEC gradient. The main problems reducing the predictive abil-
ity of the soil maps were insufficient spatial resolution and/or georeferencing errors 
combined with thematic inaccuracy and absence of the most relevant edaphic varia-
bles. Addressing these problems would provide better models of the edaphic environ-
ment for ecological studies in Amazonia.
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1  | INTRODUCTION

Information on habitat preferences of species is important to under-
stand biogeography and macroecology, and to make justified conser-
vation decisions and land use planning (Margules & Pressey, 2000). 
Amazonia is the world’s largest tropical rainforest and an important 
repository of species diversity, but it is still poorly explored by re-
searchers (Feeley, 2015; ter Steege et al., 2016; Zappi et al., 2015). 
Recently, climate change has raised concerns about species tolerances 
to the changing environment and possible shifts in species distribu-
tions (Feeley & Silman, 2016). Mapping suitable habitats for species 
with different habitat requirements would help to delimit a network 
of strategically placed conservation units that collectively represent 
the heterogeneity within the biome. However, a major practical prob-
lem is that field observations for biotic and abiotic data available for 
species distribution modeling are scanty and geographically biased 
(McMichael, Matthews-Bird, Farfan-Rios, & Feeley, 2017).

Recent advances in Geographic Information Systems (GIS), statisti-
cal techniques, and in the availability of biodiversity and environmen-
tal databases have inspired a rapid development in the modeling of 
species distributions (Barbosa & Schneck, 2015). Species distribution 
models (SDMs) in data-rich continents and ecosystems can take ad-
vantage of a broad range of environmental variables and large num-
bers of species records (Mod, Scherrer, Luoto, & Guisan, 2016). At the 
same time, semi-continental areas such as Amazonia suffer simulta-
neously from poor species data coverage, which would make SDMs 
especially important, and from limited availability and poor accuracy of 
environmental data layers, which renders the results of such analyses 
less reliable.

Climatic layers have been the most widely used variables in broad-
scale SDMs both because climatic factors are an important environ-
mental determinant of species ranges (Feeley, 2012) and because 
climatic data are readily available in digital format (e.g., WorldClim; 
Hijmans, Cameron, Parra, Jones, & Jarvis, 2005). Variation in rainfall 
seasonality indeed seems to affect species distributions in Amazonia 
(Esquivel-Muelbert et al., 2016; ter Steege et al., 2006; Toledo et al., 
2011). However, climatic variation is unlikely to be the only (or even 
the main) cause of compositional variation, especially in the central 
parts of Amazonia, where climate is most humid and least seasonal. 
Several studies have indeed found soil factors to be of greater impor-
tance than climatic factors in shaping plant communities in Amazonia 
(ter Steege et al., 2006; Tuomisto & Poulsen, 1996; Tuomisto, Zuquim, 
& Cárdenas, 2014; Zuquim et al., 2012). In particular, the concentration 
of base cations in the soil (Ca, Mg, K, and Na) has been strongly linked 
to floristic variation across the lowlands (Higgins et al., 2011; Phillips 
et al., 2003; Pitman et al., 2008; Tuomisto, Ruokolainen, Aguilar, & 
Sarmiento, 2003; Tuomisto et al., 2016). It has also been suggested 
that niche partitioning along the soil cation concentration gradient is 
a mechanism that promotes speciation and regional coexistence of 
closely related species (Fine, Daly, & Cameron, 2005; Tuomisto, 2006).

In spite of their physiological importance and proven relationships 
with plant distributions, edaphic variables have rarely been used in 
SDMs. This may be either due to the low resolution and accuracy of 

the available soil maps or the generally held idea that soils are only 
relevant at the local scale (Coudun, Gégout, Piedallu, & Rameau, 2006; 
Grunwald, Thompson, & Boettinger, 2011). However, edaphic vari-
ables have recently been shown to improve the explanatory power of 
SDMs across European landscapes (Bertrand, Perez, & Gégout, 2012; 
Dubuis et al., 2013). In Amazonia, the need of digital soil maps and 
other edaphic GIS layers has intensified due to rapid environmental 
changes and the concern about the current status of soil resources and 
the biodiversity associated with them (Grunwald et al., 2011; Laurance 
et al., 2002). Increasing understanding of the tight relationship be-
tween plant species occurrences and soil properties also motivates the 
use of edaphic GIS layers for predicting the distributions of plant spe-
cies. Indeed, a recent study made inferences about the relative impor-
tance of past human influences and current environmental effects on 
the distribution patterns of Amazonian trees using Cation Exchange 
Capacity (CEC) values obtained from a digital soil map (Levis et al., 
2017). The main challenge is that soil properties can vary considerably 
over small distances and depths (Lips & Duivenvoorden, 1996; Luizão 
et al., 2004; Quesada et al., 2011), and the procedures to interpolate 
between scanty primary soil data localities might produce maps whose 
accuracy is low at the scales that are relevant for the study at hand.

Amazon-wide soil maps are currently available digitally. Three of 
them have been used in species diversity assessments. The global 
Soil and Terrain Database (SOTER) is a well-known polygon-based 
map. The version for Latin America and the Caribbean (SOTERLAC; 
Dijkshoorn, Huting, & Tempel, 2005) is a compilation of soil informa-
tion that has been put together over several decades and it provides 
a soil map with a minimum map scale of 1:1 million. The Harmonized 
World Soil Database (HWSD; Nachtergaele, Velthuizen, Verelst, & 
Wiberg, 2012) provides a raster map with 1-km spatial resolution. It is 
based on the same data as SOTER but includes also information from 
national soil databases. Rather than classifying each pixel to a single 
soil type, HWSD provides a coverage probability for each soil class in 
each pixel. Another raster map is SoilGrids (Hengl et al., 2014, 2017), 
which has a 250-m spatial resolution and provides chemical and phys-
ical soil variables in addition to occurrence probabilities for soil classes. 
The SoilGrids information is derived from statistical modeling of soil 
properties, and the interpolation between actual soil profiles was done 
using machine learning.

