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Abstract

Conotruncal heart defects (CTDs) are among the most common and severe groups of con-

genital heart defects. Despite evidence of an inherited genetic contribution to CTDs, little is

known about the specific genes that contribute to the development of CTDs. We performed

gene-based genome-wide analyses using microarray-genotyped and imputed common and

rare variants data from two large studies of CTDs in the United States. We performed two

case-parent trio analyses (N = 640 and 317 trios), using an extension of the family-based

multi-marker association test, and two case-control analyses (N = 482 and 406 patients and

comparable numbers of controls), using a sequence kernel association test. We also under-

took two meta-analyses to combine the results from the analyses that used the same

approach (i.e. family-based or case-control). To our knowledge, these analyses are the first

reported gene-based, genome-wide association studies of CTDs. Based on our findings, we

propose eight CTD candidate genes (ARF5, EIF4E, KPNA1, MAP4K3, MBNL1, NCAPG,

NDFUS1 and PSMG3). Four of these genes (ARF5, KPNA1, NDUFS1 and PSMG3) have

not been previously associated with normal or abnormal heart development. In addition, our

analyses provide additional evidence that genes involved in chromatin-modification and in

ribonucleic acid splicing are associated with congenital heart defects.
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Introduction

Congenital heart defects (CHDs) are the most common group of birth defects, with a preva-

lence of approximately 1% in live births [1]. CHDs are also the leading cause of birth defect

related mortality [2] and account for the largest percentage of birth defect associated hospitali-

zations and hospitalization-associated costs [3]. In the United States, it is estimated that there

are approximately 2.4 million CHD survivors (1.4 million adults, 1 million children) [4], the

majority of whom will require lifelong cardiac care. Despite the impact on affected patients,

their families, and the healthcare system, the causes of CHDs are not well defined [5].

There are many different CHD phenotypes, of which approximately one-third involve the

cardiac outflow tracts and great arteries [6]–structures that develop from the cardiac neural

crest and secondary heart field [7]. This subgroup of CHDs, collectively referred to as cono-

truncal heart defects (CTDs), includes some of the most severe and costly birth defects [3, 8].

In addition to their shared embryologic and anatomic basis, there is substantial evidence that

the various CTD phenotypes (e.g. tetralogy of Fallot (TOF), truncus arteriosus) share common

genetic underpinnings. For example, nationwide, population-based studies conducted in Nor-

way and Denmark indicate that CTDs aggregate within families (recurrence risk ratios for

CTDs in first-degree relatives: 9–12) [9, 10] and that affected relatives of patients with a CTD

are at a higher relative risk for CTDs (sibling CTD recurrence risk ratio: 9.0, 95% confidence

interval (CI) 4.0–20.0) than for other types of CHDs (sibling non-CTD, CHD recurrence risk

ratio: 3.6, 95% CI 2.4–5.5) [9]. Further, there is evidence that, within affected relative-pairs, the

specific type of CTD can differ. For example, among 28 CTD-affected siblings of patients with

TOF, 17 also had TOF whereas 11 had a different CTD phenotype [11]. Additional evidence

that the various CTD phenotypes share a common genetic basis is provided by the phenotypic

characteristics of defined genetic syndromes. For example, in patients with the 22q11.2 dele-

tion syndrome, the most common cardiac defects are CTDs, but the specific CTD phenotype

(e.g. TOF, interrupted aortic arc) varies across patients with this deletion [12].

Studies of syndromes that include CTDs, such as the 22q11 deletion syndrome, have pro-

vided some clues regarding the specific genes that may be involved in determining the risk of

CTDs (e.g. TBX1 [13]). In addition, studies of rare, presumably pathogenic, copy number vari-

ants [14–16], and inherited [17] and de novo [17, 18] single nucleotide variants have identified

genes that may contribute to the risk of CTDs [18, 19]. Yet, most affected patients do not carry

a confirmed or suspected rare, causative variant. Moreover, rare variants, in particular rare de
novo variants, do not account for the observed increase in risk of CTDs among the relatives of

affected patients.

Since rare, pathogenic variants are unlikely to fully account for the population prevalence

or familial recurrence of CTDs, additional genetic mechanisms must also contribute to disease

risk. While the involvement of more common variants that have more moderate impacts on

CTD risk seems likely, genome-wide association studies (GWAS) [20–23] of common single

nucleotide polymorphisms (SNPs) have identified only two genome-wide significant associa-

tions for CTDs (rs11065987, p = 7.7E-11 and rs7982677, p = 3.03E-11) [22]. However, given

the huge number of variants evaluated in GWAS, the threshold for statistical significance is

quite stringent (i.e. p<5E-08). Consequently, the lack of significant findings for CTDs may

well reflect low study power rather than the lack of common, CTD-related genetic variants.

Gene-based GWAS provide an additional strategy for identifying disease-related genes, but,

to our knowledge, there are no published gene-based GWAS for CTDs. Compared to SNP-

based GWAS, gene-based studies have the advantage of a less stringent threshold for statistical

significance (e.g. Bonferroni corrected p-value for 20,000 genes, 2.5E-06). In addition, SNP-

based analyses generally exclude rare variants, due to low statistical power [24], whereas gene-
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based analyses can incorporate data from both common and rare variants [25] and, therefore,

capture more genomic variation than SNP-based analyses. Given these advantages, we have

undertaken gene-based analyses and meta-analyses using data from several large CTD

datasets.

