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INTRODUCTION 
 

Glioblastoma multiforme (GBM), corresponding to 

World Health Organization (WHO) grade IV glioma, is 

the most lethal and aggressive type of brain tumor, with 

a 5-year overall survival (OS) rate of approximately 5% 

and a median lifespan from diagnosis to death of 

approximately 15 months [1, 2]. Despite the remarkable 

progress made in the development of therapies for 

GBM, it still exhibits significant morbidity and 

mortality. With the rapid popularization of large-scale 

genome-sequencing technologies, numerous molecular 

biomarkers have been investigated for prognosis 

classification,  risk  stratification,  prediction,  subgroup  

 

classification, risk stratification, and therapeutic 

targeting for cancers [3, 4]. However, due to the 

heterogeneous and invariable features of GBM, which 

are characterized by multiple genetic and epigenetic 

variations, separate biomarkers can present only limited 

value in predicting the prognosis of GBM patients in 

clinical application [3, 4]. Hence, explorations of the 

underlying molecular mechanisms and investigations of 

clinically applicable predictors for prognosis and 

therapeutic responses are indispensable for GBM 

patients. 

 

Hypoxia is a common characteristic of solid tumors that 

is mainly due to the exuberant metabolic requirements 
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of cancer cells exceeding the limit of the oxygen 

availability of the tumor [5]. The hypoxic tumor 

microenvironment (TME) has been reported to play a 

pivotal role in promoting a more aggressive phenotype 

and behavior of tumor cells, which thereby contributes 

to the progression, recurrence, chemoresistance and 

radioresistance of cancers [6, 7]. Emerging evidence has 

demonstrated that the hypoxic TME is associated with 

the poor prognosis of multiple cancers, especially GBM 

[6, 8]. A few studies have found that certain hypoxia-

related genes (HRGs) and their mediators, hypoxia-

inducible factors (HIFs), may serve as prognostic 

predictors and therapeutic targets in some cancers, such 

as colorectal cancer, breast cancer, and GBM [9, 10]. 

However, most studies mainly focused on single gene 

expression patterns regardless of the clinical setting, 

whereas a systematic analysis of the global gene 

expression patterns and comprehensive prognostic 

prediction models based on multiple HRGs have not 

been realized before in GBM [3, 4]. 

 

In this study, by performing a comprehensive multi-

omic analysis based on transcriptomic, DNA 

methylation and copy number alteration (CNA) 

patterns, we aimed to develop and validate a hypoxic 

TME gene-based signature that could be applied for 

subgroup classification, risk stratification, prognosis 

prediction, and therapeutic targets for GBM patients. 

Then, novel promising nomograms for OS and 

progression-free survival (PFS) with favorable pre-

dictive performances were constructed and validated 

based on the hypoxia signature and clinicopathological 

features. Finally, gene set enrichment analysis (GSEA), 

immune infiltration analysis, immunotherapy response 

prediction, and chemotherapy resistance analysis of 

the HRGs were performed to investigate the vital roles 

of the hypoxic TME in the development, progression, 

immune responsiveness and chemoresistance of GBM. 

 

RESULTS 
 

Identification of GBM-Specific HRGs and 

enrichment analyses 

 

First, a total of 10,060 DEGs in GSE45301 and 2,425 

DEGs in GSE118683 were identified between normoxic 

and hypoxic cultured GBM cells and were displayed in 

volcano plots (Figure 1A and 1B). Then, the 259 shared 

genes among the HRGs from MSigDB and the DEGs 

from GSE45301 and GSE118683 were determined as 

the GBM-specific HRGs, which were selected for 

further analysis (Figure 1C, Supplementary Table 2). 

 

Enrichment analyses were performed on the GBM-

specific HRGs to explore their corresponding molecular 

mechanisms in the tumorigenesis and progression of 

GBM. In the BP category, the HRGs were significantly 

enriched in response to hypoxia, and signal transduction 

(Figure 1D). In the CC category, the HRGs were 

significantly enriched in the nucleus and cytoplasm 

(Figure 1E). In the MF category, the HRGs were 

significantly enriched in DNA binding, oxidoreductase 

activity, and catalytic activity (Figure 1F). Moreover, 

KEGG pathway analysis demonstrated that the HRGs 

downregulated in hypoxic conditions were mainly 

enriched in hypoxic and oxygen homeostasis regulation 

of HIF-1-α, the cell cycle, and DNA replication, 

whereas the HRGs upregulated in hypoxic conditions 

were enriched in the HIF-1 signaling pathway, hypoxic 

and oxygen homeostasis regulation of HIF-1-α, VEGF 

and VEGFR signaling network, and beta-1 integrin cell 

surface interactions (Figure 1G). 

 

HRG-based molecular classification of GBM 

patients and associations with prognosis and 

clinicopathological characteristics 

 

To explore a novel molecular classification of GBM 

based on the expression patterns of the HRGs, 

unsupervised consensus clustering was performed on 

the 151 TCGA GBM patients. According to the relative 

change in the area under the CDF curve and consensus 

heatmap, the optimal number of clusters was 

determined as two (k value = 2), and no appreciable 

increase was observed in the area under the CDF curve 

(Figure 2A–2C). Then, all 151 patients were divided 

into two subgroups, including 118 (78.1%) patients in 

Cluster 1, and 33 (21.9%) in Cluster 2. K-M survival 

analysis demonstrated that patients in Cluster 1 showed 

significantly worse OS than those in Cluster 2 (log-rank 

P=2.55×10-2; Figure 2D). Then, the same method was 

applied to validate the molecular classification in the 

CGGA GBM patients. As shown in Figure 2G–2I, the 

optimal number of clusters was also determined as two 

(k value = 2), and the 350 GBM patients were divided 

into Cluster 1 (322 patients, 92.0%) and Cluster 2 (28 

patients, 8.0%). The patients in Cluster 1 also showed 

significantly worse OS than those in Cluster 2 (log-rank 

P=2.36×10-2; Figure 2J). Then, the cluster quality 

measure was applied to verify the similarities between 

the different subgroups. The IGP score of TCGA 

Cluster 1 was 0.752 and that of TCGA Cluster 2 was 

0.235 (P<0.001), whereas the IGP score of CGGA 

Cluster 1 was 0.791 and that of CGGA Cluster 2 was 

0.250 (P<0.001). There was no significant difference 

between TCGA Cluster 1 and CGGA Cluster 1 

(P=0.215) nor between TCGA Cluster 2 and CGGA 

Cluster 2 (P=0.611). 

 

Then, we also analyzed the expression patterns of the 

HRGs and distributions of the clinicopathological 

factors between two clusters of GBM patients. The 



 

www.aging-us.com 17040 AGING 

expression patterns of the GBM-specific HRGs were 

visualized in the heatmaps shown in Figure 2E 

(TCGA) and Figure 2K (CGGA). Generally, the 

expression levels of most HRGs in Cluster 1 were 

significantly upregulated compared with those in 

Cluster 2 in both the TCGA and CGGA GBM cohorts, 

which indicated that an increase in the expression 

levels of the HRGs was associated with poor 

prognosis. The expression levels of the five genes that 

were included the hypoxia signature were 

significantly more highly expressed in Cluster 1 than 

in Cluster 2 (all P<0.05) in both the TCGA and 

CGGA GBM cohorts (Figure 2F and 2L). Compared 

with that in Cluster 2, patients in Cluster 1 were older 

in both the training (P=0.024) and validation cohorts 

(P=0.047). However, no significant difference in the 

other clinicopathological factors was observed between 

the two clusters (all P>0.05, Figure 2F and 2L). Overall, 

the patients in the Cluster 1 subgroup, with high 

expression patterns of HRGs and older age, commonly 

exhibited poor prognosis. These findings demonstrated 

that our novel HRG-based molecular classification of 

GBM was robust and reliable in different populations, 

and different survival outcomes and clinicopathological 

parameters can be clearly discriminated. 