Recently, digital soil layers have started to be used for modeling 
different aspects of biodiversity in the Neotropics (Albuquerque & 
Beier, 2015; Kissling et al., 2012; Levis et al., 2017; McMichael, Palace, 
& Golightly, 2014; McPherson, 2014; Poorter et al., 2015; Thomas, 
Alcázar Caicedo, Loo, & Kindt, 2014). In these studies, either the num-
ber of soil classes was used as an indicator of habitat heterogeneity or 
soil CEC was extracted from the maps and used as an explanatory vari-
able in data analyses. However, validation of digital soil maps depends 
on the availability of local soil information, so the thematic accuracy 
of the information that the maps provide for poorly sampled areas 
such as Amazonia may be low when compared to other parts of the 
globe (Grunwald et al., 2011; Hengl et al., 2014, 2017; Sollins, 1998). 
This raises the question: How well will the predictions of species oc-
currences based on soil maps reflect the actual associations between 
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species and soil properties? The inherent accuracy issues of soil maps 
have been discussed elsewhere (Brevik et al., 2016; Grunwald et al., 
2011; Hartemink, Krasilnikov, & Bockheim, 2013; Palm, Sanchez, 
Ahamed, & Awiti, 2007), so here we focus on those aspects that are 
most relevant when using digital soil maps to infer species edaphic 
niches.

Evaluating to what degree species niches may be reconstructed 
incorrectly due to problems in environmental data layers requires spe-
cies data that combine standardized taxonomy with field-measured 
environmental data, and such data are sparse (ter Steege et al., 2016). 
Here we use a dataset on fern species occurrences and soil cation 
concentration that has both broad geographic coverage and high 
taxonomical consistency. We use these data to determine edaphic 
preferences of thirteen plant species using both field data and infor-
mation extracted from the three digital soil maps. We then test the 
correspondence between the results obtained with the different data 
sources. We specifically ask (1) if soil classes mapped in SOTERLAC, 
HWSD, and SoilGrids can be used as surrogates of local soil cation 
concentration within the Amazon rain forest biome; (2) how well the 
information extracted from digital soil maps reflects species edaphic 
affinities as inferred from field data; and (3) what are the current ca-
veats when using digital soil maps to determine plant species niches 
across Amazonia.

2  | METHODS

2.1 | Digital soil data

We used data from three digital soil maps in our analyses: SOTERLAC, 
HWDS, and SoilGrids. The SOTERLAC v2.0 soil map was downloaded 
from the FAO-ISRIC webpage (http://geonode.isric.org/layers/
geonode:soter_lac_map_unit, downloaded in December 2016). The 
minimum map scale is 1:1 million for Brazil and Peru and 1:5 million for 
the rest of Latin America. SOTERLAC uses soil classes, topology, and 
terrain characteristics to delineate polygons, having the Digital Chart 
of the World as a cartographic base. Each polygon has a soil class at-
tribute (e.g., Haplic Acrisols) as defined by the World Reference Base 
for soil resources (FAO 2006).

The Harmonized World Soil Database v1.1 (HWSD) is composed 
of a set of layers that we downloaded from Worldgrids portal of 
the ISRIC-World Soil Information (http://www.worldgrids.org/doku.
php?id=wiki:layers, downloaded in December 2016). Each of the 30 
layers corresponds to one of the WRB-FAO dominant soil classes, with 
the pixel values expressing its probability of occurrence at a resolu-
tion of 30 arc-seconds (ca. 1 km at the Equator). HWSD scale is 1:5 
million, and it uses harmonized soil classes and soil properties com-
bined from national and regional databases. The grid cells provide the 
same attributes as the original soil maps used for the harmonization 
(Nachtergaele et al., 2012).

SoilGrids has two versions, one at 1-km resolution and the other at 
250-m resolution. We used the 250-m data, which is hereafter simply 
referred to as SoilGrids (Hengl et al., 2014, 2017). SoilGrids is a pixel-
based map composed of a set of layers in raster format that contain 

either information related to the soil classification or to specific phys-
ical and chemical properties. The layers with data on the WRB-FAO 
soil classes (layers coded as TAXNWRB) were downloaded from the 
SoilGrids portal (http://soilgrids.org, downloaded in December 2016). 
As with HWSD, each soil class is stored as a separate layer and each 
pixel has a value corresponding to the probability of occurrence of that 
soil class. SoilGrids was produced by machine learning algorithms and 
it used 158 covariates as model input.

The soil class attribute of the SOTERLAC polygons is based on a 
more detailed soil classification scheme than the HWSD dominant soil 
class data and SoilGrids soil classes. To allow comparison among the 
datasets, we added to each SOTERLAC polygon a new soil class attri-
bute based on the WRB-FAO dominant soil classes. This was obtained 
by applying the aggregation of soil classes proposed by Quesada et al. 
(Quesada et al., 2011). The soil classes and acronyms that are relevant 
to this study are listed in the Appendix 1, Table A1.

None of the three soil maps contains information on the concen-
tration of exchangeable base cations (Ca, Mg, and K) for Amazonia, 
but SoilGrids provides a layer with data on cation exchange capac-
ity (CEC, in cmol(+)/kg). The concentration of exchangeable bases is 
a quantitative measure of the availability of these nutrient cations in 
the soil. In contrast, CEC measures the overall potential of the soil to 
exchange cations, including the acid aluminum, which is not a plant 
nutrient. Out of the CEC layers that are available in SoilGrids, we 
downloaded CEC values as estimated for the top 5 cm of soil (layer 
CECSOL_M_sl2_250m_l1), as also our field data were based on sur-
face soil samples.

