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ABSTRACT: The μ phase is a type of hard and brittle constituent
that exists in high-temperature alloys. The formation energy is a
crucial thermochemical datum, and the accurate calculation of the
formation energy of the μ phase contributes to the material design
of high-temperature alloys. Traditional first-principles calculations
demand significant computational time and resources. In this
study, an innovative machine learning (ML)-based approach to
accurately predict the formation energy of the μ phase is proposed.
This approach involves the utilization of six algorithms and two
model evaluation methods to construct the ML models. Leveraging
a comprehensive data set containing 1036 binary configurations of
the μ phase, the model trained using a 10-fold cross-validation
technique, and the multilayer perceptron (MLP) algorithm achieves a mean absolute error (MAE) of 23.906 meV/atom. To validate
its generalization performance, the trained model is further validated on 900 ternary configurations, resulting in an MAE of 32.754
meV/atom. Compared with solely using traditional first-principles calculations, our approach significantly reduces the computational
time by at least 52%. Moreover, the ML model exhibits exceptional accuracy in predicting the lattice parameters of the μ phase. The
MAE values for the a and c parameters are 0.024 and 0.214 Å, respectively, corresponding to low error rates of only 0.479 and
0.578%. Additionally, the ML model was utilized to accurately predict the formation energy of all of the possible ternary
configurations. To enhance accessibility to the formation energy data of the μ phase, a user-friendly graphical user interface (GUI)
was developed, ensuring convenient usability for researchers and practitioners.

1. INTRODUCTION
High-temperature alloys are a class of materials that maintain
high strength and heat resistance in high-temperature environ-
ments.1−3 They are commonly used in the manufacturing of
critical components in aerospace engines and gas turbines, such
as turbine blades, turbine discs, and combustion chamber
assemblies.4 To enhance the performance of these alloys, the
addition of refractory elements is a common practice. Common
refractory elements include W, Mo, Nb, and Ta, which raise the
alloy’s melting point and thermal stability, thereby increasing its
life span under high-temperature conditions.5−9 However, the
incorporation of these alloying elements can lead to the
formation of detrimental topologically close-packed (TCP)
phases during solidification, such as μ, σ, and Laves phases.10,11

Of particular concern is the presence of the μ phase, a
nonstoichiometric intermetallic compound commonly observed
in Ni-based, Co-based, and Fe-based high-temperature
alloys.12,13 The formation of the μ phase can render the alloy
brittle, reducing its plasticity and toughness. This can result in
crack initiation and fracture under conditions of high stress and
elevated temperature.14,15 Precise control of the presence of the
μ phase is necessary during the design and manufacturing of

high-temperature alloys to mitigate its adverse effects and
achieve optimized material performance.

CALPHAD (calculation of phase diagram) simulation is
widely recognized as one of the most effective tools in material
design, as it enables quantitative predictions of phase equilibria
in multicomponent alloys.16,17 The existence of the μ phase in
numerous alloy systems presents challenges for the experimental
determination of phase boundaries. To employ the CALPHAD
method for μ phase design, accurate thermochemical
descriptions, including formation energy, are indispensa-
ble.18−20

First-principles calculations based on density functional
theory (DFT) are commonly used for calculating the formation
energy of the μ phase.21,22 The μ phase is a hexagonal structure
with 39 atoms occupying five inequivalent sites, namely 3a, 6c1,
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6c2, 6c3, and 18h.23−25 Composite energy formalism (CEF)26 is
typically employed in thermodynamic models to handle
multicomponent and nonstoichiometric phases.19 Nevertheless,
calculating the formation energy of the μ phase is challenging
due to the vast number of possible configurations. For example,
two different elements can produce 25 = 32 distinct
configurations, three different elements can yield 35 = 243
configurations, and four different elements can generate 45 =
1024 configurations. The number of configurations rapidly
increases with an increase in the number of elemental species.
Therefore, relying solely on first-principles calculations for
calculating the formation energy of the μ phase is impractical, as
it would consume significant computational resources and time.
Currently, a viable method involves combining machine
learning (ML) with high-throughput first-principles calculations
to address this issue.

Machine learning, a branch of artificial intelligence, has
extensive applications in various fields. Unlike traditional
computational science, ML aims to establish models based on
analyzed data to automatically solve problems in unknown data
sets.27−30 In other words, machines can learn from past data and
scenarios, improve algorithms, and make decisions when they
encounter different or even unknown situations. Open-source
ML packages such as scikit-learn, Keras, and PyTorch enable
complete coding with just a few lines of Python. With the release
of these software packages, ML has become more user-friendly.
In this study, the formation energies of 1036 binary
configurations and 900 ternary configurations were computed
using first-principles calculations. The formation energy of
binary configurations was used to construct the ML model,
which was subsequently validated by using ternary config-
urations. Finally, the developed ML model was used to predict
the formation energies of all possible configurations.