 

Generation and validation of the hypoxia signature 

 

Univariate Cox regression analysis was performed on the 

259 GBM-specific genes in the TCGA training cohort and 

identified 19 prognosis-associated HRGs. Then, LASSO 

regression (Supplementary Figure 1A, 1B) followed by 

multivariate Cox regression (Supplementary Figure 1C) 

analysis were performed to further screen the genes with 

the most significant prognostic value. Finally, five HRGs, 

including thrombomodulin (THBD, HR=2.45), inhibitor 

of DNA binding 3 (ID3, HR=0.27), decaprenyl 

diphosphate synthase subunit 1 (PDSS1, HR=0.17), H2A 

histone family member J (H2AFJ, HR=3.35), and 

ribonucleotide reductase regulatory subunit M2 (RRM2,  

HR=3.10), were selected as the significant prognostic 

genes (Supplementary Figure 1C).  

 

 
 

Figure 1. Identification of glioblastoma (GBM)-specific hypoxia-related genes (HRGs) and enrichment analysis. (A) Volcano plot 

of differentially expressed genes (DEGs) between normoxic and hypoxic cultured GBM cells in GSE45301. (B) Volcano plot of DEGs between 
normoxic and hypoxic cultured GBM cells in GSE118683. The vertical axis indicates the -log [adjusted P value (adj. P value)], and the 
horizontal axis indicates the log2 [fold change (FC)]. The red dots represent downregulated genes under hypoxic conditions, and the green 
dots represent upregulated genes under hypoxic conditions (adj. P value <0.01 and |log2(FC)|>1). (C) Venn diagram of the 259 GBM-specific 
HRGs, which are the genes in the intersection of the HRGs from MSigDB and the DEGs of GSE45301 and GSE118683. Biological processes (D), 
cellular components (E), molecular functions (F) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (G) enriched in the GBM-
specific HRGs. 
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The HRG-based prognostic risk score model was 

established with the following formula: Risk score = 

ExpTHBD × 0.894 + ExpID3 × (-1.298) + ExpPDSS1 × (-

1.782) + ExpH2AFJ × 1.208 + ExpRRM2 × 1.133. The risk 

score was calculated for each patient in the TCGA 

training cohort, and all patients were divided into a 

high-risk (high risk score) and low-risk (low risk score) 

group using the median value of the risk score as the 

cutoff (Figure 3E). Survival analysis demonstrated that 

compared with low-risk patients, high-risk patients 

showed markedly poorer OS (log-rank P = 5.22×10-3; 

Figure 3A) and PFS (log-rank P = 6.89×10-3; Figure 

3C). The C-index of the hypoxia signature was 0.801 

(95% CI, 0.762 to 0.840; P = 6.91×10-21) for OS 

prediction and 0.759 (95% CI, 0.720 to 0.798; P = 

2.21×10-15) for PFS prediction. In addition, by 

performing time-dependent ROC analysis, the hypoxia 

signature showed excellent values in predicting 0.5-, 1-, 

2- and 3-year OS rates, with respective AUC values of 

0.735, 0.784, 0.756 and 0.878 in the TCGA GBM 

training set (Figure 3B). Moreover, the AUCs for the 

0.5-, 1-, 2-, and 3-year PFS rates with the prognostic 

model were 0.636, 0.711, 0.741, and 0.702, respectively 

(Figure 3D). 

 

 
 

Figure 2. Identification and validation of an HRG-based molecular classification of GBM patients using the unsupervised 
consensus clustering algorithm. Consensus clustering matrix for k = 2, which was the optimal cluster number in the TCGA training cohort (A) 

and CGGA validation cohort (G). Cumulative distribution function (CDF) curves of the consensus score (k = 2-9) in the TCGA (B) and CGGA cohorts 
(H). The relative change in the area under the CDF curve (k = 2-9) in the TCGA (C) and CGGA cohorts (I). Kaplan-Meier (K-M) survival analyses of the 
patients in the Cluster 1 and Cluster 2 subgroups in the TCGA (D) and CGGA cohorts (J), which indicated that the patients in Cluster 1 had poorer OS 
than those in Cluster 2. The heatmap and clinicopathological features of the two clusters based on the expression patterns of the HRGs in the TCGA 
(E) and CGGA cohorts (K). The distributions of the clinicopathological factors and the expression patterns of the five HRGs included in the hypoxia 
signature between the two clusters of GBM patients in the TCGA (F) and CGGA cohorts (L). Upper and middle panel (F and L): Patients in Cluster 1 
were older in both the training (P=0.024) and validation cohorts (P=0.047). No significant differences in the other clinicopathological factors were 
observed between the two clusters (all P>0.05). Bottom panel (F and L): The expression levels of the five HRGs were significantly higher in Cluster 1 
than in Cluster 2 (all P<0.05) in both the training and validation cohorts. Asterisk means P<0.05 between two groups. 
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Finally, the predictive ability of the hypoxia signature 

was further validated in the different patient populations 

from CGGA dataset in a similar way. As shown in 

Figure 3J, all 350 GBM patients were classified into 

high-risk and low-risk groups utilizing the risk score 

formula mentioned earlier based on the median value as 

the cutoff. Consistent with the above findings, K-M 

survival analysis demonstrated that patients with high 

risk scores in the validation set also had a significantly 

shorter OS (log-rank P = 1.34×10-6; Figure 3F) and PFS 

(log-rank P = 6.30×10-7; Figure 3H) than those with low 

risk scores. The time-dependent ROC analysis also 

suggested favorable values in predicting both OS and 

PFS in the CGGA validation set (Figure 3G–3I). These 

results indicated that the hypoxia signature may serve as 

a robust and reliable prognostic predictor for both the 

OS and PFS of GBM patients from different 

populations. 

 

Construction and validation of the prognostic 

nomogram for OS prediction 

 

Table 1 shows the demographics and clinico-

pathological features of the GBM patients in the TCGA 

training cohort and CGGA validation cohort based on 

the hypoxia signature. To investigate whether the 

prognostic significance of the hypoxia signature is 

independent of other clinicopathological parameters in 

predicting the OS of GBM patients, univariate and 

multivariate Cox regression analyses were performed, 

which demonstrated that the hypoxia signature (HR 

1.435, P = 1.55×10-3) was significantly associated with 

OS in the TCGA training set (Table 2). Moreover, in the 

CGGA validation cohort, the hypoxia signature (HR 

1.098, P = 1.78×10-10) was also proven to be a 

significant independent prognostic predictor for OS 

(Table 2). 

 

Finally, a prognostic nomogram for GBM patients was 

successfully constructed in order to provide a clinically 

applicable quantitative approach for individual OS 

prediction. Age, pharmacotherapy, radiotherapy, IDH 

mutation status, MGMT promoter methylation status, 

and the hypoxia signature were integrated into the final 

OS prediction model (Figure 4A). The C-index of the 

prognostic nomogram was 0.822 (95% CI, 0.783 to 

0.861; P = 2.99×10-20). The time-dependent ROC 

analysis indicated favorable predictive abilities of the 

0.5-, 1-, 2- and 3-year OS rates, with AUC values of 

0.771, 0.724, 0.735 and 0.818, respectively (Figure 4B). 