Materials and methods

Study subjects

The Children’s Hospital of Philadelphia (CHOP). Informed consent was obtained

under a protocol approved by the Institutional Review Board for the protection of human sub-

jects at CHOP. Adult subjects (parents or guardians) provided written consent for themselves

and their minor children. Patients diagnosed with CTDs and their available parents of all races

and ethnicities were recruited through the Cardiac Center at CHOP from 1992–2010 [21].

Patients with the following diagnoses were included in the study: TOF, persistent truncus

arteriosus, D-transposition of great arteries (TGA), double outlet right ventricle, ventricular

septal defects (conoventricular, posterior malalignment and conoseptal hypoplasia types), aor-

tic-pulmonary window, interrupted aortic arch and isolated aortic arch anomalies. Cardiac

diagnoses were confirmed using medical and operative reports as well as imaging (e.g., echo-

cardiography, cardiac magnetic resonance imaging, cardiac catheterization) records. All

potential patients were tested for the 22q11.2 deletion syndrome using fluorescence in situ
hybridization and/or multiplex ligation-dependent probe amplification using standard tech-

niques. Patients with a confirmed 22q11.2 deletion were excluded [26]. Patients with a clini-

cally diagnosed chromosomal abnormality, single gene mutation, teratogenic syndrome or

known maternal risk factor (e.g. diabetes, anticonvulsant use) were also excluded [21].

The CHOP patients were previously microarray genotyped in two phases. In the first phase,

cases with any CTD phenotype and of any race and ethnicity, and their parents were geno-

typed to generate data for a case-parent trio study. In the second phase, only non-Hispanic

Caucasian cases (based on self- or parental-reported race/ethnicity) were genotyped to gener-

ate data for a case-control study. Control data were obtained from existing microarray geno-

typed data from pediatric controls that were recruited during well child visits at CHOP [27].

Pediatric Cardiac Genomics Consortium (PCGC). Informed consent was obtained from

each participating individual or their parent or guardian in accordance with protocols

approved by the Institutional Review Board of each participating institution. Patients with a

CHD and their available parents of all races and ethnicities were recruited as part of the PCGC

Congenital Heart Defect GEnetic NEtwork Study from 2010–2012 [18, 28, 29]. PCGC recruit-

ment took place at five main clinical sites (including CHOP) and four satellite clinics. The

patients recruited by PCGC through CHOP do not overlap with the CHOP patients described

above. Participant information was collected through medical records, electronic case reports,

and personal interviews. Our studies were restricted to include patients with a CTD (as

described above) and without a clinically diagnosed chromosomal or genetic disorder.

Genetic methods

Blood samples were collected from each patient and pediatric control. When blood collection

was scheduled in conjunction with a surgical procedure, the sample was collected prior to any

blood transfusion. Blood or saliva samples were collected from available parents of patients.

DNA extraction was performed using standard techniques.

Genome-wide microarray genotyping was performed at the CHOP Center for Applied

Genomics. Samples collected at CHOP were genotyped using Illumina HumanOmni-2.5 or

Illumina HumanHap550 (v2, v3), or 610 BeadChip platforms. Samples collected as part of the
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PCGC (including the PCGC samples collected at CHOP) were genotyped on the Illumina

HumanOmni-1 or HumanOmni-2.5 platforms. Additional details regarding the CHOP and

PCGC samples are provided elsewhere [18, 21, 27, 28].

Imputation and quality control (QC) procedures

The microarray genotyped data from CHOP and PCGC were imputed using Impute2 v2.3.0

and pre-phased haplotype data obtained from the 1000 Genomes Project (Phase-I integrated

v3 variants set) as the reference [30]. Due to differences in the genotyping platforms, the

CHOP and PCGC cohorts were imputed separately.

Standard QC procedures were performed for each dataset using PLINKv1.07 before and

after imputation [31]. Before imputation, the array data were checked for strand and coding

errors. Trios were removed if more than 1% of genotyped SNPs had Mendelian errors. Sus-

pected duplicate samples were identified using pairwise identify-by-descent estimation and

samples with pi-hat greater than 0.6 were removed. Samples with genotyping rates less than

95% were also removed. In addition, variants with minor allele frequency (MAF) less than 1%,

genotyping rates less than 90%, or deviation from Hardy Weinberg Equilibrium (HWE) in

controls (p<1E-05) were excluded, as were all non-autosomal variants.

After the pre-imputation exclusions, the CHOP data from different platforms (HumanOmni-

2.5, HumanHap550K v2, 550K v3 and 610K) were combined and only those variants present on

all platforms (N = 283,977 SNPs) were used for imputation. Similarly, the PCGC data from differ-

ent Illumina platforms (HumanOmni-1 and HumanOmni-2.5) were combined and only those

SNPs present on both platforms (N = 624,419 SNPs) were used for imputation. For each dataset,

haplotypes were pre-phased using SHAPEIT2 v2.727 [32] and imputation was performed using

Impute2 v2.3.0 [30]. A genotype was imputed only if the posterior probability value exceeded 0.9,

the default calling threshold for Impute2. After imputation, we excluded variants with poor impu-

tation quality (Impute2 information metric score<0.8), or genotyping rates less than 90%. Sam-

ples with genotyping rates less than 95% and all insertions or deletions were removed. For all case-

control comparisons, variants were evaluated for deviation from HWE in the pediatric control

group using the exact test [33] implemented in PLINK, and variants with p<1E-05 were excluded.

Because we were interested in assessing both rare and common variants, the post-imputation QC

procedures did not include restrictions based on MAFs.

