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Parkinson’s means Parkinson’s disease, a chronic degenerative disease of central
nervous system. The main area which is affected by this disease is motor system. Since
it firstly founded by James Parkinson in his 1817 publication, nowadays, people still have
lots of questions about this disease. This review mainly summarizes the epigenetics
of Parkinson’s. DNA methylation is one of the epigenetic mechanisms of Parkinson’s.
During the development of disease, global hypomethylation, and hypermethylation
happen in different areas of patients. Another epigenetic mechanism is histone
modification. People believe that some metals can induce Parkinson’s disease by
modulating epigenetic mechanisms. This review summarizes the relationships between
different metals and Parkinson’s disease. However, the specific roles of most metals in
epigenetics are still unknown, which need further research.
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INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative disease (ND) with movement disorder
(de Lau and Breteler, 2006), which is characterized by the progressive and substantial loss
of dopaminergic neurons in substantia nigra. The hallmark of PD is the accumulation of
cytoplasmic proteins, especially α-synuclein, a major competent of Lewy Bodies (LB). Moreover,
PD patients show symptoms of resting tremor, slow movement, muscular rigidity, and postural
instability (Nataraj and Rajput, 2005). Point mutations in α-synuclein are known to cause familial
PD, accounting for about 5% of PD patients (Chang and Fox, 2016). Idiopathic PD, which
accounts for about 90–95%, usually refers to a syndrome characterized by late-onset Parkinsonism
(Ceravolo et al., 2009). In this review, we discuss the roles of α-synuclein in PD, especially its
synthetic effect. Then we discuss the epigenetics of Parkinson’s, mainly about DNA methylation.
Histone modification also plays an important role in PD. However, the direct evidence between
histone modification and metals is lacking. At last, we summarize the roles of different metals
in Parkinson’s.

Synucleinopathy
Intriguingly, α-synuclein was first found in the brains of AD patients (Uéda et al., 1993), and
then was viewed as the main part of Lewy bodies in PD (Irizarry et al., 1998). Deas et al. (2016)
reported that oligomeric α-synuclein suppressed the production of glutathione and showed the
toxicity of neurons, while fibrillar forms could not. In a mice model expressing human α-synuclein,
a progressive memory loss and motive dysfunction was observed (Fernagut and Chesselet, 2004).
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There are several explanations for α-synuclein neurotoxicity.
All of them lead to the activation of the apoptosis pathway and
neuron death ultimately (Scarlet et al., 2015). In PC12 cell lines,
the overexpression of the A53T mutant α-synuclein resulted in
the death of 40% of neurons through the following mechanisms:

(1) Inducing the releasing of mitochondrial cytochrome C,
leading to the breakdown of the respiratory chain,
leakage of ROS, and mitochondrial dysfunction. In
human neuroblastoma cells, overexpression of α-synuclein
resulted in elevated ROS and inhibition of the respiratory
chain (Parihar et al., 2009).

(2) Increasing endoplasmic reticulum (ER) stress (Smith et al.,
2005). In SHSY cells, overexpression of α-synuclein also
stimulated the release of mitochondrial cytochrome C
(Parihar et al., 2008). In a mouse model of α-synuclein
overexpression, endoplasmic reticulum stress, a
mechanism triggered by misfolding proteins, showed
a synthetic effect with α-synuclein in the onset of PD
(Colla et al., 2012a,b).

(3) α-synuclein can form a pore in membranes, leading
to the disturbance of calcium metabolism and cell
death. Through single-channel electrophysiology, pores
formed by α-synuclein were observed directly in the lipid
membranes of cells (Schmidt et al., 2012).

(4) In a dopaminergic-like cell line, α-synuclein induced the
formation of leak channels reminiscent (Feng et al., 2010).
In the cell line model, α-synuclein facilitated the formation
of a pore in the membrane, disturbing ion homeostasis, and
leading to neuron death (Danzer et al., 2007).

(5) Furthermore, α-synuclein disturbed neurotransmitter
release by inhibiting the trafficking and recycling of
synaptic vesicles (Wang et al., 2014).