The objectives of this study are as follows: (i) to establish
high-throughput first-principles calculations andMLmethod for
computing and predicting the formation energy of the μ phase;
(ii) to create a data set consisting of all binary and ternary
configurations of formation energy data; and (iii) to provide a
user-friendly graphical user interface (GUI) presenting the ML
model constructed based on high-throughput first-principles
calculations from this study, enabling easy access to the
formation energy of the μ phase for interested individuals.

2. CALCULATION MODELS AND METHODS
2.1. Atomic Model. The μ phase belongs to TCP, and its

space group is R3̅m (No. 166).25 To elucidate the atomic
interactions within the μ phase, it is commonly described using
its equivalent structure, A21B18, characterized by a hexagonal

lattice structure containing 39 atoms distributed among five
distinct lattice sites, as shown in Figure 1, where different colors
represent different sites. The lattice parameters of the μ phase
are a = 4.72∼4.80 Å, c = 25.679∼25.90 Å, α = 90°, β = 90°, γ =
120°.24 It consists of coordination polyhedra with coordination
numbers of 12, 14, 15, and 16, thereby encompassing all types of
coordination polyhedra characteristic of TCP structures.31

2.2. First-Principles Calculations. All calculations in this
study were performed using the Vienna ab initio simulation
package (VASP).32,33 The electron−electron interactions were
described using the projector-augmented wave (PAW)34

method with a cutoff energy of 450 eV. The generalized
gradient approximation (GGA) with the Perdew−Burke−
Ernzerhof (PBE)35 exchange−correlation functional was
employed to account for exchange−correlation effects. The
Monkhorst−Pack scheme36 was utilized to generate a k-point
mesh with a resolution of 7 × 7 × 1. The convergence criteria for
electronic self-consistency were set to 1 × 10−5 eV/atom.
Following the structural optimization, the forces acting on each
atom were required to be less than 0.02 eV/Å. Due to the
presence of some magnetic elements, spin polarization is
considered in this study.

The energy−volume (E−V) data obtained from first-
principles calculations were fitted to the four-parameter
Birch−Murnaghan equation of state (EOS). This fitting process
aimed to estimate the equilibrium total energy (E0) and the
equilibrium volume (V0).

E V a bV V dV( ) c2/3 4/3 6/3= + + + (1)

where a, b, c, and d are the fitting parameters. More
comprehensive information can be found in refs 37 and 38.

Formation energy refers to the energy associated with the
formation or generation of a substance. It is an important
concept in the fields of materials science and chemistry used to
describe and assess the stability and formation processes of
compounds, crystals, molecules, and other substances. In this
study, the ML model was constructed based on computed
formation energies. The computation of formation energy is
carried out with the following equation39:

E
E E E E E E( ) 3 6 6 6 18

39
i j k l m

f =
(2)

where E(μ) represents the total energy of the μ phase. The
symbols Ei, Ej, Ek, El, and Em denote the total energy per atom in
their ground state at the 3a, 6c1, 6c2, 6c3, and 18h sites,
respectively.
2.3. Elastic Properties. Typically, the elastic constants Cij

reflect the response of materials to external forces. In this study,
the elastic constants were calculated based on the stress−strain
method.40 This method involves specifying lattice vectors R in
Cartesian coordinates and applying a set of normal strains (ε1,
ε2, and ε3) and shear strains (ε4, ε5, and ε6) to the crystal. The
formula is as follows:
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where a ̅ = (a1, a2, a3), b̅ = (b1, b2, b3), and c ̅ = (c1, c2, c3) represent
the lattice vector.

Then, the linearly independent sets of strains are applied as
follows:

Figure 1. Hexagonal crystal structure of the μ phase with five distinct
sites: 3a (blue), 6c1 (gray), 6c2 (black), 6c3 (green), and 18h (red).24,25
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where s represents the applied strain values in different
directions, with s set to ±0.01. The results obtained from first-
principles calculations yield the corresponding stresses σ = σ1,
σ2, σ3, σ4, σ5, and σ6 for the deformed structure. According to the
generalizedHooke’s law, the elastic matrixCij can be determined
as follows:
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The μ phase in the hexagonal structure is characterized by five
independent elastic constants (C11, C12, C13, C33, and C44, C66 =