Statistical analysis

Genome-wide gene-based analyses were conducted, as described below. Because the various

gene-based approaches have different underlying assumptions, strengths and limitations, we

used two different gene-based approaches, eFBAT-MM and SKAT-C, to optimize the proba-

bility of identifying CTD-related genes. All analyses included all autosomal RefSeq genes,

defined by the transcription start-stop coordinates (Genome Reference Consortium Human

genome build 37 or hg19 reference assembly) in the RefSeq gene records and we included vari-

ants that were 1kb upstream or downstream of each gene.

Family-based analyses. Data for case-parent trios ascertained through CHOP (CHOP-

Trios) and PCGC (PCGC-Trios) trios were analyzed separately using an extension of the fam-

ily-based multi-marker association test (eFBAT-MM) [34]. This test (i.e. eFBAT-MM) is a bur-

den-type approach that collapses variant-level statistics over a gene or region to obtain a single

p-value and makes the assumption that all associated variants in the gene or genetic region

affect the phenotype in the same direction. The variants were weighted by the inverse of the

MAF estimated from the parental genotypes. Meta-analysis of the gene p-values from the

CHOP and PCGC trios was performed using Fisher’s combination of probability method [35].
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Case-control analyses. For the present study, we formed two independent, case-control

(CC) datasets using the microarray genotyped and imputed data from CHOP. The first dataset

included the Caucasian subset of patients from the CHOP trios and an equal number of Cau-

casian pediatric controls (CHOP-CC1). The second dataset included a second set of Caucasian

patients with a CTD and an equal number of Caucasian pediatric controls (CHOP-CC2).

There was no overlap in the cases or the controls included in CHOP-CC1 and CHOP-CC2.

The two CHOP case-control datasets (CHOP-CC1 and CHOP-CC2) were analyzed sepa-

rately using the sequence kernel association test for the combined effect of common and rare

variants (SKAT-C) [36]. Using this approach, separate scores were calculated for rare and

common SNPs and these scores were combined as a weighted sum to calculate the gene p-

value. The SKAT-C recommended default parameters were used for variant weighting and

analysis. To control for population stratification bias, only non-Hispanic Caucasian cases

(based on self- or parental report) were included in the analyses. Since race and ethnicity were

based on self-report (rather than ancestry informative genetic markers), each analysis was also

adjusted for the first genotypic principal component. Genotypic principal component analyses

were conducted in Golden Helix SVS8.1, using the default parameter settings (MAF-based

allele classification, additive genetic model and data for each marker were normalized by its

theoretical standard deviation under HWE) (Golden Helix, Inc., Bozeman, MT, www.

goldenhelix.com). Meta-analysis of the gene p-values from the two case-control series was per-

formed using Fisher’s combination of probability method [35]. Meta-analyses combining

results from the eFBAT-MM and SKAT-C analyses were not performed, given the overlap in

patients (i.e. the non-Hispanic Caucasian cases in the CHOP-Trios are the case group for

CHOP-CC1) and the differences in the assumptions underlying the two analytic approaches.

For each of the family-based and case-control analyses, the genomic inflation factor (λ) was

calculated (for the case-control analyses, λwas calculated using values that adjusted for the first

genotypic principal component) and a quantile-quantile (Q-Q) plot was constructed to check

for deviation of the genome-wide observed distribution of the test statistic from the expected

null distribution. Genes with association p-values less than the Bonferroni-corrected p-value

(based on the number of genes in each analysis) were considered genome-wide significant.

Genes with p-values greater than the Bonferroni-corrected p-values but less than 1E-03 were

considered to be suggestive of an association.

Gene-set enrichment analysis. Genes with p<0.01 in the eFBAT-MM or SKAT-C meta-

analyses were evaluated together for gene-annotation enrichment using MetaCoreTM (Thom-

son Reuters, Life Science Research, https://portal.genego.com/metacore). A false-discovery

rate (FDR) corrected p-value less than 0.05 was used to identify significant pathway maps and

Gene Ontology (GO) processes. REVIGO was used for clustering GO terms based on p-values

and semantic similarity score (simRel) [37]. The simRel scores range from 0 to 1 and we used

a score threshold of 0.4 for filtering GO terms.

Gene annotation and prioritization. To prioritize genes with at least suggestive evidence

of association with CTD (p<1E-3, in either the family-based or case-control meta-analysis),

for future investigations, we considered: (1) whether the meta-analysis p-value for the gene

was lower than the p-values in contributing datasets i.e. the evidence for association was stron-

ger in the combined data than in either of the individual datasets; and, (2) gene expression lev-

els, based on heart expression data from E9.5 and E14.5 mouse embryos [18]. For each gene

with a meta-analysis p-value lower than the p-values for the contributing datasets, we anno-

tated the variants that were included in our analyses, for location, function, MAF in the

genome aggregation database [38], Combined Annotation Dependent Depletion (CADD)

phred-scaled scores [39], Genome-Wide Annotation of VAriants (GWAVA) [40] and Geno-

mic Evolutionary Rate Profiling scores [41]. Genes with meta-analysis p-values lower than the
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p-values from the contributing datasets, and with heart expression data in the top quartile at

E9.5 or E14.5 were considered strong candidates for future investigations.

Results

After QC exclusions, there were 640 CHOP trios and 317 PCGC trios for family-based analyses

(Fig 1). In addition, there were 482 patients with CTD and 483 controls for CHOP-CC1, and

406 patients with CTD and 406 controls for CHOP-CC2. In both sets of trios, patients were

predominantly Caucasian (Table 1). The two case-control datasets were restricted to Cauca-

sians participants. In all groups, the most common heart defect was TOF.

