
Hsieh et al. BMC Infectious Diseases 2010, 10:194
http://www.biomedcentral.com/1471-2334/10/194

Open AccessR E S E A R C H  A R T I C L E
Research articleModeling secondary level of HIV contact tracing: its 
impact on HIV intervention in Cuba
Ying-Hen Hsieh1, Yun-Shih Wang2, Hector de Arazoza3 and Rachid Lounes*4

Abstract
Background: Universal HIV testing/treatment program has currently been suggested and debated as a useful strategy 
for elimination of HIV epidemic in Africa, although not without practical issues regarding the costs and feasibility of a 
fully implemented program.

Methods: A mathematical model is proposed which considers two levels of detection of HIV-infectives through 
contact tracing of known infectives in addition to detections through other means such as random screening. 
Simulations based on Cuban contact tracing data were performed to ascertain the potential impact of the different 
levels of contact tracing.

Results: Simulation studies illustrate that: (1) contact tracing is an important intervention measure which, while less 
effective than random screening, is perhaps less costly and hence ideal for large-scale intervention programs in 
developing countries with less resources; (2) the secondary level of contact tracing could significantly change the basic 
disease transmission dynamics, depending on the parameter values; (3) the prevalence of the epidemic at the time of 
implementation of contact tracing program might be a crucial factor in determining whether the measure will be 
effective in preventing disease infections and its eventual eradication.

Conclusions: Our results indicate that contact tracing for detection of HIV infectives could be suitably used to remedy 
inadequacies in a universal HIV testing program when designing timely and effective intervention measures.

Background
A recent modeling study [1] on universal HIV screening
followed by immediate antiretroviral treatment (ART) for
those tested positive concludes that, assuming that the
infectiousness of those treated fell to 1% of their infec-
tiousness before treatment, this strategy could have a
major effect on HIV/AIDS epidemic. However, as noted
in that article, screening everyone periodically, whether
voluntary or not, is not feasible in practice. Moreover, the
costs of periodic universal testing program might be pro-
hibitively expensive, especially in the developing coun-
tries.

The HIV/AIDS epidemic in Cuba has had significantly
low prevalence compared to its neighboring countries in
the Caribbean Basin, which has the second highest rate of
HIV/AIDS in the world after sub-Saharan Africa [2]. The
Joint United Nations Program on HIV/AIDS (UNAIDS)
report on the global HIV/AIDS epidemic for 2007 indi-

cates that the region's HIV epidemics are in general
highly prevalent and driven primarily by heterosexual
intercourse. In contrast, estimates for Cuba indicate an
adult HIV prevalence of 0.1%, out of 6.1 million persons
in the age group 15-49 [3]. Moreover, Men having sex
with men (MSM) continue to be the main high preva-
lence group in Cuba, with most of the HIV-positive
adults being men (77%) and most of the detected HIV-
positive men being reported as MSM (85.1%), while most
of the HIV-positive women reported having had sex with
MSM [4].

The continued low HIV prevalence in Cuba has its root
in its distinct social factors as well as in its unique inter-
vention program. The Cuban HIV/AIDS programme
included a system to detect HIV cases from several
sources. Some of these sources were used at the begin-
ning of the programme, others were introduced later and
some have been discontinued. Since 1993, this detection
system has focused on 6 major sources: blood donors;
persons treated for other sexually transmitted infections;
persons admitted to hospital with suspected HIV infec-
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tion or subject to specific procedures like dialysis; per-
sons volunteering to be tested; persons whose general
practitioner has recommended HIV testing; and sexual
partner tracing. Other less important sources include
testing of all pregnant women and prison inmates. One of
the major reasons for the low HIV prevalence in Cuba
compared to its neighbors in the Caribbean region is its
sexual contact tracing program, also known as the Part-
ner Notification Program. Since 1986, a person testing
HIV-positive in Cuba is interviewed by health workers
using a non-anonymous structured questionnaire. They
are invited to give names and contact details of their sex-
ual partners of the past two years. These partners are
then traced and a recommendation for voluntary HIV
testing is made with follow-up testing for up to one year
[5].

Modeling of Cuba HIV has been carried out in recent
years, some focusing mainly on underreporting [6-8] and
others on estimation of HIV-infected population sizes
using Generalized Removal Model for Open Population
or GERMO [5,9]. Several studies also focused on model-
ing the contact tracing program in Cuba includes [8,10-
13], mainly with the Cuba HIV/AIDS epidemic as the
background due to the availability of detailed HIV case
and contact tracing data.