C C( )
2

11 12 ). The bulk modulus (B), shear modulus (G), Young’s
modulus (E), and the ratio B/G can be calculated using the
Voigt−Reuss−Hill (VRH) approach. For the hexagonal system,
the Voigt and Reuss bounds of BV, GV, BR, and GR can be
described as follows41:
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The expressions of bulk modulus (B), shear modulus (G), and
Young’s modulus (E) are

B B B
1
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( )V R= +
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(11)

E
BG

B G
9

3
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2.4. Machine Learning Methods. Figure 2 illustrates the
workflow of the ML method, which can be broadly divided into
five steps: (i) data acquisition, (ii) feature extraction, (iii) ML
model construction, (iv) validation, and (v) prediction for
additional configurations. A brief overview of the key steps is
provided below:
(1) Raw data: The data utilized in this study comprise the

formation energy and lattice parameters of various
configurations, obtained through first-principles high-
throughput calculations. The investigation focuses on 12
elemental species, namely, Al, Co, Cr, Fe, Mn, Mo, Nb,
Ni, Ta,W, Zn, and Zr. The selection of these elements was
based on a thorough analysis of previous studies and the
potential systems in which the μ phase could emerge.31

The total number of configurations with these 12
elements is 248832 (125). However, considering the
computational cost associated with first-principles calcu-
lations, the focus of this study was on a subset of binary
and ternary configurations.

(2) Features: In this study, three features have been chosen�
element types at different sites, atomic radius, and number
of valence electrons. The selection of these features was
carefully considered. It is well known that different
elements exhibit distinct properties and stabilities in the μ
phase. To address this, the first feature selected is the
element types at different sites. The encoding technique
of one-hot encoding is employed to represent the types of
elements at each site, resulting in a 12-dimensional vector
for each site. It is worth noting that the stability of the
TCP phase is influenced by both geometric and electronic
factors.42 In addition, Pettifora et al.21 have also
investigated the influence of atomic size and electronic
structure on the stability of the TCP phase, revealing
significant impacts of both factors on its stability. We
further selected the atomic radius and number of valence

Figure 2. Machine learning workflow in this study.
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electrons as additional features. For each configuration, a
(12 + 2) × 5 = 70-dimensional vector was generated as its
feature representation.

(3) Modeling: All ML models were implemented by using
Python 3.9 with the scikit-learn 1.1 library. There are
many machine learning algorithms, each with its own
advantages and limitations, in terms of accuracy and
speed. In this study, six different algorithms were
employed to construct the ML models: random forest
algorithm (RF),43 multilayer perceptron algorithm
(MLP),44 support vector regression algorithm (SVR),45

gradient boosting regression algorithm (GBR),46 ridge
regression algorithm (LR),47 and Gaussian process
regression algorithm (GPR).48 To ensure the accurate
and reliable evaluation of the ML model, two data-
partitioning methods were employed: data set splitting
into training and testing sets in an 8:2 ratio and the
adoption of 10-fold cross-validation. These multifaceted
evaluation strategies enable a comprehensive assessment
of the model’s performance and generalization capabil-
ities. The hyperparameters for each ML model were
determined by using grid search methods.

(4) Validation and prediction: After the ML models were
constructed, the validation process involved using the
computed ternary configuration data. Once the models’
generalization ability was verified, they were used to
predict data for all other configurations.

3. RESULTS
3.1. Elastic Constants and Elastic Moduli. The initial

crystal structure employed in this study is Co21W18. To
demonstrate the stability of the initial structure and validate
the accuracy of the calculations, the lattice parameters, elastic
constants, and elastic moduli were computed and compared
with experimental values and those reported in previous studies.

The crystal structure of Co21W18 was optimized, and the
optimized lattice parameters as well as the calculated bulk
modulus (B), shear modulus (G), and Young’s modulus (E) are
reported in Table 1. Comparison of the computational results
with the experimental data and findings from other studies
reveals that the relative errors for both lattice parameters and
elastic moduli are less than 1%, strongly suggesting the
reasonableness of the computational results.

According to the Born stability criteria,49 the hexagonal
structure should satisfy the following conditions to demonstrate
mechanical stability:50 C11 > 0; (C11 − C12) > 0; (C11 + C12)C33
− 2C13

2 > 0; As seen in Table 1, these conditions are satisfied,
indicating the mechanical stability of the hexagonal structure.
Furthermore, the comparison of our computational results to

those reported by others shows minimal differences, confirming
the accuracy of the calculations in this study.