Gene-based GWAS of individual datasets

The number of variants and genes included in each analysis are summarized in Table 2. The

genotype concordance for the imputation was >90%. The Q-Q plots (S1–S4 Figs) and geno-

mic inflation factors (Table 2) provided little evidence for systematic bias in the observed p-

values. No genome-wide significant associations were identified in the analyses of the individ-

ual datasets. The number of genes with suggestive evidence of association (p<1E-03) ranged

from 13 to 27 (Table 2). There was no overlap across datasets or analyses with respect to the

genes with suggestive evidence of association. Detailed genome-wide results for each analysis

are included in Tables B-E in S1 File.

Fig 1. Summary of conotruncal heart defects data cohorts. The participants were recruited from the Children’s Hospital of Philadelphia (CHOP) and the

Pediatric Cardiac Genomics Consortium (PCGC). CHOP-Trios and PCGC-Trios were analyzed using eFBAT-MM whereas SKAT-C was used to analyze

the two case-control cohorts (CHOP-CC1 and CHOP-CC2). The cases in CHOP-CC1 are the Caucasian subset of cases in CHOP-Trios. One of 483

Caucasian cases was excluded during QC procedures prior to SKAT-C analysis.

https://doi.org/10.1371/journal.pone.0219926.g001
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Meta-analysis

Separate meta-analyses were conducted using eFBAT-MM p-values for 21,170 genes that were

analyzed in both the CHOP and PCGC trios, and from SKAT-C p-values for 21,077 genes that

were analyzed in both the CHOP-CC1 and CHOP-CC2 case-control studies. The Q-Q plots

(Figs 2 and 3) and genomic inflation factors provided little evidence for systematic bias in the

observed p-values. No gene achieved genome-wide significance in either meta-analysis

(Table F in S1 File provides p-values for all genes assessed in each meta-analysis). Suggestive

evidence of association (p<1E-03) was obtained for 11 genes (8 protein coding, 2 pseudogenes,

1 RNA gene) in the trio-based meta-analysis (Table 3) and for 27 genes (23 protein coding, 4

RNA genes) in the case-control based meta-analysis (Table 4).

We identified genes that have previously been implicated in heart development and struc-

tural heart malformations (e.g. MBNL1, ROR1), and known disease-related genes (e.g. NEXN,

dilated cardiomyopathy; NDUFS1, mitochondrial complex I deficiency). Several of the identi-

fied genes are also annotated to biological processes that are important during embryonic

heart development including transcription (FUBP1, POU6F2, MKX), protein phosphorylation

(MAP4K3, PRKD2, ROR1, STK33), positive regulation of the ERK1 and ERK2 cascade (ROR1,

PRKD2), Wnt signaling (ROR1, DACT3), and cell adhesion (PRKD2, SYMPK).

Gene-set enrichment analysis

MetaCoreTM gene-set enrichment analysis was performed using genes with p<0.01 in the trio

(195 genes) or case-control (246 genes) based meta-analyses (Table F in S1 File). We identified

two significantly enriched pathways (FDR-corrected p<0.05): dynein-dynactin motor com-

plex in axonal transport in neurons (FDR-corrected p = 0.02), and chromosome condensation

in prometaphase (FDR-corrected p = 0.02) (Table G in S1 File). In addition, we identified 111

Table 1. Characteristics of patients with conotruncal defects in the Children’s Hospital of Philadelpia (CHOP) and Pediatric Cardiac Genomics Consortium

(PCGC) datasets.

N (%)

CHOP-Trios /

CHOP-CC1a

(n = 640)

CHOP-CC2

(n = 406)

PCGC-Trios

(n = 317)

Race/ethnicity

Non-Hispanic Caucasian 483 (75.5) 406 (100.0) 244 (70.1)

Other 157 (24.5) 0 (0.0) 73 (29.9)

Sex

Male 387 (60.5) 236 (58.1) 192 (60.6)

Female 253 (39.5) 170 (41.9) 125 (39.4)

Conotruncal defect phenotype

Tetralogy of Fallot 250 (39.1) 134 (33.0) 104 (32.8)

D-transposition of the great arteries 125 (19.5) 80 (19.7) 64 (20.2)

Ventricular septal defects 133 (20.8) 109 (26.8) 44 (13.9)

Double outlet right ventricle 66 (10.3) 25 (6.2) 46 (14.5)

Isolated aortic arch anomalies 30 (4.7) 22 (5.4) 7 (2.2)

Persistent truncus arteriosus 18 (2.8) 19 (4.7) 13 (4.1)

Interrupted aortic arch 11 (1.7) 10 (2.5) 9 (2.8)

Other 7 (1.1) 7 (1.7) 30 (9.5)

aThe cases used in CHOP-CC1 are the subset of the cases included in the CHOP-Trios (i.e. the non-Hispanic Caucasian cases, N = 483).

https://doi.org/10.1371/journal.pone.0219926.t001
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significantly enriched (FDR-corrected p<0.05) non-redundant (REVIGO-clustered) GO pro-

cesses (Table H in S1 File). GO term clusters included processes relevant to heart defects

including cellular response to hormone stimulus, angiogenesis and biological adhesion.

Gene annotations and prioritization

Of the 38 genes with suggestive evidence of association (p<1E-3) in either the family-based or

case-control meta-analysis, 19 protein-coding and 2 RNA genes had a lower meta-analysis p-

value than the p-values in contributing datasets i.e. the evidence for association was stronger

in the combined data than in either individual dataset (Table 5). For the 21 genes with meta-

analysis p-value less than the individual study p-values, the majority (95%) of variants included

in the analyses were intronic (Table I in S1 File). Heart expression data from E9.5 and E14.5

mouse embryos [18] were available for 15 of the 19 protein-coding genes, of which eight (53%)

were in the top quartile of expression at one or both time points (Table 5). We propose these

eight genes (ARF5, EIF4E, KPNA1, MAP4K3, MBNL1, NCAPG, NDFUS1, PSMG3) as CTD

candidate genes.

