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We study SIS epidemic spreading processes unfolding on a recent generalization of the activity-driven modeling
framework. In this model of time-varying networks, each node is described by two variables: activity and
attractiveness. The first describes the propensity to form connections, while the second defines the propensity
to attract them. We derive analytically the epidemic threshold considering the time scale driving the evolution
of contacts and the contagion as comparable. The solutions are general and hold for any joint distribution of
activity and attractiveness. The theoretical picture is confirmed via large-scale numerical simulations performed
considering heterogeneous distributions and different correlations between the two variables. We find that
heterogeneous distributions of attractiveness alter the contagion process. In particular, in the case of uncorrelated
and positive correlations between the two variables, heterogeneous attractiveness facilitates the spreading. On the
contrary, negative correlations between activity and attractiveness hamper the spreading. The results presented
contribute to the understanding of the dynamical properties of time-varying networks and their effects on
contagion phenomena unfolding on their fabric.
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I. INTRODUCTION

Many social, natural, and technological systems can be
modeled as networks. The structure of such systems is
often not fixed and exhibits complex temporal dynamics
[1–4]. However, the large majority of studies revolve around
representations that neglect the role of time [5–7]. In particular,
connections are typically approximated as either static or
annealed [8,9]. Since networks are often used as an envi-
ronment for the study of dynamical processes, the choice
concerning which approximation to adopt is a matter of time
scales: when the process is faster than the network evolution,
the network structure can be assumed static; in the opposite
conditions, networks can be effectively described by annealed
representations. However, when the time scale of the process
studied is comparable to the one characterizing the network
evolution, static or annealed approximations are not viable
and can lead to incorrect conclusions such as misrepresenting
(i) the spreading potential of a disease [8,10–28], (ii) the
exploring capabilities of random walkers [29–33], (iii) the
features of social interactions [34–47], or the processes of (iv)
information spreading [48–52], (v) synchronization [53], (vi)
percolation [54], (vii) consensus [55], (viii) competition [56],
(ix) social contagion [57], and (x) innovation [58].

Thanks to the unprecedented availability of large and
longitudinal datasets, in recent years a great effort has been
put into the development of temporal network representations
and models. See Refs. [1–3] for detailed reviews on the subject.

One proposal for an analytical model of a temporal network
comes from the activity-driven model [18], which relates the
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temporal structure of the connections to one fundamental
quantity, the activity. This feature represents the propensity
of a node to establish connections per unit time. In the model,
each node i is equipped with an activity ai extracted from a
distribution F (a). At any time step t , nodes are active and thus
willing to establish connections with probability proportional
to their activity. One praise of this simple mechanism is
that it relates the contact dynamics to the structure of the
time-integrated network: the resulting degree distribution P (k)
depends on the form of F (a), and in particular a power-law
distributed activity produces a power-law degree distribution
[18]. This fact is particularly significant in relation to social
networks, which are known to exhibit distributions of this kind
both for the degree [5,59] and for the activity [18,30,34,46,60].

In its original form, the activity-driven model is extremely
simple, thus it is relatively lightweight for performing cal-
culations. Nonetheless, it gives rise to a nontrivial temporal
structure having an impact on the unfolding of dynamical
processes [18,30,31,61]. Precisely because of its simplicity,
and in particular its reliance on only one node property (the
activity), the original activity-driven model is not able to
reproduce other widespread properties of social networks,
namely finite clustering, assortative mixing, a bursty contact
sequence, and memory effects [62–64]. For these reasons, and
also thanks to its flexibility, modifications to the original model
have been introduced and investigated [26,34,46,47,65,66].

Here, we consider a recent extension of the model [67]
in which beyond the activity distribution, the network is
characterized by an attractiveness distribution [67]. This
feature accounts for the fact that some nodes may be a
preferential target of interactions (i.e., they may be more
popular), in the same way that activity accounts for the fact
that some nodes are more inclined to be their initiators. The
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attractiveness bi of a node i is a measure of its propensity to
attract contacts. Therefore, it is to some extent the reciprocal of
the activity, and a natural complement to it within the model.
Heterogeneous attractiveness distributions have been observed
in different networks, such as online communities [67–69],
face-to-face interactions [70], and animal hierarchies [71].

In Ref. [67], besides the introduction of the model, the
authors studied the effects of the attractiveness and of its
interplay with the activity on the fundamental dynamical
processes: the random walk. Here, we continue to investigate
how attractiveness and activity affect spreading processes
on temporal networks, focusing on contagion phenomena.
In particular, we consider SIS epidemic models in the case
of a generic joint activity-attractiveness distribution deriving
an analytic expression for the epidemic threshold. We give
a detailed treatment of three scenarios. First, we examine
the case of uncorrelated activity and attractiveness. Second,
inspired by observations on real data [67], we study the case
of positive correlation between the two variables. Finally,
we complete our analysis considering the case of negative
correlation. In all cases, we use numerical simulations to
validate our results.