B describes a material’s resistance to volume change under an
external pressure. A higher bulk modulus indicates a stronger
resistance to deformation. G reflects a material’s resistance to
shape changes caused by shear strain. E is defined as the ratio of
stress to strain and provides a measure of a solid material’s
stiffness. Based on the literature review, among the common
binary μ phases (Co21W18, Co21Nb18, and Co21Mo18), Co21W18
exhibits the best mechanical performance. This further confirms
the rationality of selecting the initial structure. The next step will

Table 1. Comparison of the Calculated Lattice Parameters, Elastic Constants, and Elastic Modulus with Other Results

phase methods a (Å) c (Å) C11 C12 C13 C33 C44 C66 B (Gpa) G (Gpa) E (Gpa)

Co21W18 this work 4.748 25.584 507 198 159 564 119 154 289 147 378
ref 24 4.768 25.647 514 200 157 566 119 157 291 148 380
ref 25 4.747 25.580

Table 2. Binary and Ternary Systems of Configurations Computed in This Study

binary systems ternary systems

Al−Co, Al−Cr, Al−Fe, Al−Mo, Al−Nb, Al−Ta, Al−W, Al−Zn Co-Cr, Co−Fe, Co−Mn, Co−Mo, Co−Nb, Co−Ni, Co−Ta, Co−
W, Co−Zn, Cr−Fe, Cr−Ta, Cr−W, Cr−Zn, Fe−Mo, Fe−W, Fe−Ta, Mn−Ta, Mo−Ta, Mo−W, Nb−Ni, Nb−Ta, Nb−W, Nb−
Zn, Ni−Ta, Ni−W, Ta−W, Ta−Zn, W−Zn, W−Zr

Al−Co−Ta, Cr−Co−Ta, Co−
Fe−Ta, Co−Mn−Ta, Co−Ni−
Ta, Co−Ta−Zn

Table 3. Formation Energy (Ef, eV/atom) of All
Configurations in the Co−Ta System and Computational
Values from Other Studies

3a 6c1 6c2 6c3 18h Ef ref 52

Co Co Co Co Co 0.12 0.12
Ta Ta Ta Ta Ta 0.12 0.11
Co Ta Co Ta Co −0.07 −0.07
Co Ta Ta Co Co −0.14 −0.14
Co Ta Ta Ta Co −0.24 −0.24
Co Co Co Ta Ta 0.52 0.52
Co Co Ta Co Ta 0.22 0.23
Co Co Ta Ta Ta 0.32 0.33
Co Ta Co Co Ta 0.41 0.42
Co Ta Co Ta Ta 0.27 0.28
Co Ta Ta Co Ta 0.21 0.23
Ta Co Co Ta Co 0.05 0.06
Ta Co Ta Co Co 0.06 0.06
Ta Co Ta Ta Co −0.03 −0.03
Ta Ta Co Co Co 0.05 0.05
Ta Ta Co Ta Co −0.16 −0.16
Ta Ta Ta Co Co −0.12 −0.12
Ta Co Co Co Ta 0.57 0.57
Ta Co Co Ta Ta 0.63 0.63
Ta Co Ta Co Ta 0.25 0.25
Co Co Co Ta Co 0.10 0.10
Co Co Ta Co Co −0.01 −0.01
Co Co Ta Ta Co −0.05 −0.05
Co Ta Co Co Co 0.08 0.07
Co Co Co Co Ta 0.44 0.44
Co Ta Ta Ta Ta 0.07 0.07
Ta Co Co Co Co 0.13 0.13
Ta Ta Ta Ta Co −0.25 −0.26
Ta Co Ta Ta Ta 0.34 0.35
Ta Ta Co Co Ta 0.55 0.55
Ta Ta Co Ta Ta 0.43 0.44
Ta Ta Ta Co Ta 0.28 0.28
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involve utilizing this initial structure for first-principles high-
throughput calculations.
3.2. Results of First-Principles Calculations. In this

study, the formation energy data of 1036 binary configurations
of the μ phase were computed to construct an ML model.
Additionally, the formation energy data of 900 ternary
configurations of the μ phase were calculated to validate the
model’s generalization ability. The computed binary config-
urations encompassed nearly all possible systems of the μ phase,
while the ternary configurations included six systems: Al−Co−
Ta, Cr−Co−Ta, Co−Fe−Ta, Co−Mn−Ta, Co−Ni−Ta, and
Co−Ta−Zn (detailed in Table 2). Among these binary systems,
the μ phase was reported existing in 11 different binary systems,
namely Co−Mo, Fe−Mo, Co−Nb, Nb−Ni, Nb−Zn, Co−Ta,

Fe−Ta, Ni−Ta, Ta−Zn, Co−W, and Fe−W,12,34 exhibiting
thermodynamic stability.