EPIGENETICS

DNA Methylation
DNA methylation is the earliest characterized chromatin
modifications. Since the majority of methylation occurs in CpG
motifs, which are enriched in promoters. The methylation of CpG
dinucleotides at the 5′ position on the pyrimidine ring, to form
5-methylcytosine (5-mC), can disrupt the cell’s transcriptional
machinery by blocking the binding of transcription factors
and attracting methyl-binding proteins that initiate chromatin
compaction and bring about gene silencing (Lunnon and Mill,
2013). So methylation results in gene silencing while de-
methylation causes gene activation.

Lumine et al. (2010) reported global hypomethylation in
substantia nigra in PD patients. Moreover, intron 1 of α-synuclein
showed hypo-methylation, leading to the over-expression of
α-synuclein (Jowaed et al., 2010). On the other hand, L-dopa
stimulated the hypermethylation of intron 1 of α-synuclein to
suppress its expression. This might be a new explanation for the
positive effects of L-dopa in PD patients (Schmitt et al., 2015). PD
patients demonstrated a lower level of DNA methylation in SNCA
and PARK2 genes compared with controls (Eryilmaz et al., 2017).

METALS

Previous researches found that there are relationships between
metals and PD. On the one hand, metals, especially heavy
metals are usually regarded as neurotoxins,because they can
cause neuronal death by oxidative stress. For example, both
iron and copper can induce oxidative stress and cause damage
to neurocyte. People have a relatively clear understanding of
the pathophysiology of different metals. On the other hand,
recently scientists found metals can regulate epigenetics during
PD. Understanding the roles of metals in epigenetics of PD might
help people find a cure for PD. However, there is a lack of relevant
research. The following summarizes the relevant contents about
metals (Table 1).

Lead (Plumbum, Pd)
Neurological damage caused by lead was found in 2006 by
Monnet-Tschudi et al., they found that Lead exposure causes
severe swelling and loss of neurons in the central nervous system
and peripheral nervous system (Monnet-Tschudi et al., 2006).

In a case-control study of 121 PD patients and 414 controls,
there was a dose-effect relationship between occupational
exposure of lead and the risk of PD (Coon et al., 2006). In a
case-control study of 330 PD patients (216 men, 114 women)
and 308 controls (172 men, 136 women), there was a dose-effect
relationship between bone lead and the risk of PD (Weisskopf
et al., 2010). Wright et al. (2010) also reported an association
between lead exposure and LINE1 hypomethylation. Li et al.
(2013) also reported an inverse association between lead exposure
and LINE1 promoter hypermethylation in a case-control study.

Mercury (Hg)
Mercury is also a neurotoxin that can damage neurons (Azevedo
et al., 2012). In a case-control study of 54 idiopathic PD patients
and 95 controls, there was a dose-effect association between the
risk of PD and blood mercury (Ngim and Devathasan, 1989).

Mercury exposure led to DNA methylation changes in whole
blood cells (Hanna et al., 2012). In SH-SY5Y cells, mercury
also disturbed the clearance of Aβ plaques by suppressing the
activity of neprilysin (Miguel et al., 2015). Mercury showed neural
toxicity since APOE4 owned a weak combination with mercury
(Mutter et al., 2004). Olivieri et al. (2010) reported that mercury
stimulated the expression of Aβ and phosphorylation of tau. In
PC12 cells, mercury promoted the expression of Aβ and inhibited
clearance at the same time (Song and Choi, 2013).

Copper (Cu)
In a case-control study of 144 patients with idiopathic PD
and 464 controls, individuals with more than two decades
of copper exposure showed a significantly higher association
with risk of PD (OR = 2.49, 95% CI = 1.06, 5.89) (Gorell
et al., 1997). There was a decreased copper concentration
in substantia nigra of PD patients (Dexter et al., 1991). Cu
and α-synuclein showed the synthetic effects in the inhibition
of protein degradation pathways, especially the Ubiquitin
Proteasome System (UPS) (Anandhan et al., 2015). To facilitate
the accumulation of Aβ through inhibiting its transport,
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TABLE 1 | Epigenetic and toxic effects of different metals in Parkinson’s.