Sexual transmission is the primary mode of infection in
Cuba, in particular that of MSM group [4]. Hence seeking
out sexual contact networks through contact tracing is a
vital aspect of intervention and control of the HIV epi-
demic in Cuba. In the previous modeling work on contact
tracing, a detection rate by contact tracing is assigned for
all detected individuals, thus ignoring the difference
between the first level of traced contacts (i.e., those who
were traced earliest as members of a newly discovered
network of direct sexual contacts of an infective detected
through means other than contact tracing) and the suc-
ceeding levels of traced contacts (i.e., those in the net-
work who were traced consequently as subsequent
contacts of traced contacts in a network). For example,
those infectives traced and diagnosed as reported con-
tacts of the first level of traced contacts belong to the sec-
ond level, and those traced as reported contacts of the
second level of traced contacts belong to the third level,
and so on. In this work, we will extend our previous
model to include a second level of contact tracing, that is,
those who were detected as sexual contacts of those who
were the earliest detections through contact tracing as
contacts of those who were detected through means
other than contact tracing.

The main source for this extension is the detailed study
of the 1986-2001 Cuban contact tracing data of 4091
HIV-infected persons detected by the beginning of 2002.
Of those detected, 6.81% gave no contacts or refused to
give any contact information and the average number of

contacts is 5.84 with 95% CI: (5.66, 6.02). Fig. 1 gives a
histogram of the number of contacts declared.

The data also revealed that 1221 (30%) were detected
through contact tracing, i.e., they were tested positive
after being identified as contacts of HIV-infected per-
sons. There were some large sexual contact networks
with the largest three networks having 87, 115, and 158
detected members, respectively. However, there were
only 24 networks with 10 or more detected members
totaling 664 (54%) known infectives, thus indicating that
most networks are very limited in size, although they
combine to contain almost half of the 4091 infected indi-
viduals,. Of the 1221 persons detected through contact
tracing, 1026 can be traced to a contact network. Further-
more, of those known to belong to a network, 719 (70%)
were identified as contacts of person who were detected
by means other than contact tracing. In other words,
these 719 persons are detected through the first level of
contact tracing. Moreover, the number detected through
subsequent contact tracing drop off dramatically after the
initial level of contact tracing, to 181 (18%) at second
level of contact tracing (those identified as contacts of
those 719 first level detections) and 69 (6.7%) at the third
level. The complete distribution of number of detection
by the first 6 levels of contact tracing is given in Fig. 2.

Fig. 2 gives evidence that the effectiveness of contact
tracing decreases sharply as tracing into the tertiary lev-
els is being conducted, most likely due to the gradual
exhaustion of the undetected members in the sexual con-
tact network to which the detected infectives belong, and
also due to the overlapping between infection chains or
sexual networks. Moreover, the information it provides
becomes redundant and obsolete as the contact tracing
program continues, since large-scale contact tracing is a
time-consuming process and requires personnel that

Figure 1 Histogram of the numbers of contacts declared by the 
4091 HIV-infected persons in the 1986-2001 Cuban contact trac-
ing data. X-axis is the number of contacts and y-axis is the number of 
detected HIV-positive individuals with the given number of contacts.
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must be exclusively dedicates to this task, especially in
large population centers. Therefore, we wish to ascertain
the true effectiveness of the contact tracing program, by
gauging the impact of secondary and perhaps tertiary lev-
els of contact tracing.

Early mathematical models of screening and treatment
for HIV include [14-17]. Ample work on modeling sexual
partnership network had been carried out in recent years,
e.g., [18-25]. However, these models were mostly pro-
posed to construct sexual partnership (concurrent or oth-
erwise) networks.

In the context of the HIV epidemic in Cuba, contact
tracing exhibit only partial results of the partnership net-
works, filtered through non-random detection of infected
individuals, recall bias of these infected individuals, trac-
ing and testing of the contacts, timing of the tracing and
testing, etc. Moreover, the Cuban contact tracing data
contains only those tested positive. Therefore, to use the
approaches proposed in the above models would lead to
an even more complicated (compartmental or individual-
based) model which requires additional data on sexual
network which is rarely available, with additional
assumptions and further uncertainties in the results
obtained. Hence, in this work, we will consider a simple
compartmental model which enables us to focus on the
secondary level of contact tracing and its relative impact.

Methods
The Model
We consider a compartmental model as diagramed in Fig
3. The model variables are given below:

S(t) is the susceptible population.
X(t) is the number of HIV-infected persons that do not

know they are infected at time t.