The calibration plots showed excellent agreement 

between the predicted 0.5-, 1- and 3-year OS rates and 

the actual observations in the TCGA cohort (Figure 4D–

4F). Additionally, in the CGGA validation cohort, the 

C-index of the nomogram for predicting the OS of the 

350 GBM patients was 0.751 (95% CI, 0.712 to 0.790; 

P = 1.79×10-13). The time-dependent AUCs for the 0.5-, 

1-, 2-, and 3-year OS rates with the prognostic 

nomogram were 0.731, 0.639, 0.653, and 0.717, 

respectively, in the CGGA validation cohort (Figure 

4C). The calibration plots also showed excellent 

agreement between the OS predictions and the actual 

observations for the probabilities of 0.5-, 1- and 3-year 

survival in the validation set (Figure 4G–4I). All these 

findings suggested the appreciable reliability of the 

prognostic nomogram for OS prediction. 

 

Construction and validation of the progression 

nomogram for PFS prediction 

 

Consistent with the methods of constructing the 

prognostic nomogram, univariate and multivariate Cox 

regression analyses were sequentially performed, and 

the results suggested that the hypoxia signature was a 

significant independent prognostic predictor for PFS in 

both the TCGA training set and CGGA validation set 

(Table 3). Then, the progression nomogram for PFS 

prediction was constructed based on radiotherapy, IDH 

mutation status, and the hypoxia signature (Figure 5A). 

The C-index of the progression nomogram was 0.763 

(95% CI, 0.724 to 0.802; P = 4.55×10-31). The time-

dependent ROC analysis indicated favorable predictive 

abilities of the 0.5-, 1-, 2- and 3-year PFS rates, with 

AUC values of 0.644, 0.725, 0.785 and 0.758, 

respectively (Figure 5B). The calibration plots showed 

excellent agreement between the predicted 0.5-, 1- and 

3-year PFS rates and actual observations in the TCGA 

cohort (Figure 5D–5F). In addition, in the CGGA 

validation cohort, the C-index of the progression 

nomogram for predicting the PFS of the 350 GBM 

patients was 0.715 (95% CI, 0.676 to 0.754; P = 

5.13×10-20). The time-dependent AUCs for the 0.5-, 1-, 

2-, and 3-year PFS rates with the progression 

nomogram were 0.671, 0.655, 0.685, and 0.711, 

respectively, in the CGGA validation cohort (Figure 

5C). The calibration plots also showed excellent 

agreement between the PFS predictions and actual 

observations for the probabilities of 0.5-, 1- and 3-year 

survival in the validation cohort (Figure 5G–5I). All 

these findings demonstrated the appreciable reliability 

of the progression nomogram for PFS prediction. 

 

Expression, survival and GSEA analyses of the five 

HRGs 

 

The expression levels of the 5 most significant 

prognostic HRGs between GBM and normal tissues 

were further validated in the Gene Expression Profiling 

Interactive Analysis (GEPIA) database, including 163 

GBM and 207 normal samples [11]. We found that all 

the 5 HRGs were overexpressed in GBM tissues 

compared with normal tissues (Figure 6A, 6D, 6G, 6J, 6M, 
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Figure 3. Survival analysis, prognostic performance and risk score analysis of the HRG-based risk score model in GBM 
patients. K-M survival analysis was performed to estimate the overall survival (OS) of high-risk and low-risk patients in the TCGA training 

cohort (A) and CGGA validation cohort (F). Additionally, K-M survival analysis was also performed to estimate the progression-free survival 
(PFS) of high-risk and low-risk patients in the TCGA (C) and CGGA cohorts (H). The high-risk groups had significantly poorer OS and PFS rates 
than the low-risk groups. The prognostic performance of the hypoxia signature demonstrated by the time-dependent ROC curve for 
predicting the 0.5-, 1-, 2-, and 3-year OS rates in the TCGA (B) and CGGA cohorts (G). The prognostic performance of the hypoxia signature 
demonstrated by the time-dependent ROC curve for predicting the 0.5-, 1-, 2-, and 3-year PFS rates in the TCGA (D) and CGGA cohorts (I). 
Risk score analysis of the hypoxia signature in the TCGA (E) and CGGA cohorts (J). Upper panel (I and J): Patient survival status and time 
distributed by risk score. Middle panel (I and J): Risk score curves of the hypoxia signature. Bottom panel (I and J): Heatmaps of the 
expression levels of the 5 HRGs in the GBM samples. The colors from green to red indicate the expression level from low to high. 
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Table 1. Demographics and clinicopathological characteristics of GBM patients in the TCGA training cohort and CGGA 
validation cohort based on the hypoxia signature. 

Variables 
TCGA cohort (Training set) CGGA cohort (Validation set) 

Total (n=151) Low risk (n=76) High risk (n=75) Total (n=350) Low risk (n=175) High risk (n=175) 

Age (years) 59.6±13.7 58.8±13.4 60.4±14.0 48.1±13.3 47.2±13.1 48.9±13.5 

Sex       

Female 53 21 32 139 63 76 

Male 98 55 43 211 112 99 

KPS       

< 80 32 15 17 NA   

>= 80 81 41 40 NA   

NA 38 20 18 NA   

Pharmacotherapy      

TMZ 64 37 27 61 (No) 24 37 

TMZ+BEV 26 10 16 269 (Yes) 139 130 

Others (No TMZ) 19 10 9 - - - 

No or NA 42 19 23 20 (NA) 12 8 

Radiotherapy       

No 22 11 11 48 19 29 

Yes 122 63 59 283 146 137 

NA 7 2 5 19 10 9 

Surgery       

Biopsy only 16 10 6 NA   

Tumor resection 135 66 69 NA   

IDH status       

Wildtype 147 68 75 270 113 157 

Mutant 8 8 0 80 62 18 

MGMT promoter status      

Methylated 66 30 36 NA   

Unmethylated 85 46 39 NA   

TERT status       

Wildtype 146 73 73 NA   

Mutant 5 3 2 NA   

BRAF status       

Wildtype 146 74 72 NA   

Mutant 5 2 3 NA   

ATRX status       

Wildtype 140 68 72 NA   

Mutant 11 8 3 NA   

EGFR status       

Wildtype 97 42 55 NA   

Mutant 54 34 20 NA   

1p/19q status       

Non-codeletion NA   323 152 171 

Codeletion NA   17 15 2 

NA NA   10 8 2 

GBM, glioblastoma; NA, not available; KPS, Karnofsky performance score; TMZ, temozolomide; BEV, bevacizumab; PCV, 
procarbazine lomustine vinCRISTine. 
“Others (No TMZ)” in pharmacotherapy included PCV, PCV+BEV, and other drugs, including avastin, carmustine, and 
irinotecan. 
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Table 2. Univariate and multivariate cox proportional hazards analysis of clinicopathological variables and hypoxia 
signature based on overall survival (OS) in the TCGA GBM training cohort and CGGA GBM validation cohort. 