2.2 | Field data

We carried out fieldwork in non-inundated (terra firme) forests in 
lowland (<400 m elevation) Amazonia in the context of two originally 
independent research programs. Most of the western Amazonian 
data were collected by the Amazon Research Team of the University 
of Turku (hereafter referred to as UTU), and most of the central 
Amazonian data by the Brazilian Program of Biodiversity Research 
(hereafter referred to as PPBio). Within each program, soil sampling 
and quantitative fern inventories were done using plots of a fixed sur-
face area, but the length, shape, and topographical orientation of the 
plots differed between programs. All plots were georeferenced using 
coordinates taken with a handheld GPS in the field.

The PPBio inventories included 326 permanent plots of 
250 m × 2 m. These were established along the terrain isoclines in 
order to minimize local soil heterogeneity (Magnusson et al., 2005). 
In each plot, six surface soil samples (the top 5 cm of the mineral soil) 
were taken at every 50 m and bulked to obtain a single composite sam-
ple. The soil samples were analyzed for exchangeable Ca, K, Mg in the 
Plant and Soil Thematic Laboratory of Brazilian National Institute for 
Amazonian Research (LTSP-INPA) using the Mehlich I protocol (KCl 1N 
method; Donagena, Campos, Calderano, Teixera, & Viana, 1997). For 
simplicity, the concentration of Ca, Mg, and K as expressed in cmol(+)/kg  
will henceforth be referred to as soil cation concentration. PPBio data 
are available at https://ppbio.inpa.gov.br/repositorio/dados.

http://geonode.isric.org/layers/geonode:soter_lac_map_unit
http://geonode.isric.org/layers/geonode:soter_lac_map_unit
http://www.worldgrids.org/doku.php?id=wiki:layers
http://www.worldgrids.org/doku.php?id=wiki:layers
http://soilgrids.org
https://ppbio.inpa.gov.br/repositorio/dados
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The UTU inventories included 311 temporary line transects that 
were 5 m wide and either 500 m or 1,300 m long. The transects were 
generally perpendicular to terrain isoclines in order to maximize local 
soil heterogeneity (Tuomisto et al., 2003). Composite surface soil 
samples (top 5 cm of the mineral soil) were taken at about 200-m in-
tervals such that they represented the topographical extremes within 
the transect. Each soil sample consisted of five subsamples collected 
within an area of about 5 m by 5 m and bulked. For the purposes 
of the present paper, we extracted 150-m-long segments from the 
UTU transects. Each of these 879 plots contains exactly one com-
posite soil sample, and if adjacent plots would have overlapped, one 
of them was excluded. This improves the accuracy of the soil data in 
relation to the plant occurrence data. The soil samples were analyzed 
for soil cation concentration at MTT Agrifood Research (Jokioinen, 
Finland) using extraction in 1 M ammonium acetate (van Reeuwijk, 
1993). Although concentration of Na was analyzed for the UTU sam-
ples, it is not used here, because it was not available for the PPBio 
samples.

In addition, we used published data on soil cation concentra-
tion associated with the SOTERLAC database v2.0 (Batjes, 2005; 
Dijkshoorn et al., 2005; hereafter referred to as SOTERLAC) from 300 
soil profiles across Amazonia. Some of the available data concerned 
deeper soil horizons, but we only used soil samples taken within  
the topmost 30 cm. The laboratories and procedures used to analyze 
the SOTERLAC soil samples are listed in the SOTERLAC metadata. 
The spatial distributions of the data points obtained from the three 
soil datasets (UTU, PPBio, and SOTERLAC) are shown in Figure 1. In 

general, nutrient stocks in Amazonian soils are higher in the top 5 cm 
than in deeper soil horizons (Johnson, Vieira, Zarin, Frizano, & Johnson, 
2001; Quesada et al., 2011), so it is possible that the SOTERLAC soil 
samples give slightly smaller cation concentrations for similar soils 
than the UTU and PPBio samples, but we do not expect this to signifi-
cantly bias the analyses.

In addition to soil data, both UTU and PPBio plots provided data 
on plant species occurrences. Here we focus on thirteen fern taxa 
that fulfill the following criteria: 1) They were well represented in 
both datasets; 2) earlier studies have found them to be indicators 
of specific parts of the soil cation concentration gradient (Tuomisto 
& Poulsen, 1996; Tuomisto, Ruokolainen et al., 2003; Zuquim et al., 
2014); 3) they collectively span that gradient; and 4) they are easy 
to identify, which makes it possible to combine the PPBio and UTU 
data without having cross-checked voucher specimens. The se-
lected species were as follows: Adiantum pulverulentum, Adiantum 
tomentosum, Cyathea pungens, Cyclopeltis semicordata, Lindsaea 
guianensis, Pteris pungens, Saccoloma inaequale, Schizaea elegans, 
Thelypteris macrophylla, Trichomanes elegans, and Trichomanes mar-
tiusii. In addition, we included Metaxya and Triplophyllum at the ge-
neric level: Each has only a few closely related species that have 
similar distributions along the soil cation concentration gradient and 
are morphologically so similar that they can easily be confused in 
the field. In each plot, all terrestrial fern individuals were recorded 
that had at least one leaf longer than a predefined minimum (5 cm 
for PPBio [but see (Zuquim et al., 2012) for exceptions], 10 cm for 
UTU).