Table 2. Summary of eFBAT-MM and SKAT-C analyses and results.

eFBAT-MM SKAT-C

CHOP-Trios PCGC Trios CHOP-CC1 CHOP-CC2

Total variants 5,578,860 6,812,971 5,601,587 5,601,152

Rare variantsa 3,446,735 4,502,285 3,502,419 3,495,988

Number of genes 21,256 22,247 21,212 21,269

Genomic inflation factor (λ) 1.03 1.04 1.09 1.09

Genes with p<1E-03b 13 13 25 27

CBLN2
C22orf39
NCOA2
CEP95
DDX5
SQRDL

SLMO2-ATP5E
TRIP13
PADI3
RBM47
PRR14
ZC3H18
CREBZF

MIR518C
GOLGA2P9
POU6F2
LCE4A

TMEM206
LOC100996349

ASAH2
MBNL1
IGFBPL1
RNF44
IRAK2
DDX59
ADGRA3

FAM225A
ABCB4
STK33
BLOC1S6
MIR3916
LEXM
DACT3

MIR99AHG
TRIP10

LINC00620
DACT3-AS1

NPPC
GPATCH1
AVPR1A
FLNC
NCAPG
SHD
ARAP3
FIGN
NCAN
SYMPK

MIR548AA2
MIR548D2
BHMG1
FCGR3B

PSMG3
NEXN
FUBP1

PSMG3-AS1
DNAJB4
TSSC4

TSPAN10
MKX-AS1
MKX

UHMK1
ATG9B
MMP19
CRTAM
NPLOC4
GRID2
COPZ2
PTPRT
PYGL
COA5
EEF1B2
APOPT1
GATC
ACTL7B
NDUFS1

LOC101927653
AACS
EPHB4

a Variants with minor allele frequency <0.05
b Genes are listed by p-value (lowest to highest). Specific p-values are provided in Tables B-E in S1 File.

https://doi.org/10.1371/journal.pone.0219926.t002
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Discussion

Our comprehensive genome-wide, gene-based analysis of common and rare variants identified

38 genes with suggestive evidence of association (meta-p<1E-3) with CTDs, as well as relevant

biological pathways and processes that were significantly enriched (FDR-corrected p<0.05)

among the genes with the most significant p-values in gene-based analyses. Based on both sta-

tistical evidence (i.e. the evidence for association was stronger in the meta-analysis than in any

of the contributing studies) and gene expression data (top quartile of expression in mouse

heart at E9.5 or E14.5) we propose eight genes (ARF5, EIF4E, KPNA1, MAP4K3, MBNL1,

NCAPG, NDFUS1, PSMG3) as CTD candidate genes.

Fig 2. Quantile-quantile plot of eFBAT-MM test gene-level meta-analysis p-values.

https://doi.org/10.1371/journal.pone.0219926.g002
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Four of the CTD candidate genes suggested by our work have not been associated with nor-

mal or abnormal heart development. These four genes are: ADP ribosylation factor 5 (ARF5),

which encodes a GTP-binding protein involved in protein trafficking; karyopherin subunit

alpha 1 (KPNA1), which functions in nuclear protein import; NADH:Ubiquinone oxidoreduc-

tase core subunit protein coding S1 (NDUFS1), which encodes the core subunit of the mito-

chondrial membrane respiratory chain NADH dehydrogenase, and; proteasome assembly

chaperone 3 (PSMG3), which encodes a chaperone protein.

The known function of the remaining four candidate genes suggests that their altered

expression could cause CHDs. Of these genes, the most significant association was observed

Fig 3. Quantile-quantile plot of SKAT-C test gene-level meta-analysis p-values.

https://doi.org/10.1371/journal.pone.0219926.g003
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for muscleblind-like splicing regulator 1 (MBNL1, eFBAT-MM meta-p = 1.5E-04). This gene

encodes a CH3-type zinc finger protein (MBNL1) that is a key regulator of pre-RNA alterna-

tive splicing. Evidence that splicing regulators contribute to the etiology of CHDs is provided

by the identification of a genome-wide, significant excess of damaging de novo and loss-of-

function heterozygous mutations in another key splicing regulator, RBFOX2, in patients with

CHDs [17].

Several additional lines of evidence also support a role for MBNL1 in cell differentiation

and heart development. For example, MBNL1 and RBFOX2 appear to co-regulate the splicing

changes that lead to the differentiation of pluripotent stem cells [42]. In addition, in the nucle-

otide repeat expansion disorder, myotonic dystrophy, reduced MBNL1 splicing activity (due

to binding of MBNL1 protein to the expansion RNA) is thought to play a major role in deter-

mining the disease phenotype, which includes several cardiovascular abnormalities (conduc-

tion defects, arrhythmias, mitral valve prolapse) [43, 44]. There is also evidence that MBNL1 is

involved in the fetal to adult transition in alternative splicing patterns in the heart [45], and

that MBNL1 negatively regulates TGF-β signaling and the epithelial-mesenchymal transition

in the endocardial cushions by restricting the timing and amount of TGF- β production in the

atrioventricular canal and outflow tract endocardium [46, 47]. Mice null for MBNL1 protein

present with abnormal heart valve development, regurgitation across both the in- and outflow

valves, and ostium secundum septal defects [47].