The shape of the activity distribution, and its second mo-
ment in particular, has been shown to influence the unfolding
of different kinds of processes on activity-driven networks
[18,26,31,38,61,72]. In the case of spreading phenomena, the
more heterogeneous the activity distribution (i.e., the larger
its variance), the easier it is for a disease to reach a finite
portion of the network [18,26,61,72]. Here, we found how the
presence of a heterogeneous attractiveness has an analogous
impact. The presence of positive correlations between activity
and attractiveness further facilitates the contagion, while the
presence of negative correlations, conversely, hinders it.

The paper is structured as follows: in Sec. II we present the
model and we discuss the attractiveness and its correlation with
the activity; in Sec. III we study the epidemic threshold for an
SIS process in the case of an absence of activity-attractiveness
correlation (Sec. III A) and in the case of deterministic
correlation (Sec. III B), treating all cases both analytically
and with simulations; Sec. IV contains the conclusions and
a discussion of possible future works.

II. THE MODEL

In the original activity-driven model (AD), a network of
N nodes is characterized by an activity distribution F (a)
from which the activity, ai , of each node i is extracted. The
model uses a discrete time framework, with time steps of
duration �t . At the beginning of each time step, a node i

may activate; the activation happens with probability ai�t ; if
a node activates, it will form a fixed number m of connections
toward randomly selected nodes (multiple connections, as well
as self-connections, are forbidden, and in general m � N ); the
connections remain active for the duration of the time step, at
the end of which they are all reset, and the process starts again.

The model depicted above is the original version of
the model, as proposed in Ref. [18]. There, when a node
activates, it chooses the targets of its connections among all
other members of the network with equal probability. In the
version of the model we consider here, which we will call

activity-driven with attractiveness (ADA), the network is also
characterized by an attractiveness distribution [67]. In general,
the two values of activity ai and attractiveness bi for the
same node i are not necessarily uncorrelated, and are sampled
from a joint probability distribution H (a,b). Interestingly,
recent observations on online social networks have shown
both variables to behave according to a power law with similar
exponents and an approximately linear correlation [67].

The ADA works like the AD, except that when a node
i activates it chooses another node j as a target of one of
its m connections with probability proportional to the second
node’s attractiveness, bj . As the probability of choosing any
node must be equal to 1, the correct normalization for the
probability is bj/〈b〉N , where 〈b〉 is the mean value of the
attractiveness:

〈b〉 =
∫

da db H (a,b)b. (1)

The model thus behaves similarly to a linear preferential
attachment, as the overall number of contacts received by
a node during any time window is linearly proportional to
its attractiveness; the total number of contacts (received and
initiated), on the other hand, depends on both activity and
attractiveness.

By time-integrating the connections obtained at different
time steps, we can study the emergent topological properties
of the network. In particular, the time-integrated network over
T time steps is defined as the union of the instantaneous
networks obtained at T different time steps, i.e., two nodes
figure as connected in the integrated network if they are
connected in at least one of the T instantaneous networks.
A weight, equal to the number of instantaneous networks in
which the edge appears, can also be associated to each edge.
For the AD, the degree distribution of the integrated network
is connected to the activity distribution through the relation
P (k) ∼ F (k/T m), as long as it holds that k � T � N [18].
The study of the time-integrated properties of ADA networks
will be a matter of future work.

Figure 1 illustrates the degree distribution P (k) and the edge
weight distribution P (w) obtained for two ADA networks and
an AD network of size N = 105 after a time integration of
T = 103 time steps. We used an activity distribution F (a) ∝
a−2.4. In the AD model, all nodes have equal attractiveness; in
the uncorrelated ADA we used an attractiveness distribution
independent of, but identical to, the activity distribution:
G(b) ∝ a−2.4; for the correlated ADA we set the attractiveness
of every node to be proportional to its activity: bi ∝ ai, i =
1, . . . ,N . The exponents are chosen to be representative
of typical values encountered in social networks [6,63].
The plot of the degree distribution shows that the presence
of heterogeneous attractiveness in ADA networks does not
induce dramatic changes. However, the inspection of the
weight distribution highlights the difference between the two
models. The presence of heterogeneous attractiveness induces
heterogeneity in the partner selection that reverberates in the
weight distribution. As we will see later, such heterogeneity
favors the contagion process.