F IGURE  1 Distribution of the 1505 
surface soil samples used in this study (879 
samples from UTU, 326 from PPBio, and 
300 from the SOTERLAC database (Batjes, 
2005). Limits of Amazonia are indicated by 
the orange line (Eva & Huber, 2005)
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2.3 | Correspondence between soil classes and local 
soil data

Because soil cation concentration has consistently emerged as a 
good predictor of plant species occurrence patterns, we first as-
sessed if the mapped soil class information that is available in 
SOTERLAC corresponds with the soil cation concentration values 
measured in the soil samples of UTU, PPBio, and SOTERLAC. Each 
soil sample was assigned to a soil class on the basis of its coordi-
nates. This allowed both assessing the variability within the mapped 
soil classes and testing for differences in mean soil cation concentra-
tion between them. The latter was done using ANOVA followed by 
Tukey’s test.

We used multiple linear regression models to evaluate how well 
local soil cation concentration can be predicted using the soil class 
probabilities of HWSD and SoilGrids, and the CEC values of SoilGrids. 
We built separate models for HWSD and SoilGrids, with and with-
out CEC. Soil cation concentrations obtained from UTU, PPBio, and 
SOTERLAC field samples were the response variable, and initial model 
configuration had as explanatory variables all the downloaded soil 
classes. The significant variables of each model were selected by a 
stepwise forward–backward procedure. We identified the best model 
with the lowest Akaike information criterion (AIC). We used the pre-
dicted soil cation concentrations from these models to reconstruct 
species–soil associations. These analyses were carried out separately 
for the UTU, PPBio, and SOTERLAC soil data, as well as all three soil 
datasets combined.

2.4 | Correspondence of the geographic limits of soil 
classes with landscape features

As the SOTERLAC map is based on polygons, the soil classes are 
clearly defined by borders. Although the HWSD is a pixel map, soil 
class probabilities in them reflect broader patterns similar to those in 
SOTERLAC. This makes it possible to check if such landscape features 
that are typically associated with specific soil types actually match 
the mapped distribution of those soil types. We focused on the con-
trast between non-inundated (terra firme) areas and the floodplains 
of major rivers, because the limit between the two is readily identi-
fiable in SRTM (Shuttle Radar Topography Mission) data, and flood-
plains typically have such soil types that rarely occur in terra firme 
(e.g., Gleysols and Fluvisols). We used ArcGIS v10.1 to overlay the soil 
maps and SRTM. Then, we visually scanned through the Amazon basin 
to assess how well the floodplain-associated soil classes matched the 
extent of the floodplains as interpreted from SRTM. All data layers 
used the same datum (WGS84) and projection (Lat/Long).

2.5 | Species affinities to soil properties

To estimate where the abundance of each taxon peaks along the soil 
cation concentration gradient, we calculated the soil cation concentra-
tion optimum for every taxon (sensu ter Braak & van Dam, 1989). This 
equals the weighted average of the soil cation concentration values 

in those plots where the taxon occurred, with the taxon’s abundance 
used as the weight (eq. 4 in ter Braak & van Dam, 1989). In addition, 
we calculated a tolerance for each taxon as the root mean squared 
error (RMSE) around the optimum. This was done separately for the 
soil cation concentration values that had been measured from field 
samples and those values that were predicted with multiple regression 
models on the basis of HWSD and SoilGrids. For comparison, we also 
calculated optima and tolerances for CEC as extracted from SoilGrids. 
The rank correlation between the field-based and model-based op-
tima was quantified using Kendall’s tau.

All data analyses were performed in R using code written by 
GMM and the packages vegan (Oksanen et al., 2015), rioja (Juggins, 
2015), ggplot2 (Wickham, Chang, & Wickham, 2013), dplyr (Wickham 
& Francois, 2016), maptools (Bivand & Lewin-Koh, 2016), and rgdal 
(Bivand, Keitt, & Rowlingson, 2016).

3  | RESULTS

3.1 | Soil cation concentration and mapped soil 
classes

The SOTERLAC soil dataset covered Amazonia more evenly than the 
other datasets did (Figure 1), and the majority of the soil classes in 
the SOTERLAC soil map were represented by at least one SOTERLAC 
soil profile. In contrast, less than half of the SOTERLAC soil classes 
were represented in the UTU and PPBio soil datasets (Figure 1). For 
example, soils that are typically found along rivers, such as Fluvisols 
and Gleysols, were absent in the PPBio dataset because the PPBio 
sampling was concentrated in interfluvial areas.

Almost all SOTERLAC soil classes had broad ranges of soil cat-
ion concentration, and soil samples assigned to the same soil class 
could differ in cation concentration by up to two orders of magnitude 
(Figure 2, Table A1). Nevertheless, soil classes with the highest soil cat-
ion concentration values were significantly different from those with 
the lowest values (Table 1). The correlation between field-measured 
soil cation concentration and CEC from SoilGrids was statistically 
significant but weak (Pearson’s r = 0.106, p < .001). The explanatory 
power (adjR2) of the multiple regression models using the HWSD or 
SoilGrids soil classes as predictors of field-measured soil cation con-
centration ranged 0.25–0.32 for the UTU data, 0.38–0.57 for the 
PPBio data, 0.29–0.42 for the SOTERLAC data, and 0.20–0.23 for the 
combined data (Table 2). Models based on HWSD had consistently 
better predictive power than those based on SoilGrids, but including 
or excluding CEC made little difference.

The visual comparison of the SOTERLAC and HWSD soil maps with 
SRTM elevation data revealed severe georeferencing problems. Soil 
classes typical of inundated areas (Gleysols, Fluvisols) were displaced 
by up to 20 km from the river floodplains they were obviously meant 
to follow, and were instead mapped onto areas that the SRTM shows 
to be non-inundated (Figures 3 and 4a). This causes soil samples from 
these areas to get associated with the wrong soil class in the numerical 
analyses, which can significantly increase the range of soil cation con-
centration values associated with the affected soil classes. Although 
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HWSD has a higher nominal resolution than SOTERLAC (1-km pixel 
vs. large polygons), it suffers from the same georeferencing problems. 
In this respect, SoilGrids has corrected these issues (Figure 4b).