OS Prediction Model 

 

Variables 

TCGA training cohort (N=151) CGGA validation cohort (N=350) 

Univariate Analysis Multivariate analysis Univariate Analysis Multivariate analysis 

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value 

Age 1.028(1.013-1.044) 1.98e-04 1.021(1.003-1.039) 2.23e-02 1.078(1.048-1.108) 8.35e-05 1.061(1.030-1.091) 1.97e-02 

Sex (Female/Male) 0.916(0.626-1.341) 0.65 - - 1.063(0.837-1.350) 0.61 - - 

KPS (<80/>=80/NA) 0.926(0.696-1.233) 0.59 - - NA  NA  

Pharmacotherapy (TMZ/ 

TMZ+BEV/Others (No 

TMZ)/No or NA) 

0.883(0.852-0.913) 1.06e-04 0.884(0.779-0.989) 1.31e-02 0.573(0.432-0.759) 1.04e-04 0.600(0.441-0.817) 1.17e-03 

Radiotherapy (No/Yes/NA) 0.433(0.262-0.714) 1.04e-03 0.314(0.183-0.538) 2.44e-05 0.668(0.492-0.908) 9.96e-03 0.782(0.752-0.812) 1.64e-02 

Surgery (Biopsy only/ Tumor 

resection) 
0.934(0.523-1.667) 0.82 - - NA  NA  

IDH status 

(Wildtype/Mutant) 
0.262(0.096-0.715) 8.91e-03 0.494(0.389-0.599) 4.05e-02 0.752(0.566-0.988) 3.89e-02 0.772(0.742-0.802) 4.76e-02 

MGMT promoter status 

(Methylated/Unmethylated) 
1.434(1.133-1.733) 6.84e-03 1.359(1.254-1.464) 1.42e-02 NA  NA  

TERT promoter status 

(Wildtype/Mutant) 
0.906(0.287-2.861) 0.87 - - NA  NA  

BRAF status 

(Wildtype/Mutant) 
1.973(0.720-5.410) 0.19 - - NA  NA  

ATRX status 

(Wildtype/Mutant) 
0.426(0.187-0.973) 4.28e-02 0.917(0.235-3.580) 0.91 NA  NA  

EGFR status 

(Wildtype/Mutant) 
1.273(0.873-1.857) 0.21 - - NA  NA  

1p/19q status (Non-

codeletion/Codeletion/NA) 
NA  NA  0.913 (0.662-1.259) 0.58 - - 

Hypoxia signature 1.507(1.252-1.815) 1.49e-05 1.435(1.147-1.795) 1.55e-03 1.092(1.062-1.123) 7.60e-10 1.098(1.067-1.130) 1.78e-10 

OS, overall survival; GBM, glioblastoma; NA, not available; HR, hazard ratio; CI, confidence interval; KPS, Karnofsky 
performance score; TMZ, temozolomide; BEV, bevacizumab; PCV, procarbazine lomustine vinCRISTine. 
“Others (No TMZ)” in pharmacotherapy included PCV, PCV+BEV, and other drugs, including avastin, carmustine, and 
irinotecan. 
All statistical tests were two-sided. Bold type means P<0.05. 
 

left panels). In addition, H2AFJ (Figure 6A, right 

panel), RRM2 (Figure 6J, right panel), and THBD 

(Figure 6M, right panel) had high expression in cells 

cultured under a hypoxic environment, whereas ID3 

(Figure 6D, right panel) and PDSS1 (Figure 6G, right 

panel) had low expression in cells cultured under a 

hypoxic environment compared with that in cells 

cultured under a normoxia environment. Notably, K-M 

survival analyses demonstrated that high expression of 

H2AFJ (Figure 6B), RRM2 (Figure 6K), and THBD 

(Figure 6N) was associated with poor OS and PFS, 

while low expression of ID3 (Figure 6E) and PDSS1 

(Figure 6H) was associated with poor OS and PFS. 

Hence, because solid tumors, such as GBM, grow under 

a hypoxic TME, we believe that hypoxia could serve as 

an important contributing factor for the poor prognosis 

of GBM patients by regulating the expression levels of 

the prognostic HRGs. 

GSEA revealed that high expression levels of the 5 

genes were significantly enriched in the KEGG 

pathways related to hypoxia and the development of 

tumors, including the HIF-1 signaling pathway, PI3K-

AKT signaling pathway, MAPK signaling pathway, 

mTOR signaling pathway, pathways in cancer, 

apoptosis, and the cell cycle (Figure 6C, 6F, 6I, 6L, 

6O). These findings strongly suggested the potential 

roles of the hypoxic TME in the tumorigenesis and 

progression of GBM, which may provide new evidence 

for cancer-targeted treatments involving the prognostic 

HRGs. 
 

Immune infiltration analysis of the five HRGs 
 

Then, correlation analyses between the TIL patterns of 

GBM and the HRGs were further investigated. As 

shown in Supplementary Figure 2, the expression levels 
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of H2AFJ were positively correlated with innate 

immune cells and CD4+ and CD8+ T-cell subsets; the 

expression levels of RRM2 were positively correlated 

with Act CD4 cells and negatively correlated with Th 

cells, B cells, and DCs; and the expression levels of 

THBD were positively correlated with almost all the 

immune cells (78.6%) infiltrated in GBM tumors. 

Interestingly, both THBD and H2AFJ were significantly 

positively correlated with the main tumor-associated 

immunosuppressive cells, including Treg cells, MDSCs, 

NK cells and macrophages (Supplementary Figure 2). 

In terms of the methylation patterns of the HRGs, the 

methylation of ID3 was positively correlated with CD4+ 

T-cell subsets, MDSCs and DCs, and the methylation of 

THBD was negatively correlated with most of the 

immune cells (60.7%). For the CNAs of the HRGs, 

THBD was the only gene whose CNA levels were 

significantly positively correlated with 18 (64.3%) types 

of TILs. Hence, THBD was believed to be the most 

vital HRG in regulating the infiltration patterns of 

immune cells in GBM and thereby promoting the 

immunosuppressive TME of GBM (Figure 7A). 

Therefore, we believe that hypoxia might promote the 

immunosuppressive microenvironment of GBM 

mediated by HRGs. 

Predictions of immunotherapy response of the GBM 

patients 

 

TIDE algorithm was applied to predict the likelihood of 

immunotherapy response of each HRG-based molecular 

clusters of GBM patients. In the TCGA training cohort, 

Cluster 2 (54.5%, 18/33) patients were more likely to 

respond to immunotherapy than Cluster 1 (24.6%, 

29/118) (P = 0.001). Similarly, in the CGGA validation 

cohort, Cluster 2 (53.6%, 15/28) patients were also 

more sensitive to immunotherapy than Cluster 1 

(26.7%, 86/322) (P = 0.003). Then, subclass mapping 

analysis was further used to predict the likelihood of 

clinical response to anti-PD1 and anti-CTLA4 therapy 

of the two clusters. Submap analysis demonstrated that 

compared with Cluster 1 GBM patients, Cluster 2 

patients in both TCGA and CGGA cohort could be 

more sensitive to PD1 inhibitors, with Bonferroni-

corrected P = 0.015 and 0.031, respectively (Figure 7B, 

and 7C). 
 