Epigenetic Principal target of
metal-induced toxicity

Pathophysiology

Lead (Pb) Cause LINE1 promoter hypermethylation LINE1/nervous system Oxidative stress, mitochondria dysfunction,
Ca2+ homeostasis disruption (Chen et al., 2016a)

Mercury (Hg) Tau phosphorylation Tau protein/mitochondria Loss of dopamine receptors, tubulin degeneration, axon
degeneration and glutathione depletion, higher amyloid-β
level (which promotes α-synuclein aggregation) (Bjorklund
et al., 2018)

Copper (Cu) Oxidative stress mechanisms, alpha-synuclein
oligomerization and Lewy body formation, as
well as GABA-A and NMDA receptor
neurotransmission modulation

Cytochrome/mitochondria/
brain

Increased generation of ROS, DNA, and mitochondrial
dysfunction

Manganese
(Mn)

Globus pallidus in the basal
ganglia

Impairment of dopaminergic, glutamatergic, and
GABAergic transmission, as well as mitochondrial
dysfunction, oxidative stress and marked
neuroinflammation (Cicero et al., 2017)

Aluminum (Al) Al facilitates the formation of alpha-synuclein
fibril by activating monoamine oxidase B

Monoamine oxidase B Calcineurin β protects brain after injury by activating the
unfolded protein response. Neurobiology of disease (Chen
et al., 2016b)

Iron (Fe) Up-regulation of divalent metal transporter 1
(DMT1) (Zhang et al., 2009)

Glutamate receptors (Lau and
Tymianski, 2010), Cu protein,
Ceruloplasmin (Cp) (Jiang
et al., 2015)

Iron stimulates the formation of intracellular aggregates of
α-synuclein and promotes oxidative damage.

Zinc (Zn) Accumulation of alpha-synuclein Autophagy-lysosomal
pathway (Cicero et al., 2017)

Tsunemi and Krainc (2014) reported that the loss of PARK9
leads to the dyshomeostasis intracellular zinc levels, which
contributes to lysosomal dysfunction then leading to the
accumulation of alpha-synuclein.

Cu facilitates Aβ accumulation by inhibiting clearance and
stimulating production (Singh et al., 2013).

Manganese (Mn)
Manganese has manganese toxicity through impairing motor
function and damaging substantia nigra and other basal ganglia
nuclei by amplifying the risk of PD (Aschner and Nass, 2006).
The pathology of Manganese induced Parkinson’s disease is
different from other idiopathic forms. In a case-control study of
144 patients with idiopathic PD and 464 controls, individuals
with more than two decades of manganese exposure showed
a significantly higher association with PD (OR = 10.61, 95%
CI = 1.06, 105.83) (Gorell et al., 1997). Wang et al. found
a dose-effect relationship between exposure to manganese
through inhalation and symptoms from extrapyramidal system
dysfunction (Wang et al., 1989). Mn (II) inhibited the functions
of mitochondria, which lead to the death of neurons due to energy
insufficiency (Gunter et al., 2010). Manganese was associated
with DNA methylation. Researchers have found a new method
to identify the risk resulting from toxic metal exposure by
measuring the level of DNA methylation. There is an important
relationship between DNA methylation aging biomarkers and the
concentration of some metals. For example, if the concentration
of Mn in urine increase by 1 ng/mL, PhenoAge will increase by
9.93 years (Nwanaji-Enwerem et al., 2020).

Aluminum (Al)
In a case-control study of 200 PD patients and 200 controls, there
were significantly higher levels of aluminum in the substantia

nigra of PD patients than controls (Altschuler, 1999). Results
from Uversky offered one explanation for the cause-effect
association between Al and PD. Al activated monoamine oxidase
B, an enzyme that facilitated the formation of alpha-synuclein
fibril in PD (Uversky et al., 2001).