Another potential source of inaccuracy is that an area may have more 
heterogeneous soils than is apparent from the soil maps. We assessed 
this in the non-inundated area around Iquitos, Peru, which we know 

F IGURE  2 The distribution of soil cation concentrations as measured in soil samples of three different datasets (SOTERLAC, UTU, and 
PPBio) within soil classes as represented in three digital soil maps of Amazonia (SOTERLAC, SoilGrids, and HWSD). In (a) and (b), the colored 
lines indicate the total range of cation concentration values, the small black dots the values measured in individual soil samples, and the open 
circles the corresponding means. In (c) and (d), each colored dot corresponds to a soil sample, and dot size is proportional to the probability that 
the corresponding pixel in the digital soil map contains the indicated soil class. Only soil classes that were represented in UTU and/or PPBio data 
are shown. Soil classes are ordered by their mean cation concentration value as calculated using all soil sample data. For explanations of the soil 
class acronyms in (a) and (c), see Appendix 1, Table A1
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from field experience to contain a mosaic of soil types ranging from ex-
tremely poor white sands (Arenosols) to cation-rich clay soils (Alisols). 
However, the spatial resolution of the SOTERLAC map is not sufficient 
to separate these edaphically contrasting patches into different polygons 
(Figure 4a). Therefore, the SOTERLAC soil classes that are assigned to 
the large polygons close to Iquitos necessarily receive broad cation con-
centration ranges. For example, the measured cation concentration in 
soil samples taken within a single polygon ranged 0.12 – 37.59 cmol/kg  
for Haplic Acrisols (ACh) and 0.30 – 22.33 cmol/kg for Gleysols (GLe).

3.2 | Optima and tolerances of taxa along 
soil gradients

When based on the soil cation concentration gradient derived from 
actual soil samples, the tolerances of the fern taxa were narrow and 
the taxon optima were well distributed in both the PPBio and UTU 
datasets. In addition, the rank orders of the taxon optima were almost 
identical (Figure 5a, Table 3).

When taxon optima were calculated based on the soil cation 
concentration gradient predicted using the HWSD and SoilGrids soil 
class probabilities (Table 3, Figure 5c,d), relatively similar results were  
obtained than with the actual soil sample data. The rankings of taxon op-
tima based on these two approaches were highly correlated both for the 
UTU and the PPBio data separately and for the combined dataset (UTU: 
Kendall’s tau = 0.67–0.82, p < .001; PPBio: Kendall’s tau = 0.64–0.77, 
p < .002; combined: Kendall’s tau = 0.61–0.66, p < .001;). However, the 
optima based on predicted soil cation concentration values were less 
spread out along the gradient than the optima based on measured val-
ues. Consequently, the predicted tolerances overlapped more broadly 
between species than the measured tolerances did.

Taxon optima along the CEC gradient derived from SoilGrids lacked 
consistency between the UTU and PPBio datasets (Figure 5b). Moreover, 
the tolerances of the individual taxa covered a much larger proportion 
of the mapped CEC gradient than of either the field-observed or the 
predicted soil cation concentration gradient. With few exceptions, the 

CEC optimum of a given taxon was much lower when calculated using 
the PPBio dataset than when using the UTU dataset. This reflects the 
fact that most UTU sites were in western Amazonia, where the mapped 
CEC values are generally higher than in central Amazonia, where most 
PPBio sites were. When the UTU and PPBio data were combined, the 
CEC tolerances of all species covered most of the mapped CEC gradi-
ent (Figure 6). The rankings of the taxon optima based on map-derived 
CEC values were not correlated with optima based on field-measured 
soil cation concentrations for either the UTU or the PPBio data (UTU: 
Kendall’s tau = 0.23, p = .306; PPBio: Kendall’s tau = 0.33, p = .129).

4  | DISCUSSION

Even though soil properties are known to be important determinants of 
plant distribution patterns at the local and regional scales in Amazonia, 
few attempts have been made to use soil data in species distribution 
modeling at the extent of the entire Amazon basin. Climatic layers 
have been much more widely used, partly because climate is thought 
to be more relevant at broad scales, but no doubt also because eco-
logically relevant climatic data have been easily available in digital GIS 
formats for some time already (Mod et al., 2016). Although digital soil 
data covering the entire Amazon basin have recently become avail-
able (SOTERLAC, HWSD, and SoilGrids), our results indicate that their 
limitations have to be considered when they are used to infer species 
edaphic niches.

Our results confirmed earlier findings that significant differences 
exist among the thirteen fern taxa in their optima and tolerances along 
the soil cation concentration gradient (Tuomisto & Poulsen, 1996; 
Zuquim et al., 2014). Importantly, these results were very consistent 
across the independent UTU and PPBio datasets, even though the 
two had applied different field and laboratory protocols and had been 
collected over a long time period. This suggests that the affinity of 
a species to a specific level of soil cation concentration is consistent 
(Tuomisto, 2006; Zuquim et al., 2012).