Further evidence that genes involved in RNA splicing may be associated with CTDs is pro-

vided by our gene-set enrichment analyses. Specifically, genes mapping to the GO process ‘reg-

ulation of RNA splicing’ (GO:0043484) were significantly enriched (FDR-adjusted p = 0.03)

among genes with association p<0.01 in our meta-analyses. In addition to MBNL1, seven

genes mapping to this process (CLK3, DDX5, JMJD6, SRSF2, SRSF9 and TMBIM6) had meta-

analysis p<0.01 (meta-analysis p-value range: 2E-03 to 8E-03) in either the family-based (i.e.

eFBAT-MM) or case-control (i.e. SKAT-C) meta-analysis.

The second most significant of our proposed CTD candidate genes was eukaryotic transla-

tion initiation factor 4D (EIF4E, SKAT meta-p = 3.6E-04). The encoded protein, eIF4F, directs

ribosomes to the mRNA 5’-cap and is a key factor in initiation of translation of many mRNAs

[48]. Zhang et al. have presented evidence that eIF4E is involved in heart development via the

p53-Rbm24 loop [49]. Specifically, they demonstrated that the multifunctional RNA-binding

Table 3. Genes with suggestive evidence of association (p<1E-03) in the trio-based meta-analysis.

CHOP-Trios

(640 trios)

PCGC-Trios

(317 trios)

Meta-analysis

Gene Function Number of variants p-valuea Number of variants p-valuea p-value

POU6F2 Protein coding 2,662 8.9E-02 2,738 8.7E-05 9.8E-05

MBNL1 Protein coding 534 3.3E-02 789 3.7E-04 1.5E-04

SIGLEC11 Protein coding 37 4.1E-03 53 3.1E-03 1.6E-04

GOLGA2P9 Pseudogene 38 9.8E-01 83 2.3E-05 2.7E-04

MAP4K3 Protein coding 1,020 1.6E-03 1,063 2.1E-02 3.7E-04

CBLN2 Protein coding 39 2.4E-04 52 1.5E-01 4.1E-04

ROR1 Protein coding 1,585 2.4E-02 1,954 2.0E-03 5.3E-04

LINC00207 RNA gene 26 2.0E-02 25 2.9E-03 6.2E-04

KPNA1 Protein coding 317 5.4E-02 352 1.5E-03 8.4E-04

GLIPR1 Protein coding 81 2.9E-02 104 2.9E-03 8.6E-04

LOC100996349 Pseudogene 7 4.2E-01 15 2.0E-04 8.8E-04

a gene-level p-values from eFBAT-MM test

https://doi.org/10.1371/journal.pone.0219926.t003
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protein, Rbm24, prevents binding of eIF4E to p53 RNA, thereby repressing p53 translation

and p53-dependent apoptosis. Further, they showed that mice deficient for Rbm24 develop

endocardial cushion defects as a result of aberrant binding of eIF4E to p53 RNA resulting in

overexpression of p53. Mutations in EIF4E have also been implicated as a cause of autism in

humans [50], and enhanced eIF4E activity has been associated with autism-like phenotypes in

animal models [51]. Hence, our finding adds EIF4E to the growing list of genes that may be

related to both CHDs and neurodevelopment disabilities such as autism [17, 52].

Our study also identified the mitogen-activated protein kinase kinase kinase kinase 3

(MAP4K3) as a CTD candidate gene. The product of this gene is an upstream activator of the

c-Jun-N-terminal kinase (JNK) signal transduction pathway, which is involved in several pro-

cesses relevant to heart development (e.g. cell growth, differentiation and survival, apoptosis)

[53]. Downstream effectors of JNK signaling relevant to heart development include the tumor

suppressor/apoptosis gene, p53 (discussed above), and SMAD4. In a mouse model, disruption

of Smad4 in neural crest cells resulted in multiple malformations including defects of the out-

flow tracts and ventricles [54]. Further, in humans, SMAD4 gain of function mutations cause

Table 4. Genes with suggestive evidence of association (p<1E-03) in the case-control based meta-analysis.

CHOP-CC1

(482 CTD patients/483 controls)

CHOP-CC2

(406 CTD patients/ 406 controls)