Y1(t) is the number of HIV-infected persons that are
known by the health authority to be infected at time t and
were detected in a random type search.

Y2(t) is the number of HIV-infected persons that are
known by the health authority to be infected at time t and
were detected at the first level of contact tracing as past
contacts (or sexual partners) of Y1.

Y3(t) is the number of HIV-infected persons that are
known by the health authority to be infected at time t and
were detected at the second level of contact tracing as
past contacts of Y2.

Z(t) is the number of persons with AIDS at time t.
The model parameters are listed below:

Λ: the constant recruitment rate into the susceptible
population.

λ: the rate of the new HIV-infected persons are infected
by X(t).

k1: the rate at which the unknown HIV-infected persons
are detected by the system, independently of other HIV-
positive persons (through "random" screening).

k2: the rate at which the unknown HIV-infected persons
are detected by the system through contact of Y1.

k3: the rate at which the unknown HIV-infected persons
are detected by the system through contact of Y2.

β: the rate at which the undetected HIV-positive per-
sons develop AIDS.

β': the rate at which the detected HIV-positive persons
develop AIDS.

μ: mortality rate of the sexually active population.
μ': mortality rate of the population with AIDS.

Figure 2 Distribution of number of detections for levels 1-6 of 
contact tracing in the 1986-2001 Cuban contact tracing data.

Figure 3 Model flow diagram. The mortality rates of all compart-
ments are omitted for sake of brevity.
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Following previous modeling work (e.g. [7,8,12,13]), we
assume a constant recruitment rate λ of the new infec-
tives, infected by the infectives who did not know that
they were infected. The assumption of linear rate of
recruitment of new HIV-infected persons infected by
X(t), λ X, is based on our background setting of Cuba,
where the prevalence is low. We also assume linear detec-
tion rates by contact tracing, k2 and k3, where a certain
fraction of previous contacts of a known infective is suc-
cessively traced and tested to be HIV-positive. A class of
linear and nonlinear functions for detection via contact
tracing was considered in [13], in which the nonlinear
detection by contact tracing term used in this model is
the one found to give best fit for Cuban HIV data. More-
over, estimates for k2 were also obtained in [7].

We also assume that the infection by detected infectives
is negligible when compared with the infection rate by
the unknown infectives, since it was estimated in [12],
using Cuban HIV/AIDS data between 1986-2000, that
the infection rate by the known infectives in Cuba is only
around 5.79% (SD = 3.55) of that of unknown infectives.
We also ignore the contact tracing at the third level and
after, since the tertiary levels of detections are small when
compared with that of the second level.

The model dynamics is described by the following sys-
tem, with the time unit in years:

Note that System (2.1) is well-defined in the 4-dimen-
sional positive orthant of the XY1Y2Y3-space. For a theo-
retical analysis for models of this type near the origin, see
[26].

Results
Steady states and threshold conditions
We consider only four equations in system (2.1) which are
relevant to our analysis, namely, the second to the fifth
equations, and let x = X/(X + Y1 + Y2 + Y3), yi = Yi /(X + Y1
+ Y2 + Y3), i = 1, 2, 3, be the respective fractions of X and
Yi in the infective population. Using the fact that x + y1 +
y2 + y3 = 1, we obtain the 3-dimensional dynamical sys-
tem:

System (3.1) has several dynamic steady states (also
known as equilibrium points), each with its correspond-
ing threshold condition for stability.

1. Trivial steady state: E0 = (0, 0, 0)
2. Boundary steady states: EB1 = (0, r2,0), EB2 = (0, 0, r3)

and  where , and  are non-

zero numbers between 0 and 1, and their values depend

on the initial fractions of the solution trajectories at time

t = 0, i.e.,(x(0), y2(0), y3(0)).
(i) EB1 = (0, r2,0), where 0 <r2 ≤ 1.
(ii) EB2 = (0, 0, r3), where 0 <r3 ≤ 1.

(iii) , where  and

.

3. Positive endemic steady state: ,

.
Note that since we have assumed that the infections by

the detected infectives are negligible, the endemic steady
state E* is the only endemic steady state where some
infectives have not been detected and continue to cause
new infections in the community. The threshold condi-
tion for each of the steady states is as follows:

(a) If R0 < 1, then E0 = (0, 0, 0) is locally asymptotically
stable for (2.1) where R0 = (λ - β + β')/(k1 + k2).