For ML, the accuracy of the raw data is crucial as it directly
influences the training and performance of the model. If the
initial data contain errors or biases, the model will learn and
incorporate those inaccuracies, leading to a decrease in its
accuracy. Accurate initial data provide correct patterns and
trends, which contribute to building an accurate model. To
validate the accuracy of the computed formation energy data in
this study, the configurations of the Co−Ta binary system were
selected and compared with the literature data. The comparison
results are presented in Table 3. It can be observed that the
computed data highly align with the literature data, with 20
configurations exhibiting the same formation energy values. The
maximum deviation observed was 0.02 eV/atom, indicating the

Figure 3. Ternary data used to validate machine learning models: (a) Al−Co−Ta, (b) Cr−Co−Ta, (c) Co−Fe−Ta, (d) Co−Mn−Ta, (e) Co−Ni−
Ta, and (f) Co−Ta−Zn. The red balls represent the individual configurations, and the blue, green, and red circular planes represent the projections on
the three surfaces.
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accuracy of the computed data. In addition, a portion of the data
for the Co−Fe−Ta system has been utilized in experimental
investigation and thermodynamic modeling of the Co−Fe−Ta
system.51 This specific data set has undergone cross-validation

through both the CALPHAD method and experimental
techniques.

In ML, the training data are typically utilized to train the
model, optimize its parameters, and learn the patterns and
trends from the data. However, evaluating the model’s
performance solely based on training data is insufficient, as the
model may overfit the training data, resulting in poor
performance on new, unseen data. A validation data set, which
is independently selected from the original data and mutually
exclusive from the training and testing data sets, is essential for
assessing the model’s performance on unknown data. Once the
model is trained, testing it on the validation data provides an
objective evaluation of its performance.

By using the validation data, the model’s generalization ability
can be assessed, determining its accuracy in predicting unseen
data. The validation data serve as an independent data set for
evaluating and verifying the model’s performance and general-
ization ability, playing a crucial role in model development and
evaluation. The validation data set used in this study is illustrated
in Figure 3.
3.3. Construction of the Machine Learning Model. In

this study, we employed six algorithms to construct ML models,
as described in Section 2.4. These six algorithms are RF, MLP,
SVR, GBR, LR, and GPR. In order to evaluate the predictive
performance of the ML models, several evaluation metrics were
introduced. The commonly used metrics include the coefficient
of determination (R2), mean absolute error (MAE), root-mean-
square error (RMSE), accuracy, recall, F1 score, and so on.
These metrics are commonly used in regression problems to
assess the performance of the models. However, the specific
choice of the metric depends on the problem and requirements.
R2, MAE, and RMSE are all metrics used to measure the
predictive ability of the models, and a smaller value (or closer to
1) for these metrics indicates a better model performance.

R2 is a commonmetric used tomeasure the goodness of fit of a
regression model to the data. It ranges from 0 to 1, where a value
closer to 1 indicates the stronger ability of the model to explain
the variability in the target variable. R2 measures the overall fit of
the model’s predictions to the actual data, with 1 representing a
perfect fit and 0 indicating that the model cannot explain the
variance in the target variable. MAE is a metric used to measure
the average absolute difference between the predictions of a
regression model and actual values. It calculates the absolute
difference between the predicted and actual values and then
computes the average of these differences. A smaller MAE
indicates a lower average difference between the model’s
predictions and the actual values, indicating a higher prediction
accuracy. RMSE is a metric used to measure the square root of
the average square difference between the predictions of a
regression model and the actual values. It calculates the
difference between the predicted and actual values, squares
the differences, computes the average of these squared
differences, and then takes the square root. RMSE considers
both the magnitude and direction of the prediction errors, and a
smaller value indicates higher prediction accuracy. The
definitions of these metrics are as follows53:
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Figure 4. ML models constructed using six algorithms and different
model evaluation methods: (a), (c), (e), (g), (i), and (k) were assessed
using 10-fold cross-validation, while (b), (d), (f), (h), (j), and (l)
followed an 8:2 ratio for training set to test set partitioning.
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where ypre, yi, yi, and n represent the predicted value, the true
value, the mean of the true value, and the number of
configurations, respectively.