TABLE  1 Results of Tukey’s tests assessing if pairs of dominant soil classes in SOTERLAC differ in mean soil cation concentration in lowland 
Amazonia. The upper triangle shows the error probabilities for the UTU dataset and the lower triangle for the PPBio dataset. Significant 
comparisons of soil classes (p adj < .001) are shown in bold. Empty cells correspond to dominant soil classes that were not represented in one 
of the datasets

Acrisols Alisols Cambisols Ferralsols Fluvisols Gleysols Leptosols Lixisols Plinthosols Podzols

Acrisols NA 1.000 .638 .000 .178 .000 .931 .001 .308

Alisols NA .938 .000 .546 .047 .941 .008 .313

Cambisols .000 NA .000 .03 .913 .349 .000 .087

Ferralsols .000 .000 NA .094 .000 .390 1.000 1.000

Fluvisols NA .000 1.000 .366 .801

Gleysols NA .004 .000 .010

Leptosols .036 .000 .978 NA

Lixisols NA .603 .801

Plinthosols .000 .000 .000 .478 NA 1.000

Podzols .000 .000 .005 .966 .342 NA
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We found that the soil classes had low to intermediate correspon-
dence with field-measured soil cation concentrations. Because Amazonia 
harbors soil classes that vary widely in their pedogenesis as well as in 
chemical and physical properties (Quesada et al., 2010), we expected that 
mapped soil class information could be used to infer spatial heterogeneity 
in such soil properties that would be important in species distribution 
modeling (SDMs). In particular, we expected that cation-poor soil classes 
would clearly differ from cation-rich soil classes. However, this was not 
the case, which reduces the usefulness of the soil maps for applications 
that depend on identifying where edaphically suitable sites for plant spe-
cies of interest might be found. The low correspondence between the 
true predictor variable (field data) and the digital environmental layer sug-
gests that the predictions of SDMs based on these data would have high 
uncertainties (McInerny & Purves, 2011). Our results are related to three 
main problems in the digital soil maps: (1) insufficient resolution and the-
matic accuracy, (2) georeferencing problems, and (3) absence of relevant 
variables. Each of these will be discussed in turn.

4.1 | Insufficient resolution and thematic accuracy

The international soil science community has invested considerable 
effort in producing global soil maps, and these are no doubt useful for 
many purposes (Hartemink et al., 2013). However, it is a recognized 
problem that the accuracy of soil maps in Amazonia is low (Laurance 
et al., 2002) due to the limited and fragmented field knowledge about 
the spatial distribution of different kinds of soils and their properties. 
This can be problematic for species distribution modeling and other 
applications that depend on correctly identifying both the edaphic af-
finities of species and the spatial distribution of the suitable edaphic 
conditions.

SOTERLAC is available as a vector map, in which resolution is con-
strained by polygon size. In most of Amazonia, the polygons are very 
large, in many cases more than 100 km across. Polygons that are larger 

than the patches of significantly different soils necessarily become in-
ternally heterogeneous. The larger the discrepancy between polygon 
size in the map and the patch size of actual soil heterogeneity in the 
field, the bigger the problem caused by low spatial resolution. In ex-
treme cases, significant soil variation is not shown in the soil map at all.

Our results showed that differences in cation concentration of up 
to two orders of magnitude can be found within a single SOTERLAC 
polygon. For some soil classes, a single outlier soil sample extended 
the observed soil cation concentration range notably, but in most 
cases, the measured cation concentration values were well distributed 
over the range (Figure 2). Nevertheless, in spatial analyses, the poly-
gons have to be treated as if any attribute values were uniform within 
them, so internal heterogeneity will cause noise and reduce the accu-
racy of SDMs. The resolution discrepancies can cause soil samples and 
plant occurrences to become associated with the wrong soil class. As 
a result, the soil maps may indicate as suitable for a given species such 
soil classes on which the species in reality does not occur but appears 
to do so on the basis of the soil map.

HWSD and SoilGrids are available as raster maps, in which spa-
tial resolution depends on pixel size (1 km and 250 m, respectively). In 
these maps, the spatial resolution can be considered high, but the ac-
tual thematic information is unlikely to be accurate at this resolution. 
Indeed, the SOTERLAC polygon limits are clearly visible in the HWSD, 
which therefore suffers from partly the same problems. SoilGrids, on 
the other hand, is based on machine learning algorithms and its the-
matic resolution can, in principle, be upgraded according to the co-
variates used in the mapping. However, accuracy is still a challenge, 
because it is dependent on the availability of local soil information as 
an input for the mapping.

We found that the relationships between fern taxa and CEC 
values were inconsistent between the UTU and PPBio datasets. In 
general, soil heterogeneity is higher in western Amazonia than in 
central Amazonia (Quesada & Lloyd, 2016; Sombroek, 2000). A very 

TABLE  2 Summary of the results of 
multiple regression models that aim to 
predict soil cation concentration using the 
soil class data from either SoilGrids or 
HWSD. Models were run for UTU, PPBio, 
and SOTERLAC datasets both separately 
and combined. In addition, SoilGrids and 
HWSD are composed of multiple and 
independent layers that were used as 
separate variables in the models. The 
values of soil cation concentration were 
log-transformed. The full names of the soil 
layers are listed in Table A2. AIC = Akaike 
Information Criterion

Dataset Soildata AIC adjR2 p-value

UTU HWSD 1720 0.31 <.001

SoilGrids 1795 0.25 <.001

HWSD + CEC 1720 0.32 <.001

SoilGrids + CEC 1778 0.27 <.001

PPBio HWSD 175 0.55 <.001

SoilGrids 284 0.38 <.001

HWSD + CEC 167 0.57 <.001

SoilGrids + CEC 276 0.39 <.001

SOTERLAC HWSD 521 0.29 <.001

SoilGrids 515 0.3 <.001

HWSD + CEC 457 0.42 <.001

SoilGrids + CEC 474 0.39 <.001

UTU + PPBio + SOTERLAC HWSD 2899 0.23 <.001

SoilGrids 2955 0.2 <.001

HWSD + CEC 2891 0.23 <.001

SoilGrids + CEC 2919 0.22 <.001
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long gradient in soil cation concentration can be found within a few 
kilometers in western Amazonia (Higgins et al., 2011; Tuomisto & 
Ruokolainen, 1994), whereas central Amazonia seems to lack the 
high-cation soils entirely. These regional differences notwithstanding, 
our results based on measured soil cation concentration were consis-
tent between the UTU and PPBio datasets. In contrast, our results 
based on map-derived CEC were far from consistent. This indicates 
that predictions made using the mapped CEC values may not reflect 
local conditions adequately, but might be overly sensitive to assumed 
continent-wide trends. Consequently, studies that use CEC as the soil 
variable in species modeling (e.g., Levis et al., 2017; McMichael et al., 
2014) may have underestimated the importance of soils to explain flo-
ristic patterns.