(b) If RB1 < 1, then EB1 = (0, r2,0) is locally asymptotically
stable for (2.1) where RB1 = (λ - β + β')/[k1 + k2 - (k2 - k3)r2]
and 0 <r2 ≤ 1.

(c) If RB2 < 1, then EB2 = (0, 0, r3) is locally asymptotically
stable for (2.1) where RB2 = (λ - β + β')/(k1 + k2 - k2r3) and 0
<r3 ≤ 1.
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(d) If RB3 < 1, then  is locally asymptot-

ically stable for (2.1) where

,

 and .

(e) If R* < 1, then  is locally asymptoti-

cally stable for (2.1) where

The above results can be easily derived by making use
of Jacobian matrix and hence is omitted.

Simulations Studies

We will now give some numerical examples to illustrate

our results. Recall that all equilibria except the endemic

steady state E* listed in the previous section are essen-

tially disease free, since the fraction of undetected HIV-

infectives, where individuals in all other infective classes

must come from, is 0. We also note that the sizes of

threshold parameters, RB1, RB2, RB3, and R*, depend on

, and , and subsequently on the initial frac-

tions used for the simulations.
For our numerical simulations utilizing Phaser 2.1 sci-

entific software for simulating dynamical systems, we use
the following parameter values estimated directly from
the 1987-2000 Cuban demographic and HIV/AIDS data
(see [7,10,13]): μ = 0.0053, λ = 0.5744, β = 0.1135, β' =
0.1350. Moreover, from the results of [13] we let k1 = 0.25
and k2 = 0.25. For our first simulation, we also assume
that the detection rate for secondary level of contact trac-
ing is the same as the first, i.e., k3 = 0.25, and the initial
fractions are set at (x(0), y2(0), y3(0)) = (0.3,0.17,0.04) in
keeping with the 1986-2001 Cuban HIV/AIDS and con-
tact tracing data as described earlier. Hence, our first sim-
ulation uses post-2001 years in Cuba as the background
setting. The resulting threshold parameters and the limit-
ing behavior are summarized in row 1 of Table 1, where
all threshold parameters except R* are greater than 1,
hence the solutions approach the endemic steady state E*.
This seems to reflect the actual HIV epidemic in Cuba
since 2002, where slow but steady growth in HIV case
number has been observed (Fig. 2, [4]).

If we increase detection by means other than contact
tracing (and in the process increase the number of infec-

tives whose contacts are to be traced) by 50%, all other
reproduction numbers are less than 1 with the exception
R* which is greater than 1, thus guaranteeing that solu-
tions will become disease-free (second row of Table 1). In
this instance, the solution approaches EB3, the steady
state with nonzero fractions of infectives traced by first
and second level contact tracing. However, if instead we
double the first level contact tracing rate, only RB3 is
greater than 1 and our solution goes to the endemic equi-
librium (third row, Table 1). Hence increasing detection
through means other than contact tracing might be more
effective, although perhaps also more costly.

To further illustrate the effect of different initial frac-
tions on the asymptotic behavior of the system, the fourth
row (in bold) in Table 1 has the same parameters as row 3,
but the initial fractions had been changed to (x(0), y2(0),
y3(0)) = (0.1, 0, 0). That is, x(0) = 0.1 and y1(0) = 0.9, or
90% of the infective population had been detected
through means other than contact tracing. In contrast to
the case in row 3 where RB3 was greater than 1 and the
trajectory approached the endemic steady state E*, here
we have RB3 less than 1 and the trajectory approaches the
DFE EB3 on the boundary of the positive octant (see the 3-
d graph in Fig. 4).

Next, to highlight the impact of second level detection,
we let k3 = 0, i.e., we suppose secondary contact tracing is
abandoned at time t = 0, and subsequently obtain the
simulation results in Table 2. Note that since there is no
secondary contact tracing, RB2 and RB3 does not apply.
First row shows that if only secondary contact tracing is
not carried out, the solutions will still go to the stable
endemic steady state, albeit with a higher percentage of
undetected infectives (x* = 0.404 compared to 0.331 for
row 1 of Table 1). Moreover, a slightly higher first level
contact tracing rate will not alter the dynamics signifi-
cantly (row 1, Table 2). Only when the first level contact
tracing rate is drastically increased (more than tripled in
row 2, Table 2), will the solution go to disease free. To
illustrate, Fig. 5 provides simulations for the cases of row
1 (solid blue trajectory approaching E*) and row 2 (dash
green trajectory approaching EB3) in Table 1, and row 2
(dotted red trajectory approaching EB1) in Table 2. The
initial fractions for all three trajectories are (x(0), y2(0),
y3(0)) = (0.3,0.17,0.04).