Figure 4 illustrates the results of training and constructing
models using the binary data in this study. Two model
evaluation methods were employed, namely, 10-fold cross-
validation and a training set to test set ratio of 8:2. Table 4
provides a clearer representation of the results. From the results
above, it can be observed that among the two evaluation
methods, the algorithms RF, MLP, and GPR achieved the
highest accuracy. The hyperparameters used for these
algorithms are listed in Table 5. The MAE values are 34.704/
31.409, 23.902/23.266, and 23.516/22.481 meV/atom, respec-
tively. In comparison to some previous studies,54−57 which
reported an MAE of approximately 50 meV/atom, the errors
obtained in this research are significantly lower, indicating that
the constructed models are effective in predicting the formation
energy of the μ phase.
3.4. Validating the Generalization Ability of the

Machine Learning Model. To verify the predictive capability
of the model on unknown data, this study computed six sets of
ternary data (as detailed in Table 2) for validation purposes. As
mentioned above, the RF, MLP, and GPR algorithms
demonstrated high accuracy. Therefore, the ML models
constructed using these three algorithms were applied for
validation. The validation results are presented in Figure 5. The
results indicate that both the 10-fold cross-validation and the 8:2
training set to test set partitioning methods produced excellent
results. Compared to the reported MAE of approximately 50
meV/atom from previous studies,54−58 the models exhibited
significantly lower errors even when applied to unseen ternary
data. TheMAE of the models was as follows: RF: 27.861/37.185
meV/atom;MLP: 32.754/22.61 meV/atom; and GPR: 30.319/
17.166 meV/atom. These results demonstrate that the ML
models constructed for the binary μ phase data in this study can

be effectively utilized for predicting the formation energy of
ternary μ phases.
3.5. Prediction of Lattice Parameters. In DFT calcu-

lations, lattice parameters play a crucial role and are considered
important in the structural optimization process. By adjusting
the lattice parameters, one can explore the energy and stability of
the different crystal structures. Optimizing the lattice parameters
helps in finding the equilibrium structure of a system and
determining the most stable crystal form. Providing an
appropriate initial set of lattice parameters can significantly
reduce the computational resources required for DFT
calculations. Compared to using unreasonable lattice parame-
ters, it can save about ∼10 times of the CPU consumption for
the relaxation steps.59

The ML models constructed in this study can be applied not
only to predict the formation energy but also to predict lattice
parameters. To validate this viewpoint, we employed the RF and
GBR algorithms in combination with 10-fold cross-validation to
predict the lattice parameters. The results are shown in Figure 6.
The data set used for lattice parameter validation included all
available data, encompassing both binary and ternary data sets.
The average value of the lattice parameter “a” in the data set was
5.013 Å, and the average value of lattice parameter “c” was
26.172 Å. The RF and GBR algorithms achieved MAE values of
0.024 and 0.029 Å, respectively, for lattice parameter “a”, with
error rates of only 0.479 and 0.578%. For lattice parameter “c”,
the MAE values were 0.214 and 0.234 Å, respectively, with error
rates of only 0.817 and 0.894%. From these results, it is evident
that besides formation energy, the ML models constructed in
this study also perform well in predicting lattice parameters.

4. DISCUSSION
4.1. Comparison of Computational Time between DFT

and ML Methods. Combining ML with DFT methods can
significantly reduce the computation time and costs. To quantify
the difference, we compared the required times for both
approaches. Table 6 presents the comparison between the time
needed for constructing ML models and making predictions
using 10-fold cross-validation and the time required for
performing DFT calculations alone. The ML approach requires
training and testing sets to construct the models, which includes
the time for DFT calculations on these sets. Once theMLmodel
is constructed, it can be used to predict data from the validation
set, resulting in a significant reduction in computation time and
resources compared to using DFT calculations for the validation
set data. The DFT calculations and ML were conducted on the
High-Performance Computing Platform at Central South
University. The computational tasks were executed on a robust
configuration comprising two Intel Xeon Gold 6248R CPUs,
each featuring 24 cores, thus providing a combined processing
power of 48 cores. The system boasted a substantial 192 GB
RAM capacity and utilized a 240 GB SSD for efficient data
storage.

Table 4. Results Obtained from Different Model Evaluation Methods and Algorithms

algorithms 10-fold cross-validation train: test = 8: 2

RF R2 = 0.927, MAE = 34.704 meV/atom, RMSE = 48.711 meV/atom R2 = 0.934, MAE = 31.409 meV/atom, RMSE = 45.303 meV/atom
MLP R2 = 0.966, MAE = 23.902 meV/atom, RMSE = 33.409 meV/atom R2 = 0.968, MAE = 23.266 meV/atom, RMSE = 30.491 meV/atom
SVR R2 = 0.84, MAE = 53.462 meV/atom, RMSE = 72.274 meV/atom R2 = 0.835, MAE = 51.676 meV/atom, RMSE = 69.041 meV/atom
LR R2 = 0.852, MAE = 53.355 meV/atom, RMSE = 69.572 meV/atom R2 = 0.837, MAE = 54.847 meV/atom, RMSE = 68.67 meV/atom
GPR R2 = 0.966, MAE = 23.516 meV/atom, RMSE = 14.246 meV/atom R2 = 0.963, MAE = 22.481 meV/atom, RMSE = 32.61 meV/atom
GBR R2 = 0.907, MAE = 41.336 meV/atom, RMSE = 55.18 meV/atom R2 = 0.907, MAE = 38.651 meV/atom, RMSE = 51.847 meV/atom