Meta-analysis

Gene Function Number of variants p-valuea Number of variants p-valuea p-value

PSMG3 Protein coding 41 6.5E-02 40 2.6E-05 2.4E-05

FAM225A RNA gene 6 3.9E-05 7 5.3E-02 2.9E-05

ABCB4 Protein coding 252 9.9E-05 272 9.5E-02 1.2E-04

LEXM Protein coding 208 2.5E-04 185 4.2E-02 1.3E-04

SHD Protein coding 28 6.9E-04 31 1.8E-02 1.5E-04

NEXN Protein coding 150 5.1 E-01 162 3.0E-05 1.9E-04

LOC100287036 Protein coding 12 6.3E-03 15 2.5E-03 1.9E-04

PSMG3-AS1 RNA gene 29 1.8 E-01 28 1.1E-04 2.3E-04

PRKD2 Protein coding 59 1.2E-03 67 2.3E-02 3.1E-04

DACT3 Protein coding 16 3.1E-04 14 9.1E-02 3.2E-04

EIF4E Protein coding 237 2.6E-02 271 1.2E-03 3.6E-04

MKX-AS1 RNA gene 66 1.8 E-01 80 1.8E-04 3.6E-04

MKX Protein coding 323 1.5 E-01 406 2.2E-04 3.7E-04

RGS16 Protein coding 11 5.3E-03 11 6.7E-03 4.0E-04

CHODL Protein coding 1,101 2.8E-02 1,396 1.3E-03 4.2E-04

NCAPG Protein coding 76 6.8E-04 84 5.5E-02 4.2E-04

DNAJB4 Protein coding 43 3.3 E-01 44 1.2E-04 4.4E-04

FUBP1 Protein coding 79 8.1 E-01 91 5.2E-05 4.7E-04

DACT3-AS1 RNA gene 14 4.7E-04 12 9.5E-02 4.9E-04

STK33 Protein coding 769 1.1E-04 784 5.7 E-01 6.4E-04

DCAF16 Protein coding 22 1.7E-03 28 4.0E-02 7.2E-04

ACTL7B Protein coding 21 9.5E-02 20 7.5E-04 7.5E-04

NDUFS1 Protein coding 181 8.6E-02 192 8.8E-04 8.0E-04

FBXO47 Protein coding 66 2.2E-03 52 3.7E-02 8.4E-04

ARF5 Protein coding 25 3.8E-03 24 2.2E-02 8.7E-04

PYGL Protein coding 114 1.7 E-01 112 5.4E-04 9.5E-04

SYMPK Protein coding 234 7.8E-04 251 1.2 E-01 9.9E-04

a gene-level p-values from SKAT-C

https://doi.org/10.1371/journal.pone.0219926.t004
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Myhre syndrome, which includes CHD as a common (~2/3rds of patients) phenotypic finding

[55]. There is also evidence that MAP4K3 is a central regulator of autophagy, a process that is

critical for maintaining the supply of free amino acids for protein synthesis [56] that is

required for embryonic growth and development.

Table 5. Genes with suggestive evidence of association (p<1E-03) in either dataset and with a meta-analysis p-value that is lower than that obtained in either of the

contributing analyses.

Gene Gene Name Function Gene-based

Test

Dataset 1 p-

valuea
Dataset 2 p-

valuea
Meta-analysis p-

value

Day

9.5b
Day

14.5b

ARF5 ADP-ribosylation factor 5 Protein-

coding

SKAT-C 3.84E-03 2.17E-02 8.67E-04 95.3 88.8

CHODL Chondrolectin Protein-

coding

SKAT-C 2.80E-02 1.32E-03 4.15E-04 5.8 10.4

DCAF16 DDB1 and CUL4 associated factor 16 Protein-

coding

SKAT-C 1.70E-03 3.98E-02 7.18E-04 No

data

No

data

EIF4E Eukaryotic translation initiation factor

4E

Protein-

coding

SKAT-C 2.55E-02 1.24E-03 3.60E-04 81.7 76.4

FAM225A Family with sequence similarity 225

member 1

RNA gene SKAT-C 3.86E-05 5.28E-02 2.87E-05 -- --

FBXO47 F-box only protein 47 Protein-

coding

SKAT-C 2.17E-03 3.69E-02 8.36E-04 43.8 28.3

GLIPR1 Glioma pathogenesis-related protein 1 Protein-

coding

eFBAT-MM 2.85E-02 2.88E-03 8.55E-04 57.6 34.9

KPNA1 Karyopherin alpha-1 Protein-

coding

eFBAT-MM 5.37E-02 1.50E-03 8.41E-04 82.4 77.8

LEXM
(C1orf177)

Chromosome 1 open reading frame 177 Protein-

coding

SKAT-C 2.52E-04 4.19E-02 1.32E-04 41.4 16.1

LINC00207 Long intergenic non-protein coding

RNA 207

RNA gene eFBAT-MM 2.01E-02 2.86E-03 6.17E-04 -- --

LOC100287036 Uncharacterized LOC100287036 Protein-

coding

SKAT-C 6.34E-03 2.49E-03 1.90E-04 No

Data

No

data

MAP4K3 Mitogen-activated protein kinase kinase

kinase 3

Protein-

coding

eFBAT-MM 1.56E-03 2.11E-02 3.74E-04 76.1 76.9

MBNL1 Muscleblind-like splicing regulator 1 Protein-

coding

eFBAT-MM 3.29E-02 3.70E-04 1.50E-04 66.9 78.2

NCAPG Non-SMC condensin 1 complex subunit

G

Protein-

coding

SKAT-C 6.79E-04 5.54E-02 4.21E-04 83.5 70.5

NDUFS1 NADH-ubiquinone oxidoreductase Fe-S

protein 1

Protein-

coding

SKAT-C 8.63E-02 8.79E-04 7.95E-04 94 97.1

PRKD2 Protein kinase D2 Protein-

coding

SKAT-C 1.17E-03 2.31E-02 3.12E-04 48.1 66.9

PSMG3 Proteasome assembly chaperone 3 Protein-

coding

SKAT-C 6.50E-02 2.55E-05 2.37E-05 79 54.1

RGS16 Regulator of G protein signaling Protein-

coding

SKAT-C 5.31E-03 6.65E-03 3.97E-04 56.4 38.9

ROR1 Receeptor tyrosine kinase-like orphan

receptor 1

Protein-

coding

eFBAT-MM 2.42E-02 2.02E-03 5.33E-04 65.6 63.5

SHD SH2 domain-containing protein D Protein-

coding

SKAT-C 6.86E-04 1.82E-02 1.53E-04 65.5 36.2

SIGLEC11 Sialic acid-binding immunoglobulin-like

lectin 11

Protein-

coding

eFBAT-MM 4.09E-03 3.10E-03 1.56E-04 36.2 No

data

a When meta-analysis with p<1E-03 is FBAT, dataset 1 = CHOP Trios and dataset 2 is PCGC Trios. When meta-analysis with p<1E-03 is SKAT, dataset