For the last set of simulations, we assume that contact
tracing is abandoned after t = 0, i.e., k2 = k3 = 0, in order
to ascertain the impact of contact tracing. The results are
given in Table 3, where the same detection rate through
means other than contact tracing would yield a large
value of R0 = 2.38 and the solutions approach the
endemic steady state (row 1). This detection rate would
need to be increased substantially (more than two-fold)
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to 0.6 for lower R0 to be barely under 1 at 0.9932, but low
enough for the solution to approach DFE at EB3 (row 2).

Discussion and Conclusions
Our results indicate the following
1. Increasing the efficiency of contact tracing (higher
contact tracing rates k2 and k3) is less effective than other
means of detection (e.g., random screening), but is per-
haps less costly and more cost-effective, and hence is
ideal for large-scale intervention programs in developing
countries with limited resources.

2. Without contact tracing (k2 = k3 = 0), detection by
other means must be increased substantially (more than
two-fold in Table 3) to lower R0 to less than 1.

3. If the second level contact tracing is not carried out
(k3 = 0), the proportion of undetected infectives x* will

increase by about 22% (from 0.331 to 0.404) in our simu-
lation. Moreover, drastic increase (by more than three-
fold) in the first level contact tracing rate is need for the
system to become disease free.

4. The results in Fig. 4 indicate that if random screening
had been highly effective (90% in our simulation), imple-
mentation of contact tracing program could help to erad-
icate the disease in the sense that the endemic fractions
(y1, y2, and y3) will go to 0 in time. However, if the random
screening does not detect a sufficiently high percentage
of infectives, the implementation of the same program
will not prevent the disease from becoming endemic.

5. In terms of dynamics, the model with only one level
of contact tracing (Hsieh et al. 2005) exhibits very simple
dynamics where all solutions either approach the DFE or
the endemic equilibrium. When secondary level of con-
tact tracing is included, bistability might occur where the
solution could approach either the endemic steady state
or any of the DFEs (E0 or any one of the disease-free
boundary steady states), as illustrated in rows 3 and 4 of
Table 1 (and Fig. 4), depending on the initial proportions
of population sizes. In other words, whether the contact
tracing is effective, or how effective the program is, might
depend on the initial state of the epidemic in which a par-
ticular country or region is when intervention by contact
tracing is first being implemented. This has important
public health implications as it has been suggested in [4]
that with antiretroviral therapy being more widely avail-
able, intervention policy based on intensive HIV testing
and tracing of partners could be considered as a possible
policy to control HIV/AIDS epidemics in other countries
(also see [27]). Although we note that due to our assump-
tion of low HIV prevalence and simulations using an ini-
tial proportion of undiagnosed infectives at 30% (or 70%
detection rate of the HIV-positive individuals), the results
might not be applicable to countries with low detection
rate.

Table 1: Simulations for model with first and second levels of contract tracing

Parameters values Reproduction numbers Limiting steady state

k1 k2 k3 R0 RB1 RB2 RB3 R*

0.25 0.25 0.25 1.19 1.19 1.24 1.24 0.67 endemic steady state E*

0.375 0.25 0.25 0.95 0.95 0.996 0.996 1.004 DFE EB3

0.25 0.5 0.25 0.79 0.90 0.88 1.01 0.92 endemic steady state E*

0.25 0.5 0.25 0.79 0.87 0.81 0.89 0.79 DFE EB3

The initial fractions for the first 3 rows are (x(0), y2(0), y3(0)) = (0.3,0.17,0.04), initial fractions for the last row in bold is (x(0), y2(0), y3(0)) = (0.1, 
0, 0).

lim ( ), ( ), ( ), ( )
t

x t y t y t y t
→∞

( )1 2 3

Figure 4 Simulation of the case (k1, k2, k3) = (0.25,0.5,0.25) for 
rows 3 and 4 of Table 1, where the dotted blue trajectory ap-
proaches the endemic steady state E* while solid green trajectory 
approaches DFE EB3.
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6. Finally, the linear force of infection term employed in
this work can be considered as a linear approximation of
the more commonly used standard incidence, λXS/(S + X
+ Y1 + Y2 + Y3), when the total number of HIV-infectives,
X + Y1 + Y2 + Y3, is small compared with S.