Table 5. Hyperparameter Selection for the Three Optimal
Algorithms

ML algorithm hyperparameters

RF n_estimators = 80
max_depth = 22
min_samples_spilt = 2

MLP hidden_layer_sizes = (100, 100, 100)
activation = tanh
max_iter = 1000

GPR kernel = 1**2 * RBF
n_restarts_optimizer = 20
alpha = 5
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FromTable 6, it can be observed that if DFT calculations were
performed solely to obtain the validation sets, it would require
4320000 s. However, by combining ML methods to generate
validation sets using the RF, MLP, and GPR algorithms, the
respective time requirements are only 3.76, 12.9, and 226 s.With

an accuracy that meets the criteria, this represents a reduction of
at least 52% compared to DFT calculations alone, leading to a
significant improvement in efficiency. The main reason for the
long computation time in DFT calculations is the high
computational complexity and the large computational work-

Figure 5. Predictive capabilities of the models on unknown data. (a−e) Results obtained from 10-fold cross-validation. (b−f) Results obtained from a
training set to test set ratio of 8:2.
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load. DFT methods involve detailed modeling and calculations
of the electron behavior by solving the electronic wave functions
and densities to describe the physical and chemical properties of
materials. The electronic structure of each atom needs to be
considered, and a significant amount of integration and iterative
calculations is required, resulting in a significant increase in
computation time. Through the synergy of ML and DFT
calculations, it becomes possible to utilize ML models for fast
predictions of material properties and behavior, thus greatly
reducing the time and computational resources required for
DFT calculations.
4.2. Feature Analysis of Models. The selection and design

of appropriate features are of utmost importance in constructing
accurate, efficient, and interpretable ML models. Appropriately
chosen features can provide valuable information, differentiate

different samples, and play a crucial role in the model’s training
and prediction processes. Figure 7 presents the results of the
model constructed using the RF algorithm with and without the
inclusion of the atomic radius and number of valence electrons
as additional features. From the results depicted in the figure, it
can be observed that the model’s predictive performance is
superior when incorporating the additional features of atomic
radius and number of valence electrons compared to the model
without these features.

The atomic radius refers to the average distance between the
atomic nucleus and its outermost electrons and exerts a
significant influence on the formation energy of compounds. A
smaller atomic radius generally implies that the outer electrons
are closer to the atomic nucleus, leading to tighter and stronger
chemical bonds between atoms. In the case of μ phase
formation, this results in the release of more energy, thereby
reducing the formation energy of the μ phase. On the contrary, a
larger atomic radius leads to the formation of weaker chemical
bonds, resulting in a relatively higher formation energy. The
number of valence electrons, which represents the outermost
electrons participating in chemical bonding, is also a key factor in
the formation energy of compounds. A higher number of valence
electrons typically indicates a greater number of electrons

Figure 6. Prediction of lattice parameters a and c using different algorithms: (a, c) RF algorithm and (b, d) GBR algorithm.

Table 6. Comparison of Computational Time between
Machine Learning and DFT Methods

methods train and test sets (s) validation sets (s)

DFT 3888121 4320000
RF 3888121 3.76
MLP 3888121 12.9
GPR 3888121 226
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available for chemical bond formation, thereby increasing the
strength and stability of the chemical bonds. In the formation of
the μ phase, a higher number of valence electrons facilitates the
formation of stronger chemical bonds, thereby reducing the
formation energy.