4.2 | Georeferencing problems

A visual comparison of the SOTERLAC map with SRTM topographical 
data revealed that there are relevant georeferencing errors in some of 
the limits between soil classes. In particular, along many rivers, the soil 
classes typical of inundated areas did not coincide with the actual river 

floodplains, and often the displacement was in the order of 20 km or 
more. The original SOTERLAC maps were produced at a small scale 
of 1:1 million or even 1:5 million, and at that scale such errors are 
marginal. The situation becomes very different when the maps are 
digitized, because then they can be zoomed in and the digital polygons 
seem to have exact limits at all scales. However, their real accuracy is 
no better than that of the original small-scale map, which will cause 
problems in GIS analyses that overlay data from different sources on 
the basis of exact coordinates. The same georeferencing errors are 
retained in HWSD and the 1-km resolution version of SoilGrids, which 
was produced using HWSD as covariate (Hengl et al., 2014). In the 
newer version of SoilGrids at 250-m resolution (which was used in 
our analyses), the displacement of the floodplains has been corrected 
with the help of the SRTM digital elevation model (Hengl et al., 2017).

Global soil maps can be very useful in providing information about 
general trends across continents, but their local inaccuracy becomes 
an issue when they are used in species-soil assessments. A georefer-
encing error of just a few hundred meters between contrasting soil 
classes may be sufficient to create an artefactual association between 
a taxon and a soil type, which is likely to cause the soil associations of 

F IGURE  3 The displacement of Gleysols and Fluvisols, which are typical of inundated areas, in relation to river floodplains. Orange 
shading shows the distribution of the soil classes as mapped in SOTERLAC, gray background is the SRTM digital elevation model. Dark shades 
correspond to low elevations (river floodplains and swamps), light shades to high elevations (non-inundated areas). Details are shown from along 
six tributaries of the Amazon river: (a) middle Juruá; (b) lower Purus; (c) middle Madeira; (d) lower Tapajós; (e) confluence of the Japurá (North), 
Solimões (main channel), and Juruá; (f) upper Madeira and upper Purus
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taxa to appear less specialized than they actually are. This, in turn, can 
have a major impact on both which areas are modeled to contain suit-
able soils for a taxon of interest, and how large those suitable areas are 
predicted to be. Errors in such predictions can have serious impacts 
when the results are used to guide conservation planning or other de-
cisions that have implications for biodiversity. Given that accessibility 
issues have caused data collecting in Amazonia to become highly con-
centrated along the rivers (McMichael et al., 2017), the georeferencing 
problems we identified can be expected to be especially severe.

The usual approach in species distribution modeling is to take the 
available environmental data layers and accept them at face value, 
because analysts rarely have the possibility to do otherwise. Species 
modeling techniques allow using both vector maps and raster maps 
simultaneously. Raster maps usually provide quantitative information, 
while vector maps are more often associated with qualitative informa-
tion. Identifying errors requires detailed scrutiny of the data against 
another data source or field knowledge, and even if problems are identi-
fied, correcting them can be a daunting task (the more so the bigger the 
area of interest) (Hengl et al., 2017). Georeferencing errors related to 

the limits of floodplains and their associated soil classes can, in principle, 
be identified and corrected using a high-resolution map of Amazonian 
wetlands (Hess et al., 2015). However, limits between soil types in 
the vast non-inundated areas are more difficult to detect and correct. 
Species distribution models therefore need to allow for large locational 
errors to diminish the effect of georeferencing problems associated 
with the maps, which in turn may reduce their thematic accuracy.

4.3 | Absence of relevant variables

We found the correlation between measured soil cation concentra-
tion and mapped CEC to be very low. Many ecological studies have 
shown that soil cation concentration (specifically, the concentration of 
the base cations Ca, Mg, and K) is among the most important variables 
to explain plant species occurrence patterns in Amazonia (Pansonato, 
Costa, de Castilho, Carvalho, & Zuquim, 2013; Phillips et al., 2003; 
Tuomisto, Ruokolainen, & Yli-Halla, 2003; Tuomisto et al., 2016; 
Zuquim et al., 2014). However, this variable is not provided in any of 
the currently available digital soil maps. SoilGrids provides CEC (cation 

F IGURE  4 Georeferencing problems in digital soil maps in the Iquitos area, northern Peru: (a) Displacement of SOTERLAC soil class 
boundaries in relation to the elevational data from SRTM-DEM. Dark shades correspond to low elevations (river floodplains and swamps), light 
shades to high elevations (noninundated areas). (b) Soil cation exchange capacity (CEC) values obtained from SoilGrids (lighter shades correspond 
to higher values) in relation to the SOTERLAC soil class boundaries. Orange dots correspond to soil samples, and their size is proportional to 
measured soil cation concentration value as shown in the inset (in cmol(+)/kg)
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exchange capacity), which is related to cations but has problems as a 
surrogate measure: It quantifies the potential of the soil to bind cations 
in general (including aluminum), not the concentration of base cations 
that are actually present in the soil and available to plants. For example, 

the Soilgrids CEC fails to reflect a 1,000-km-long limit between geo-
logical formations that is associated with contrasting soils, vegetation, 
and plant species composition at the border between western and cen-
tral Amazonia (Higgins et al., 2011; IBGE 2004; Tuomisto et al., 2016).