Chemotherapy resistance analysis of the five HRGs 
 

As shown in Supplementary Figure 3, the expression 

levels of H2AFJ, RRM2, and THBD were positively 

 

 
 

Figure 4. Prognostic nomogram to predict the 0.5-, 1‐, and 3‐year OS probabilities of GBM patients. (A) Nomogram model to 

predict the survival of GBM patients based on the TCGA training cohort. The prognostic performance of the prognostic nomogram 
demonstrated by the ROC curve for predicting the 0.5-, 1‐, and 3‐year OS rates in the TCGA training cohort (B) and CGGA validation cohort 
(C). Calibration curves of the prognostic nomogram for predicting OS at 0.5, 1, and 3 years in the TCGA (D–F) and CGGA (G–I) cohorts. The 
actual survival is plotted on the y-axis, and the nomogram-predicted probability is plotted on the x-axis. 
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Table 3. Univariate and multivariate cox proportional hazards analysis of clinicopathological variables and hypoxia 
signature based on progression free survival (PFS) in the TCGA GBM training cohort and CGGA GBM validation 
cohort. 

PFS Prediction Model 

 

Variables 

TCGA training cohort (N=151) CGGA validation cohort (N=350) 

Univariate Analysis Multivariate analysis Univariate Analysis Multivariate analysis 

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value 

Age 1.003(0.988-1.018) 0.69 - - 1.179(0.967-1.991) 0.54 - - 

Sex (Female/Male) 1.282(0.808-2.034) 0.29 - - 1.001(0.708-1.416) 0.99 - - 

KPS (<80/>=80/NA) 0.927(0.675-1.272) 0.64 - - NA  NA  

Pharmacotherapy (TMZ/ 

TMZ+BEV/Others (No 

TMZ)/No or NA) 

0.821(0.776-1.093) 0.35 - - 1.005(0.648-1.558) 0.98 - - 

Radiotherapy (No/Yes/NA) 0.802(0.772-0.832) 4.60e-04 0.822(0.783-0.854) 2.82e-02 0.841(0.802-0.881) 4.55e-05 0.881(0.868-0.893) 3.13e-03 

Surgery (Biopsy only/ Tumor 

resection) 
0.954(0.491-1.852) 0.89 - - NA  NA  

IDH status 

(Wildtype/Mutant) 
0.188(0.046-0.774) 2.06e-02 0.458(0.108-0.850) 2.91e-02 0.664(0.464-0.949) 2.46e-02 0.828(0.569-0.867) 3.24e-02 

MGMT promoter status 

(Methylated/Unmethylated) 
1.320(0.853-2.044) 0.21 - - NA  NA  

TERT promoter status 

(Wildtype/Mutant) 
1.037(0.252-4.266) 0.96 - - NA  NA  

BRAF status 

(Wildtype/Mutant) 
1.641(0.398-6.756) 0.49 - - NA  NA  

ATRX status 

(Wildtype/Mutant) 
0.488(0.197-1.210) 0.12 - - NA  NA  

EGFR status 

(Wildtype/Mutant) 
1.419(0.909-2.216) 0.12 - - NA  NA  

1p/19q status (Non-

codeletion/Codeletion/NA) 
NA  NA  1.051 (0.684-1.615) 0.82 - - 

Hypoxia signature 2.103(1.648-2.683) 2.32e-09 1.993(1.542-2.576) 1.38e-07 1.048(1.031-1.066) 1.36e-08 1.045(1.028-1.063) 1.57e-07 

PFS, progression free survival; GBM, glioblastoma; NA, not available; HR, hazard ratio; CI, confidence interval; KPS, Karnofsky 
performance score; TMZ, temozolomide; BEV, bevacizumab; PCV, procarbazine lomustine vinCRISTine. 
“Others (No TMZ)” in pharmacotherapy included PCV, PCV+BEV, and other drugs, including avastin, carmustine, and 
irinotecan. 
All statistical tests were two-sided. Bold type means P<0.05. 
 

correlated with drug resistance, whereas those of ID3 

and PDSS1 were negatively correlated with drug 

resistance. For instance, high expression levels of 

H2AFJ, RRM2 and THBD and low expression levels of 

PDSS1 were highly resistant to temozolomide (TMZ), 

and high expression levels of H2AFJ and THBD and 

low expression levels of PDSS1 were highly resistant to 

BRD-A05715709 and BRD-A71883111, which are 

inhibitors of IDH1 R132H. Moreover, high expression 

levels of RRM2 and THBD were highly resistant to 

lomeguatrib, an inhibitor of MGMT. However, as 

mentioned earlier, hypoxia contributed to the increased 

expression levels of H2AFJ, RRM2, and THBD and 

decreased expression levels of ID3 and PDSS1, which 

thereby would lead to the enhancement of drug 

resistance to chemotherapy. Hence, we believe that the 

hypoxic TME might mediate and promote chemo-

resistance by regulating the expression levels of the 

corresponding HRGs. Targeted drugs that can regulate 

the expression levels of these HRGs might be combined 

with chemotherapy drugs such as TMZ or bevacizumab 

to possibly improve or even reverse chemoresistance in 

GBM patients. Our study not only indicated HRGs as 

predictors of prognosis and immunotherapy and 

chemotherapy effectiveness but also suggested a new 

treatment strategy to combat chemoresistant GBM by 

targeting those HRGs. 

 

DISCUSSION 
 

GBM is the most malignant and aggressive intracranial 

solid tumor and is commonly characterized by severely 

low tumor oxygenation, referred to as a hypoxic TME. 

As reported by recent studies, the hypoxic TME has 

been shown to play a vital role in promoting the 

aggressive phenotypes and invasive behaviors of 
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malignancies [6, 7]. Emerging evidence has 

demonstrated that hypoxia is associated with the failure 

of conventional cancer therapies and poor prognosis of 

multiple cancers, especially GBM [6, 8]. Under the 

critical regulations of the hypoxic TME, HRGs and 

HIFs are involved in different tumoral mechanisms of 

GBM, such as differentiation, angiogenesis, genomic 

instability, resistance to therapies, invasion and 

metastasis [6–8]. Huang et al. [12] reported that the 

HIF-1α/miR-224-3p/ATG5 axis can affect the cell 

mobility and chemosensitivity regulated by hypoxia in 

GBM and astrocytoma. Ahmed et al. [13] found that 

hypoxia contributed to the upregulated expression of 

CD133 and enhanced resistance to cisplatin, TMZ and 

etoposide in GBM in vitro models. Hence, HRGs can be 

widely used as promising prognostic predictors and 

therapeutic targets for GBM. However, there is still a 

lack of systematic analyses of the global gene 

expression patterns and comprehensive prognostic 

prediction models based on multiple HRGs for GBM. 

 

In this study, we first developed a novel molecular 

classification of GBM patients based on the expression 

patterns of GBM-specific HRGs, which was then 

validated by the CGGA dataset. The patients in the 

Cluster 1 subgroup, with high expression patterns of the 

HRGs and older age, commonly exhibited poor 

prognosis. These results demonstrated that GBM 

patients from different populations can be reliably 

classified into two subgroups based on different 

hypoxic TME gene signatures. Then, Cox and LASSO 

regression analyses were sequentially performed to 

identify the prognosis-associated HRGs. Expression and 

survival analyses of the five HRGs demonstrated that 

hypoxia could contribute to the poor prognosis of GBM 

patients by regulating the expression levels of the 

prognostic HRGs, which was consistent with the 

findings of previous studies [12, 13]. GSEA further 

revealed that high expression levels of the 5 genes were 

significantly enriched in the KEGG pathways related to 

hypoxia and development of tumors, which strongly 

suggested the potential roles of the hypoxic TME in the 

tumorigenesis and progression of GBM, which may 

provide new evidence for cancer-targeted treatments 

involving the prognostic HRGs. 