A stochastic Markov process model was proposed
recently to describe the contact tracing detection in
Cuba, in order to compare it with the usual random
screening detection [28]. In this model, the component
accounting for the contact-tracing feature is assumed to
be valued in a space of point measures in order to take the
time since detection into account. When an individual is
identified as infected, it may contribute to detecting other
infectious individuals by providing information related to
persons with whom they have had possibly infectious
contacts. This was expected to reinforce standard ran-
dom-screening. Three models with three forms of the
detection by contact-tracing have been considered by
[28], where statistical estimation of the two rates of detec-
tion (by random detection and by contact tracing) using
Cuban HIV/AIDS data shows that whatever the model

used, the contact tracing detection reaches an efficiency
equivalent to that of random screening detection approx-
imately four years after the beginning of the epidemic.
This fact, which had not been noticed by epidemiologists
and health practitioners, is noteworthy since it goes
countercurrent against the classical view on contact-trac-
ing that it is efficient at the very beginning of its imple-
mentation and then less and less useful, insofar as the
information it provides becomes redundant and obsolete
as the contact tracing within a sexual network continues.
More recently, approximate Bayesian computation is also
applied to the Cuban HIV/AIDS data with contact-trac-
ing and unobserved infectious population to make fur-
ther observations concerning the efficiency of HIV
detection system in Cuba [29].

Our results show that even if the secondary level of
contact tracing is less effective in detection, with a sub-
stantial plunge in the percentage of detection from the
first level contact tracing as noted previously, it still plays
an important role in determining whether the disease can
eventually be eradicated. This conclusion corroborates
with the above conclusion by [28] on the effectiveness of
contact tracing even a period of time after its implemen-
tation and even when the information it provides might
become redundant and obsolete as we continue through
the tertiary stages of contact tracing. Our results further
indicate that contact tracing for HIV could be suitably
used to remedy inadequacies in a universal testing pro-
gram and in design of timely and effective intervention.
Perhaps some combination of periodic (universal) ran-
dom screening combined with contact tracing would be
the most ideal and effective program to achieve the goal
of quick detection and to increase early treatment, in
order to attain eventual elimination [27].

As a final remark, the Family Doctor Program in Cuba,
introduced in 1984, also provides a strong community-
oriented primary care network which contributes to
improving population health overall [30] and to respond
to emerging and re-emerging diseases (including HIV),
which also provide a frontline for prevention efforts. The
family doctors' offices and community polyclinics play a

Table 2: Simulations for model with first level of contact tracing only after initial time t = 0

Parameters values Reproduction numbers Limiting steady state

k1 k2 k3 R0 RB1 RB2 RB3 R*

0.25 0.25 0 1.19 1.31 NA NA 0.60 endemic steady state E*

0.25 0.85 0 0.54 0.99 NA NA 1.02 DFE EB1

The initial fractions are (x(0), y2(0), y3(0)) = (0.3,0.17,0.04).

lim ( ), ( ), ( ), ( )
t

x t y t y t y t
→∞

( )1 2 3

Figure 5 Simulation for the cases of row 1 (solid blue trajectory 
approaching E*) and row 2 (dash green trajectory approaching 
EB3 ) in Table 1, and row 2 (dotted red trajectory approaching EB1) 
in Table 2, where initial fractions for all three trajectories are (x(0), 
y2(0), y3(0)) = (0.3,0.17,0.04).
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pivotal role in prevention by providing counseling ser-
vices, active screening services, promoting safer sex prac-
tices, and distributing educational materials, condoms,
and lubricants, while also serving as the primary care
providers for people with HIV participating in the ambu-
latory care system. Taken together, these initiatives pro-
foundly affected how HIV manifested in Cuba [31] where
in recent years the proportion of detections by contact
tracing has fallen to 15% of those detected and some per-
sons were detected through the family doctors before
they could be traced by the contact tracing system. This is
due to the fact that the number of reported contacts per
detection has remained on the same level as before but as
detection has almost doubled, the system could not effec-
tively and swiftly cope with the larger number of con-
tacts. Moreover, the family doctors are not really a
random search or screening, since typically the family
doctors counsel someone to test for HIV because that
they suspect he/she might be infected. Therefore this ele-
ment of detection is not readily modeled in our present
model. In [28], it is found that a screening through con-
tact tracing could reach peak efficiency after 4 years, and
this drop-off conceivably could also apply to the family
doctors program, as it is similarly not a random search.
Perhaps a worthwhile future model extension, requiring
detailed and updated data on the detection through the
family doctor program, would include such consideration
for understanding the detection and surveillance of HIV.
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