F IGURE  5 Optima (circles) and tolerances (horizontal bars) of thirteen fern taxa along six different soil gradients as calculated separately 
for UTU (gray lines) and PPBio (black lines). Soil gradient based on (a) soil cation concentration (SCC) measured from soil samples of the PPBio 
and UTU datasets; (b) cation exchange capacity (CEC) from SoilGrids; (c-d) soil cation concentration as estimated from HWSD or SoilGrids soil 
class data; (e-f) soil cation concentration as estimated from HWSD or SoilGrids soil class data together with CEC. For the variables used in the 
regression models, see Appendix 1, Table A2. Taxa are sorted according to the mean of the two optimum values in (a)

TABLE 3 Summary of Kendal’s tau rank correlations between the rank orders of species optima along a soil cation concentration gradient as 
calculated in two different ways. One set of optima was based on soil cation concentrations measured from soil samples (Figure 5a) and the 
other on soil cation concentrations predicted using each of the regression models shown in Table 2 in turn. The lettering in the column names 
(B-F) corresponds to the panels in Figures 5–6. Analyses were carried out for UTU and PPBio data both separately and combined. p-values are 
shown in brackets.

B - CEC C - Soil Classes (HWSD)
D - Soil Classes 
(SoilGrids)

E - Soil Classes 
(HWSD) + CEC

F - Soil Classes 
(SoilGrids) + CEC

UTU .23 (0.306) .67 (0.001) .82 (0.000) .72 (0.000) .79 (0.000)

PPBio .33 (0.129) .77 (0.000) .64 (0.002) .79 (0.000) .74 (0.000)

Both .08 (0.570) .61 (0.000) .66 (0.000) .62 (0.000) .67 (0.000)
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The number of soil classes has sometimes been used as an indi-
cator of soil heterogeneity, and CEC has been used as an indicator 
of soil fertility, but these variables have not been found significant in 
species distribution and diversity assessments (Kissling et al., 2012; 
McPherson, 2014). In our analyses, the ranking of fern taxa by their 
cation concentration optima could, to some degree, be reconstructed 
using a combination of soil class data from HWSD and CEC data from 
SoilGrids. On the other hand, species tolerances had low correspon-
dence with the estimate tolerances based on field data in these analy-
ses. As the regional differences in CEC values seemed to be excessive 
and the HWSD suffered from georeferencing issues, these results 
are probably very sensitive to the exact geographic positions of the 
sampling points. Soil classification data based on the WRB-FAO sys-
tem are available in all three digital soil maps, but this classification 

does not necessarily reflect those soil properties that are physiolog-
ically most relevant for plant species (Grunwald et al., 2011; Lips & 
Duivenvoorden, 1996; Sollins, 1998).

4.4 | Perspectives on soil mapping in Amazonia

Our results showed that species edaphic affinites for soil cation con-
centration had low correspondence when derived using data from 
soil samples versus soil class information from soil maps. Although 
the rank orders were similar for optima derived from map data ver-
sus field data, the actual positions of the optima were more similar 
for the map-based data and also species tolerances were broader. 
This suggests that predictions based on single data layers will 
probably overestimate the suitable areas for species occurrence. 

F IGURE  6 Optima (circles) and tolerances (horizontal bars) of thirteen fern taxa along six different edaphic gradients. The values were 
combined by taking the minimum and maximum tolerances of each species from PPBio and UTU datasets. (a) Estimated optima and tolerances 
for measured soil cation concentration (SCC) as obtained by combining floristic and edaphic field data from the PPBio and UTU datasets. (b) 
Estimated optima and tolerances for cation exchange capacity (CEC) as obtained by combining floristic field data with SoilGrids CEC data. 
(c-f) Estimated optima and tolerances for fitted values of soil cation concentration as obtained by combining floristic field data and the best 
regression model for soil data (see Table 2). Taxa are sorted according to their optimum in (a)
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However, regression models that used several layers from the soil 
maps simultaneously gave better results, and might provide an ap-
proach to extracting more useful environmental data for SDMs.

Ideally, soil maps themselves will gradually become more accu-
rate. A critical point here is that more validation points are needed. 
Initiatives such as the World Soil Information System (WoSIS, Batjes 
et al., 2017) and the Global Soil Information Facilities (GSIF, http://
www.isric.org/explore/gsif) are therefore welcomed. These encour-
age the establishment of open databases with standardized sam-
pling and laboratory methods for measuring soil properties. The new 
validation points can then be used to update the soil maps (Hengl 
et al., 2017). In addition, covariates are of key importance to im-
prove map resolution and accuracy, especially in areas where no val-
idation points exist. The SRTM topography data have already been 
used to improve the accuracy of SoilGrids, and new products from 
earth observation satellites and other remotely sensed data may 
provide further improvements.

5  | CONCLUSIONS

We found that even when field data show Amazonian plant taxa to 
have highly specific soil cation concentration associations, it is diffi-
cult to reconstruct these using the information contained in currently 
available digital soil maps (SOTERLAC, HWSD, SoilGrids). None of 
these provides data on soil cation concentration or other soil proper-
ties that have been found important for plant species distributions in 
ecological studies. The ranking of species’ soil cation concentration 
optima was poorly reconstructed by optima based on the cation ex-
change capacity (CEC) values available in SoilGrids. Regression models 
based on the soil class information available in HWSD and SoilGrids 
succeeded better, but even here the species tolerances overlapped 
more than those based on field data, causing the species to appear 
less segregated in their edaphic niches than they are according to field 
data. The SOTERLAC and HWSD maps suffer from major georefer-
encing errors, but these have been corrected in the new version of 
SoilGrids at 250-m resolution. Overall, our analyses indicated that soil 
maps for Amazonia still need to be improved in order to provide bet-
ter data layers for the assessment of species–soil associations and for 
species distribution modeling.
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