 

Previous studies have investigated the roles of the 5 

prognostic HRGs in the development and progression of 

GBM. H2AFJ, located on chromosome 12, encodes a 

replication-independent histone that is a variant H2A

 

 
 

Figure 5. Progression nomogram to predict the 0.5-, 1‐, and 3‐year PFS probabilities of GBM patients. (A) Nomogram model to 

predict the survival of GBM patients based on the TCGA training cohort. The prognostic performance of the progression nomogram 
demonstrated by the ROC curve for predicting the 0.5-, 1‐, and 3‐year PFS rates in the TCGA training cohort (B) and CGGA validation cohort 
(C). Calibration curves of the prognostic nomogram for predicting PFS at 0.5, 1, and 3 years in the TCGA (D–F) and CGGA (G–I) cohorts. The 
actual survival is plotted on the y-axis, and the nomogram-predicted probability is plotted on the x-axis. 
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Figure 6. Expression analysis, survival analysis, and gene set enrichment analysis (GSEA) of the 5 HRGs in the hypoxia 
signature. Expression analysis of H2AFJ (A), ID3 (D), PDSS1 (G), RRM2 (J), and THBD (M). Left panel: Expression levels of the 5 HRGs in 163 

GBM samples and 207 normal samples. Right panel: Expression levels of the 5 HRGs in hypoxia and normoxia cultured GBM cells from 
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GSE118683 and GSE45301. Red asterisks mean P < 0.05 between two groups. (K–M) survival analysis of H2AFJ (B), ID3 (E), PDSS1 (H), RRM2 
(K), and THBD (N). Left panel: K-M survival analysis was performed to estimate the OS of GBM patients with high and low expression levels of 
the corresponding HRG. Right panel: (K–M) survival analysis was performed to estimate the PFS of GBM patients with high and low 
expression levels of the corresponding HRG. GSEA of H2AFJ (C), ID3 (F), PDSS1 (I), RRM2 (L), and THBD (O) in the TCGA GBM cohort. The 
enriched KEGG pathways of the 5 HRGs are listed in the upper right. ES, enrichment score; P, nominal P value. 
 

histone, which is a basic nuclear protein responsible for 

the nucleosome structure of the chromosomal fiber. Lee 

et al. [14] reported that H2AFJ could drive 

mesenchymal transition and TMZ resistance in GBM. 

RRM2 encodes one of two nonidentical subunits of 

ribonucleotide reductase. It was reported to promote the 

tumorigenicity and progression of GBM cells and may 

also serve as a prognostic biomarker with functional 

significance in GBM [15, 16]. THBD encodes an 

endothelial-specific type I membrane receptor that binds 

thrombin, which thereby results in the activation of 

protein C and reduces the amount of thrombin 

generated. Maruno et al. [17] found that the increased 

expression of THBD was related to the tumor 

neovascularization and growth of glioma. Moreover, 

THBD was also reported to be a therapeutic target for 

GBM in vitro [18]. PDSS1 encodes the enzyme that 

elongates the prenyl side-chain of coenzyme Q, or 

ubiquinone, and may be peripherally associated with the 

inner mitochondrial membrane. Many studies have 

investigated the roles of coenzyme Q in suppressing the 

progression and invasion of glioma cells in vitro and 

sensitizing GBM cells to TMZ and radiation [19, 20]. 

ID3 encodes a helix-loop-helix (HLH) protein that can 

form heterodimers with other HLH proteins that are 

involved in regulating a variety of cellular processes, 

including cellular growth, differentiation, apoptosis, 

angiogenesis, and neoplastic transformation [21]. As 

reported in the literature, ID3 could promote the 

formation of stem-like cells and tumor angiogenesis in 

glioma and might serve as a therapeutic target of low 

grade gliomas [22, 23]. In summary, the five HRGs are 

not only promising prognostic predictors but also 

potential molecular therapeutic targets for GBM. 

 

Then, a novel prognostic prediction model based on the 

expression levels of the abovementioned five HRGs 

was successfully generated and validated in separate 

patient populations. The hypoxia signature demons-

trated favorable predictive value in stratifying GBM 

patients into high- and low-risk subgroups that had 

significantly different OS and PFS outcomes. Hence, 

 

 
 

Figure 7. Immune infiltration analysis and immunotherapy response predictions. (A) The regulatory network between TILs and the 

expression, methylation and CNA of THBD, with |Pearson correlation coefficient| > 0.3, and P < 0.05. Yellow dots represent TILs of GBM, and 
blue triangles represent THBD. Green/Red lines represent negative/positive correlations between TILs and THBD. Subclass mapping analysis 
of the TCGA (B) and CGGA (C) GBM patients for predicting the likelihood of clinical response to anti-PD1 and anti-CTLA4 therapy in different 
clusters based on the novel HRG-based classification. R was short for immunotherapy respondent. 
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more aggressive treatment strategies and closer follow-

ups should be applied in GBM patients with high risk 

scores according to our novel prognostic signature. 

 

Nomograms have been widely used in clinical practice for 

their intuitive visualization of statistical models and 

graphical assessment of variables’ importance [24]. To the 

best of our knowledge, this is the first prognostic nomo-

gram with a hypoxia signature for predicting the survival 

of GBM patients that was constructed based on large-scale 

patient populations with long-term follow-up. In terms of 

the nomogram for OS prediction, we integrated the 

hypoxia signature and five other independent clinical risk 

factors to build the prediction model. However, only three 

independent predictors, including the hypoxia signature, 

radiotherapy, and IDH mutation status, were finally 

selected to construct the progression nomogram for PFS 

prediction. Both calibration plots and ROC curves 

suggested the robust and reliable predictive performance of 

the nomograms for OS and PFS prediction in different 

populations from the TCGA training cohort and CGGA 

validation cohort. Therefore, our nomograms might be 

useful tools for assisting physicians in making 

individualized prognosis predictions, treatment strategies, 

and follow-up scheduling. 

 

As reported in the literature, GBM is also characterized by 

an immunosuppressive TME, where GBM cells, 

especially GBM stem-like cells (GSCs), recruit 

immunosuppressive cells into the TME by secreting 

cytokines and chemokines [25]. The tumor-associated 

immunosuppressive cells were found to promote the 

malignant phenotype, immune escape and chemo-

resistance of GBM [26]. Interestingly, the elevated 

abundances of the tumor-associated immunosuppressive 

cells were associated with the poor prognosis of GBM 

patients [27]. By performing the immune infiltration 

analysis between TILs and the expression, methylation, 

and CNA of the HRGs, we found that THBD and H2AFJ 

were significantly correlated with the tumor-associated 

immunosuppressive cells, thereby promoting the 

immunosuppressive TME of GBM. Hence, we believe 

that hypoxia might promote the immunosuppressive 

microenvironment of GBM mediated by HRGs. In 

addition, compared with Cluster 1, Cluster 2 patients tend 

to be more likely to respond to immunotherapy, especially 

anti-PD1 therapy, in both training and validation cohort. 

These findings also suggested that expression patterns of 

hypoxia signature negatively correlated with the 

likelihood of immunotherapy. 

 

The underlying mechanisms of GBM chemoresistance 

mediated by the hypoxic TME have not been fully 

elucidated. Previous studies reported that the multiple 

drug resistance (MDR) mechanism was activated by 

hypoxia to protect cancer cells from different drugs [7]. 