1 = CHOP-CC1 patients with a CTD and controls and dataset 2 is CHOP-CC2 patients with a CTD and controls.
b Heart expression percentile rank [18].

https://doi.org/10.1371/journal.pone.0219926.t005
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Finally, our analyses identified non-SMC condensing I complex subunit G (NCAPG, SKAT

meta-p = 4.2E-04) as a CTD candidate gene. The protein encoded by this gene forms part of

the condensin complex, which is involved in mitotic chromatin condensation [57]. Further,

our analyses indicated that genes in the MetaCore pathway map, “Chromosome condensation

in prometaphase) were also significantly enriched (FDR-adjusted p = 0.02) among genes with

association p<0.01 in our meta-analyses. In addition to NCAPG, a second member of the con-

densing complex, NCAPH (FBAT meta-p = 9.13E-03), and BAZ1B (FBAT meta-p = 5.62E-03),

which is part of the WICH chromatin remodeling complex, had meta-analysis p<0.01. The

involvement of chromatin-related genes, particularly H3K4me-H3K27me pathway genes, in

CHD etiology has been suggested by studies of de novo mutations [18]. Our findings suggest

that other classes of chromatin-modifiers may also contribute to CHDs.

We have previously conducted SNP-level (MAF�0.05) GWAS using the same datasets as in

the current gene-based analyses [20]. In our meta-analysis of the SNP-level results, we identi-

fied 36 variants with suggestive evidence of association (P�1E-5). However, no association

was genome-wide significant (P<5E-8). Further, none of the SNPs with suggestive evidence of

association were located in, or within 1kb up or downstream of, the genes with suggestive evi-

dence of association (Table 5) in the current, gene-based analyses. However, it should be noted

that the SNP-level analyses were restricted to include only common variants and used slightly

different configurations of the data. Specifically, in the SNP-level analyses we compared the

cases used in CHOP-CC2 to all available CHOP pediatric controls (N = 2,976 controls), and

the SNP-level meta-analysis was based on the combined results from CHOP-Trios,

PCGC-Trios and the case-control analyses.

To our knowledge, this is the first gene-based genome-wide analysis of CTDs that is based

on data for both common and rare variants. Because the various gene-based approaches have

different underlying assumptions, strengths and limitations, we used two different gene-based

approaches, eFBAT-MM and SKAT-C, to optimize the probability of identifying CTD-related

genes. The family-based approach, eFBAT-MM, is robust to population stratification bias, but

assumes that all variants within a gene have effects in the same direction and that the effect size

is inversely proportional to the MAF. In contrast, the case-control approach, SKAT-C, is sub-

ject to stratification bias, but does not make assumptions about the direction of association.

Therefore, SKAT-C is more powerful than eFBAT-MM when a large proportion of protective

and neutral variants are present in a gene, and the converse is true when this proportion is

small. Given the differences between the two methods, the lack of overlap in the genes identi-

fied by the two approaches is not particularly surprising.

Although the gene-based approaches used in our analyses had a lower multiple-testing bur-

den than SNP-based GWAS, the criterion for achieving statistical significance (corrected

p~2.5E-06) remained quite stringent. This, in combination with our relatively small sample

sizes, suggests that associations with true CTD-related genes may have been missed in our

analyses due to low study power. Further, the Q-Q plots for the eFBAT-MM analysis of indi-

vidual datasets (Fig 2) indicate that this test may be too conservative, which would have also

negatively impacted our power to detect a true association. Given these considerations, genes

with suggestive evidence of association (meta-p<1E-03) and pathways and processes with

FDR p<0.05 appear to be strong targets for further investigations of the genetic basis of CTDs.

In our analyses, we combined data across different CTD phenotypes, which could have

obscured associations if the etiology of the individual phenotypes is distinct. For example,

mutations in laterality genes (e.g. CFC1, FOXH1) have been observed in association with TGA

[58, 59], suggesting that at least some cases of TGA might be more appropriately classified as

laterality defects rather than CTDs. However, the preponderance of evidence suggests that the

various CTD phenotypes share common genetic underpinnings. Studies of familial recurrence
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patterns, phenotypes of patients with known genetic syndromes (e.g. 22q11.2 deletion syn-

drome) and studies in animal models all indicate that the various CTD phenotypes share

genetic risk factors. Moreover, studies of rare de novo and inherited variants in humans pro-

vide evidence that the genes involved in CHDs may be shared across even broader categories

of defects. For example, Jin et al. reported genome-wide significant excess of damaging de
novo and loss-of-function heterozygous mutations in seven genes among 2,871 patients with

CHD. Of these seven genes, mutations in six were observed across broad CHD categories (i.e.

CTDs, left-sided lesions and/or other CHDs) [17]. Hence, while studies of CTDs as a group

might miss phenotype-specific associations, such studies appear to be appropriate for genes

that contribute broadly to CHD risk and for genes that influence the spectrum of CTDs.

In summary, our genome-wide, gene-based analyses of common and rare variants identi-

fied enriched pathways and biological processes and candidate genes for CTDs. Our findings

provide evidence for new CTD-related candidate genes, as well as support and expand on

prior evidence implicating chromatin-related genes and splicing-regulators as determinants of

CHD risk.

Conclusions

To our knowledge, this is the first study reporting the results of gene-based, genome-wide

association studies for CTDs. The results of our study provide evidence for eight CTD candi-

date genes, of which four have previously been implicated in heart development and four are

novel candidates. Thus, these findings add to our understanding of the complex, genetic etiol-

ogy of CTDs, which may, in turn, enhance our ability to understand, predict and ultimately

improve clinical outcomes for this patient population.
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