Iron (Fe)
In a case-control study of 892 participants, the concentration
of iron in toenails showed a positive association with the level
of LINE-1 methylation (Tajuddin et al., 2013). A test of total
iron concentration in the substantia nigra of 17 parkinsonian
and 29 control samples showed that the substantia nigra of
PD patients contained a higher level of iron (Wypijewska
et al., 2010). There was an elevated total iron level and
decreased ferritin content in the substantia nigra of PD patients
(Dexter et al., 1991). Iron deficiency inhibited the translation
of a-synuclein mRNA (Febbraro et al., 2012). Murine treated
with a high concentration of iron showed symptoms of PD
when aging (Kaur et al., 2007). However, another study that
explored the relationship between iron in diet and risk of
PD indicates that dietary iron intake does not increase the
risk of PD (Cheng et al., 2015). The different results of
the two experiments may result from the amount of iron
and different research models. Furthermore, iron has other
functions that may also induce PD. Firstly, iron has alpha-
synuclein toxicity. Secondly, iron can induce a Fenton-Haber-
Weiss reaction, finally causing oxidative stress (Hellman and
Gitlin, 2002; Caudle et al., 2012). Both of these two functions
can cause damage to brain cells and damage mitochondria, but
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the specific link between them and Parkinson’s is unknown, and
there is still a need for further research.

Zinc (Zn)
In a case-control study of 423 PD patients and 205 controls,
patients showed significantly more exposure to zinc (95% CI,
1.51–90.90) (Pals et al., 2003). Zinc induced a significant decrease
of Aβ solubility and an increase of its ability to resist tryptic
cleavage at the secretase site (Bush et al., 1994). Zinc facilitated
neuro-filament phosphorylation in the absence of the p70 S6
kinase in N2a cells (Bjorkdahl et al., 2005). There was an
elevated zinc concentration in the substantia nigra of PD patients
(Dexter et al., 1991).

Cerium (Ce)
Cerium is an interesting metal that has been the subject of
great research interest in recent years. Cerium was proved to
have a negative effect on DNA methylation, in other words,
Cerium is likely to induce PD. However, another compound
of Cerium, cerium oxide nanoparticles (CeO2 NPs) shown
positive effects and could cure some neurodegenerative diseases
including PD. In a study researching the relationship between
concentrations of Cerium and DNA methylation in blood,
samples were collected from people who lived around an
e-waste disassembling factory in China. In this study, there
was a negative correlation between the Ce concentration of
pre-workers and global DNA methylation (5-mc) in Pearson
correlation and multiple linear regression analysis, r = −0.51,
p = 0.01. Therefore, the concentration of Ce in blood was
significantly negatively correlated with global DNA methylation.
DNA hypomethylation usually relates to chromosome instability
and increased mutation events by affecting the intergenomic
and intron regions of DNA, especially repeat sequences and
transposable elements. This suggests that Ce plays a key role
in DNA methylation reduction. Taking into account that many
researchers have also shown that PD is regulated by DNA
methylation, it can be concluded that Cerium may increase
the risk of PD by DNA methylation reduction (Li et al.,
2020). However, the limitation of this research is the lack of

experimental models to validate findings in Chinese workers.
In other research, scientists found that CeO2 NPs can reduce
α-synuclein induced toxicity in a yeast model based on the
heterologous expression of the human α-synuclein. To be
specific, CeO2 NPs can suppress α-syn-induced mitochondrial
dysfunction, reduce the production of reactive oxygen species
(ROS) in yeast cells and absorb α-synuclein directly on its surface
(Ruotolo et al., 2020).

CONCLUSION

Several intriguing points should be mentioned about the roles of
metals in PD development because they play both pathological
and protective effects. According to previous research, some
metals play both negative and positive roles in PD development,
such as cerium and copper. To be specific, excessive Cu can
induce the generation of ROS, causing DNA and mitochondrial
dysfunction. However, Cu plays a protective role in PD patients
who are Cu-deficient. Cerium was also proven to have a negative
effect on DNA methylation while cerium oxide nanoparticles are
used to cure PD.

Another interesting point relates to the different valence states
of metals that have different toxicities. For example, divalent Fe
is important in PD development because it can induce neuronal
death by oxidative stress. But it can become non-toxic if divalent
Fe is oxidized to trivalent Fe by ceruloplasmin and hephestin.
Researchers have validated this in a double knockout mouse
lacking both cap and hephestin. Considering that many metals
induce Parkinson’s disease by oxidative stress to cause neuronal
death, we believe further research could focus on the translation
of metal valence, and this might be a new method of curing PD.
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