One of the most important MDR mechanisms at the 

clinical level is the elevated expression and activity of 

ATP binding cassette (ABC) transporters, which is 

related to the resistance to multiple chemotherapies [7, 

28]. Another candidate mechanism was that hypoxia 

would enhance the tumourigenic property of GSCs, 

which is the core subpopulation of GBM cells, and 

thereby promote the maintenance, aggressiveness and 

chemoresistance of GSCs [25]. In addition, the 

inhibition of proapoptotic pathways was also recently 

investigated to promote GBM chemoresistance [7] In 

this study, we found that the hypoxic TME might 

mediate and promote chemoresistance by regulating the 

expression levels of the corresponding HRGs. Targeted 

drugs that can regulate the expression levels of these 

HRGs might be combined with chemotherapy drugs 

such as TMZ or bevacizumab to possibly improve or 

even reverse chemoresistance in GBM patients. 

 

In conclusion, by performing a comprehensive multi-omic 

analysis based on transcriptomic, DNA methylation and 

CNA patterns, we developed and validated a hypoxic 

TME gene-based signature that could be applied for 

subgroup classification, risk stratification, prognosis 

prediction, and therapeutic targets for GBM patients. 

Then, prognostic and progression nomograms for OS and 

PFS prediction were constructed for individualized 

survival prediction, better treatment decision-making, and 

follow-up scheduling. Finally, the GSEA, immune 

infiltration analysis, and chemotherapy resistance analysis 

of the HRGs were performed to investigate the vital roles 

of the hypoxic TME in the development, progression, 

immune responsiveness and chemoresistance of GBM. 

Our study not only demonstrated HRGs as predictors of 

prognosis and immunotherapy and chemotherapy 

effectiveness but also suggested a new treatment strategy 

to combat chemoresistant GBM by targeting those HRGs 

on the basis of conventional chemotherapies. Large-scale, 

multicenter and prospective studies are needed to validate 

our prediction model in the future. 

 

MATERIALS AND METHODS 
 

Data acquisition and processing 

 

The level three RNA sequencing data and 

corresponding clinical information of a total of 501 

GBM patients were downloaded from The Cancer 

Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) 

and the Chinese Glioma Genome Atlas (CGGA, 

http://www.cgga.org.cn) database. Any patients without 

prognostic information were excluded. The gene 

expression profiles of 151 TCGA GBM samples were 

selected as the training cohort and that of 350 CGGA 

patients as the validation cohort. In addition, the 

transcriptomic profiles of the GSE45301 and 

https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
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GSE118683 datasets were downloaded from the Gene 

Expression Omnibus (GEO, http://www.ncbi.nlm.nih. 

gov/geo/) database, where the gene expression patterns 

of GBM cell lines were compared between normoxic (20-

21% oxygen) and hypoxic (1-1.5% oxygen) culture 

conditions [10, 29]. We enrolled 3 normoxia (GSM11027 

10-GSM1102712) and 3 hypoxia (GSM1102713-

GSM1102715) cultured cells from GSE45301; and also 

enrolled 4 normoxia (GSM3336604, GSM3336606, GSM 

3336608, and GSM3336610) and 4 hypoxia (GSM3 

336605, GSM3336607, GSM3336609, and GSM33 

36611) cultured cells from GSE118683. The 8 samples of 

GSE118683 were IDH wildtype GBM stem cells. Ethics 

committee approval for our study was not required 

because the data were obtained from publicly available 

databases. 

 

Identification of GBM-Specific HRGs and 

enrichment analyses 

 

First, the Molecular Signatures Database (MSigDB), a 

collection of annotated gene sets, was applied to screen all 

the known HRGs [30]. A total of 1694 genes in 65 gene 

sets were selected as HRGs with the following keywords: 

hypoxia AND Homo sapiens (Supplementary Table 1). 

Then, the differentially expressed genes (DEGs) between 

normoxic and hypoxic cultured GBM cells were screened 

using the ‘edgeR’ package in R 3.5.1 [31]. Adjusted P 

(adj. P) values were applied to correct the false positive 

results by using the default Benjamini-Hochberg false 

discovery rate (FDR) method. Adj. P value < 0.01 and 

|fold change (FC)| > 2 were considered as the cutoff 

criteria for determining DEGs [32]. The dysregulated 

genes of GSE45301 and GSE118683 in hypoxia were 

visualized by volcano plots. Finally, the genes in the 

intersection of the HRGs and the DEGs of GSE45301 and 

GSE118683 were considered the GBM-specific HRGs for 

further analysis and were displayed by a Venn diagram. 

 

Then, functional and pathway enrichment analyses for 

the GBM-specific HRGs were performed by using the 

Database for Annotation, Visualization and Integrated 

Discovery (DAVID, http://david.ncifcrf.gov/) database 

[33]. Gene Ontology (GO) analyses, including the 

biological process (BP), cellular component (CC) and 

molecular function (MF) categories, were used for 

functional annotation, and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) was used for pathway 

enrichment analysis. P < 0.05 was considered 

statistically significant. 

 

Unsupervised consensus clustering of GBM patients 

based on the HRGs 

 

Unsupervised consensus clustering, a k-means machine 

learning algorithm, was applied to explore a novel 

molecular classification of GBM patients based on the 

expression patterns of the HRGs using the 

‘ConsensusClusterPlus’ package [34]. The clustering 

procedure with 1000 iterations was performed by 

sampling 80% of the data in each iteration. The optimal 

number of clusters was comprehensively determined by 

the relative change in the area under the cumulative 

distribution function (CDF) curves, the proportion of 

ambiguous clustering (PAC) algorithm, and also the 

consensus heatmap. Then, the cluster quality measures 

called the “in-group proportion” (IGP) was applied to 

verify the similarities between different clusters in other 

independent datasets by using the ‘clusterRepro’ 

package [35]. Next, Kaplan-Meier (K-M) survival 

analysis was performed to evaluate the prognosis of 

different clusters. The distributions of the clinico-

pathological factors between different clusters were also 

analyzed to further explore the associations between the 

HRG-based molecular classification and clinical 

features of GBM. 

 

Generation and validation of the prognostic risk 

score model (hypoxia signature) based on the HRGs 

 

The associations between the expression levels of the 

HRGs and patients’ OS were first assessed by the 

univariate Cox regression analysis in the TCGA 

training cohort. The prognosis-related genes with a P 

value < 0.05 were further screened by the least absolute 

shrinkage and selection operator (LASSO) method and 

multivariate Cox regression analysis. Then, the risk 

score model based on the HRGs was constructed for 

predicting the prognosis of GBM patients [36]. Risk 

score= Exp (Gene1) × β1 + Exp (Gene2) × β2 +…+ Exp 

(Genen) × βn; where “Exp” represents the expression 

level of the gene, and “β” represents the regression 

coefficient of each gene calculated by the multivariate 

Cox regression analysis [37]. Then, the prognostic risk 

score of each patient was calculated according to the 

formula. All TCGA GBM patients were stratified into a 

low-risk (low risk score) group and a high-risk (high 

risk score) group according to the median value of the 

risk score. K-M survival curve analysis was performed 

to estimate the OS and PFS of the high-risk and low-

risk patients, and the survival differences were 

evaluated by the two-sided log-rank test. The 

prognostic performance was evaluated by Harrell's 

concordance index (C-index) and time-dependent 

receiver operating characteristic (ROC) curve analysis 

within 0.5, 1 and 3 years to evaluate the predictive 

accuracy of the HRG-based prognostic model using the 

‘survcomp’ and ‘survivalROC’ packages in R [24, 38]. 

Both the C-index and area under the curve (AUC) 

range from 0.5 to 1, with 1 indicating perfect 

discrimination and 0.5 indicating no discrimination. 