In summary, the selection of atomic radius and number of
valence electrons as features for predicting the formation energy

of the μ phase is theoretically justified. The atomic radius reflects
the strength and stability of chemical bonds, while the number of
valence electrons provides information about the capability of
chemical bond formation between atoms. Therefore, incorpo-
rating these two features as predictors of the μ phase formation
energy helps capture the crucial factors influencing the
formation energy and improves the accuracy and predictive
capability of the model.
4.3. Prediction of Formation Enthalpy for All Ternary

Configurations. To predict the formation energy data for all
remaining ternary configurations, the ML model constructed
using 10-fold cross-validation and the MLP algorithm was
utilized. From the set of “Al, Co, Cr, Fe, Mn, Mo, Nb, Ni, Ta, W,
Zn, and Zr”, we randomly selected three elements, resulting in
C12

3 = 220 ternary systems. Excluding the six ternary systems
used for validation, the formation energy data for 214 ternary
systems was predicted. We randomly selected a subset of
predicted data for the Al−Nb−Zn ternary system, supple-
mented by DFT calculations, and compared the results of the
two methods. The results are presented in Figure 8.

Figure 8 displays different configurations represented by
numerical values on the x-axis, with each number corresponding
to a specific configuration. The y-axis represents the formation
energy, whereas the black squares represent the ML-predicted
values obtained in this study, and the red circles represent the
values calculated using DFT. It is evident from the graph that the
discrepancy between the two sets of values is minimal, with
errors generally below 50 meV/atom. The previous analysis
indicates that this level of error is acceptable and reasonable
compared to previous reports. Particularly noteworthy is
configuration number 17, where the ML-predicted value is
0.0653 eV/atom, while the DFT-computed value is 0.0652 eV/
atom. The difference between the two is extremely small, and the
graph illustrates that the two points almost coincide. In
conclusion, the ML model accurately predicts the ternary data
for all other configurations, and the constructed database can be
considered reliable.
4.4. Practical Applications. To facilitate researchers in

obtaining formation energy data for the μ phase and effectively
using the constructed model, a Python-based GUI has been
developed. Figure 9 displays the main interface. The GUI
possesses characteristics of simplicity and user-friendliness,
making it suitable for predicting the formation energy of all

Figure 7. RF-predicted results: (a) without additional features and (b) with additional features.

Figure 8.Comparison of DFT data and predicted results for a subset of
the Al−Nb−Zn ternary system.

Figure 9.GUI developed for predicting the formation energy (kJ/mol)
of the μ phase configurations.
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configurations. Users only need to randomly select elements
from the set including “Al, Co, Cr, Fe, Mn, Mo, Nb, Ni, Ta, W,
Zn, and Zr” and fill in the corresponding five sites within the
interface. By clicking 'Predict’, users can obtain the correspond-
ing formation energy data for the selected configuration. The
GUI can be provided as request.

5. CONCLUSIONS
This study presents an innovative approach for predicting the
formation energies of the μ phases. By utilizing our self-
calculated DFT database, we constructed 12 ML models using
six different algorithms and two model evaluation methods. The
results demonstrate that the ML models not only exhibit high
accuracy in predicting the formation energy of the μ phases but
also perform well in predicting the lattice parameters.

The elements involved in this study include Al, Co, Cr, Fe,
Mn, Mo, Nb, Ni, Ta, W, Zn, and Zr. The general strategy
employed in this study was to construct models based on DFT-
calculated binary data and validate them using DFT-calculated
ternary data. Once satisfactory accuracy was achieved, the
formation energies of all possible ternary configurations were
predicted. Based on these analyses, the following conclusions
can be drawn:
(1) The formation energies of 1036 binary configurations and

900 ternary configurations were calculated. A comparison
with previous reports showed good agreement and high
accuracy of the calculated results.

(2) Training the models using binary data yielded excellent
performance. The RF, MLP, and GPR algorithms,
combined with 10-fold cross-validation, achieved MAE
values of 34.704, 23.902, and 23.516 meV/atom,
respectively. Subsequently, the ML models of these
three algorithms were validated using ternary data,
resulting in MAE values of 27.861, 32.754, and 30.319
meV/atom, respectively. These results demonstrate that
the ML models constructed in this study can effectively
predict the formation energy of the μ phase.

(3) The application of the models to predict the lattice
parameters of the μ phases yielded favorable results. The
average values of “a” and “c” lattice parameters in the data
set were 5.013 and 26.172 Å, respectively. The RF and
GBR algorithms achieved MAE values of 0.024 and 0.029
Å for “a”, with error rates of only 0.479 and 0.578%,
respectively. For “c”, the MAE values were 0.214 and
0.234 Å, with error rates of only 0.817 and 0.894%,
respectively. These results indicate that, in addition to the
formation energy, the ML models constructed in this
study also perform well in predicting the lattice
parameters.

(4) To predict the formation energy of all ternary data sets,
excluding the validation data set, the constructed ML
models were utilized. Furthermore, a user-friendly GUI
was developed by using Python, enabling users to
efficiently obtain the corresponding formation energy
data.
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