Finally, the prognostic models constructed by the 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://david.ncifcrf.gov/
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TCGA training cohort were further validated by the 

CGGA GBM cohort in a similar way. 

 

In addition, univariate and multivariate Cox regression 

analyses were performed in the TCGA training cohort 

and CGGA validation cohort in order to determine 

whether the predictive power of the hypoxia signature 

could be independent of other clinicopathological 

parameters, including age, sex, Karnofsky Performance 

Status (KPS) score, pharmacotherapy, radiotherapy, 

surgery, isocitrate dehydrogenase (IDH) mutation 

status, O6-methylguanine-DNA-methyltransferase 

(MGMT) promoter methylation status, telomerase 

reverse transcriptase (TERT) promoter mutation status, 

B-Raf proto-oncogene (BRAF) mutation status, X-

linked alpha thalassemia mental retardation syndrome 

gene (ATRX) mutation status, epidermal growth factor 

receptor (EGFR) mutation status, and 1p/19q status. 

 

Construction and validation of nomograms with the 

hypoxia signature for predicting OS and PFS 

 

All the independent prognostic parameters that were 

identified by the univariate analysis and the following 

multivariate Cox regression analysis were used to 

construct nomograms to evaluate the 0.5-, 1-, and 3-year 

OS and PFS probabilities for TCGA GBM patients 

using the ‘rms’ package. The discrimination per-

formance of the nomograms for prognosis was 

quantitatively assessed by the C-index and ROC curve 

analysis [24]. The calibration plots at 0.5, 1, and 3 years 

were also constructed to graphically evaluate the 

discriminative ability of the nomograms [38]. Finally, 

the nomograms for OS and PFS prediction were exter-

nally validated by the CGGA GBM cohort. 

 

GSEA 

 

Setting the expression level of a gene as the population 

phenotype, GSEA (http://software.broadinstitute.org/ 

gsea/index.jsp) was performed to identify the related 

KEGG pathways and molecular mechanisms of the 

HRGs in the hypoxia signature [30]. Enriched gene sets 

with a nominal P value < 0.05 and an FDR q value < 

0.25 were considered statistically significant. 

 

Immune infiltration analysis of the HRGs 

 

An integrated repository portal for tumor-immune 

system interactions (TISIDB, http://cis.hku.hk/TISIDB/) 

is a web portal for tumor and immune system 

interactions across human cancers that integrates 

multiple heterogeneous data types [39]. The immune-

related signatures of 28 types of tumor-infiltrating 

lymphocytes (TILs), originating from Charoentong's 

study, were composed of 3 CD8+ T-cell subsets [e.g., 

activated (Act) CD8, central memory T (Tcm CD8), and 

effector memory T (Tem CD8) cells], 9 CD4+ T-cell 

subsets [e.g., Act CD4, Tcm CD4, Tem CD4, follicular 

T-helper (Tfh), gamma delta T (Tgd), T-helper 1, 2, 17 

(Th1, Th2, Th17), and regulatory T (Treg) cells], 3 B-

cell subsets [e.g., Act B, immature (Imm) B, and 

memory (Mem) B cells], and 13 innate immune cells, 

including natural killer (NK) cell subsets [e.g., NK, 

CD56bright and CD56dim cells], myeloid-derived 

suppressor cells (MDSCs), NKT, Act dendritic cells 

(DCs), plasma DCs (pDCs), immature DCs (IDCs), 

macrophages, eosinophils, mast cells, monocytes, and 

neutrophils [40]. The relative abundances of TILs were 

inferred by using gene set variation analysis (GSVA) 

based on gene expression profiles of GBM. The 

correlations between TILs and the expression, 

methylation, and CNA of the HRGs were determined by 

Pearson’s correlation test. A P value < 0.05 and 

correlation coefficient > 0.3 or < -0.3 was considered 

significantly correlative. Then, the regulatory networks 

between TILs and HRGs were visualized by Cytoscape. 

 

Predictions of immunotherapy response of the GBM 

patients 

 

Tumor Immune Dysfunction and Exclusion (TIDE; 

http://tide.dfci.harvard.edu/) model was a computational 

method, which integrated the expression signatures of T 

cell dysfunction and T cell exclusion to model tumor 

immune evasion [41]. The clinical response of immune 

checkpoint blockade (ICB) could be predicted by TIDE 

algorithm based on pre-treatment tumor profiles. Then, 

an unsupervised subclass mapping method (SubMap; 

https://cloud.genepattern.org/gp/) was further applied to 

predict the ICB response of the GBM patients in 

different clusters based on the novel HRG-based 

classification [42]. 

 

Chemotherapy resistance analysis of the HRGs 

 

Chemotherapy responsiveness can be influenced by the 

expression patterns of some key genes, which may 

serve as potential biomarkers for drug screening. The 

Cancer Therapeutics Response Portal (CTRP) database, 

which provides information on 481 small-molecule 

anticancer drugs across different human cancer cell 

lines, was used to analyze the correlations of gene 

expression and drug sensitivity [43]. The correlation 

analyses between gene expression levels and the area 

under the dose-response curve values for drugs were 

performed by the Spearman correlation test. A P value < 

0.05 and correlation coefficient > 0.2 or < -0.2 was 

considered significantly correlative. Positive correlation 

coefficients indicate that high gene expression is related 

to drug resistance, while negative correlation 

coefficients indicate that high gene expression is related 

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
http://cis.hku.hk/TISIDB/
http://tide.dfci.harvard.edu/
https://cloud.genepattern.org/gp/
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to drug sensitivity. All statistical analyses in this study 

were conducted using R version 3.5.1, and a two-tailed 

P value < 0.05 was considered statistically significant. 

Hazard ratios (HRs) and 95% confidence intervals (CIs) 

were reported if necessary. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 
 

Supplementary Figure 1. The prognosis-related HRGs were screened by the LASSO and multivariate Cox regression analysis. 
(A) Optimal parameter (lambda) selection in the LASSO model used ten-fold cross-validation via minimum criteria. The partial likelihood 
deviance (binomial deviance) curve was plotted versus log(lambda). Dotted vertical lines were drawn at the optimal values by using the 
minimum criteria and the I standard error of the minimum criteria. (B) The coefficient profile plot was produced against the log(lambda) 
sequence. Vertical line was drawn at the value selected using ten-fold cross-validation, where optimal lambda resulted in ten features with 
nonzero coefficients. (C) Following LASSO regression analysis, the five HRGs identified by multivariate Cox regression analysis. 
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Supplementary Figure 2. Immune infiltration analysis of the five HRGs. The correlations between the abundance of tumor-

infiltrating lymphocytes (TILs) and the expression (left panel), methylation (middle panel), and copy number alteration (CNA, right panel) 
levels of HRGs. 
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Supplementary Figure 3. The correlation analyses between expressions of the 5 HRGs and the area under the dose-response 
curve values for drugs. A P value < 0.05 and |correlation coefficient| > 0.2 was considered significantly correlative. The red dots represent 

positive correlation, which indicates that high expression of the gene is resistant to the drugs. The blue dots represent negative correlation, 
which indicates that high expression of the gene is sensitive to the drugs. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

Supplementary Table 1. A total of 1694 hypoxia-related genes (HRGs) collected from the Molecular Signatures 
Database (MSigDB). 

Supplementary Table 2. The list of 259 GBM specific hypoxia-related genes (HRGs). 