The ADA model differs from recent generalizations of
AD networks introduced in [34] and further expanded in
[46,47,65]. In fact, in these extensions local reinforcement

042310-2



EPIDEMIC SPREADING ON ACTIVITY-DRIVEN . . . PHYSICAL REVIEW E 96, 042310 (2017)

FIG. 1. Degree and edge weight distribution for time-integrated
ADA and AD. Both distributions show long tails. We used an activity
distribution F (a) ∝ a−2.4 for all three networks. For the uncorrelated
ADA, the attractiveness distribution is also G(b) ∝ b−2.4. For the
correlated case, we set bi ∝ ai for each node i. We run our simulations
on networks of 105 nodes with m = 5, integrated over 103 time steps
and averaged over 100 runs.

mechanisms have been used as a way to model the emergence
and evolution of strong or weak ties [62]. However, local
mechanisms alone cannot explain the dynamics of ties,
especially in the current social media landscape where people
can easily be in contact with celebrities or access information
provided by popular accounts. The attractiveness describes
scenarios of global popularity, as opposed to cases of local
reinforcement in which the perceived attractiveness of a node
may change between its peers, so that the contact probability is
encoded in pairs rather than in the single nodes; also, we model
the attractiveness as constant in time, not being strengthened or
weakened by the occurrence of contacts—or the lack thereof.

III. EPIDEMIC THRESHOLD

As we discussed above, the presence of a heterogenous
attractiveness affects the temporal structure of contacts. We
want to quantify this phenomenon by studying its impact on
a dynamical process, i.e., we choose to evaluate the epidemic
threshold for an SIS process. The fact that the analytical value
of such a threshold has already been calculated and tested for
the original activity-driven model in Ref. [18] allows us to
straightforwardly draw a comparison between the AD and the
ADA.

The SIS is an example of a compartmental epidemic
model [5,73,74]; in this framework, every node belongs to
a certain class with respect to the disease status: susceptible
(S) or infected (I). When a susceptible node contacts (or is
contacted by) an infected one, it may itself become infected,

with probability λ. Meanwhile, infected nodes can undergo
spontaneous recovery at a rate μ and become susceptible again.

In general, contagion processes are characterized by a
threshold that determines whether the disease is able to spread
in the system affecting a macroscopic fraction of nodes
[5,25,73–75]. In the limit of static networks, the epidemic
threshold of a SIS processes is determined by the spectral
properties of the adjacency matrix [76]. In the limit of
annealed networks and uncorrelated topologies the threshold
is defined by the moments of the degree distribution [77].
Interestingly, a closed expression for the threshold of a SIS
process unfolding on a general time-varying network has
been obtained [12,13]. This can be expressed in terms of the
spectral properties of the system-matrix, which is defined as
S = ∏

t [(1 − μ)At + λ] (where At is the adjacency matrix
at time t). Despite its generality, this expression hides the
physics of the process behind the computation of eigenvalues,
which is typically done numerically.

The AD framework allows an explicit mathematical deriva-
tion [18]. In particular, the threshold for SIS models depends
on the moments of the activity distribution:

λ

μ
〈k〉 >

2〈a〉
〈a〉 +

√
〈a2〉

≡ TAD, (2)

at the first order in N−1 and activity [18]. We have introduced
TAD, which denotes the value of the epidemic threshold for
the activity-driven model and depends on the properties of the
network, which in turn are determined by the moments of the
activity distribution.

It is important to stress how in the expression of the
threshold, the time-integrated properties of the network (such
as the degree distribution) do not appear. The dynamical
properties are defined only by the activity distribution.

Here, we extend the literature by providing an explicit
analytical expression for the epidemic threshold for an SIS
process in the ADA model for any form of the probability
distribution H (a,b). To do so, we assume nodes to be
characterized by their activity and attractiveness values alone,
and accordingly we group them in classes; nodes within
each class are considered statistically equivalent (mean-field
assumption). We also assume that the two variables are
discretely distributed, but the derivation would apply as well
to the case of continuous variables. We denote with Na,b

the number of nodes of activity a and attractiveness b, with
the condition

∑
a,b Na,b = N . The number of susceptible and

infected nodes of activity a and attractiveness b at time t is
indicated as Sa,b(t) and Ia,b, respectively. A master equation for
the temporal evolution of the number of infected nodes in each
class can be written, again, in the limit of large size N � 1,
where the probability of having repeated contacts between the
same two nodes can be neglected. Without a lack of generality,
in the following we will set �t = 1. The master equation reads

Ia,b(t + 1) = (1 − μ)Ia,b(t)

+ λm

N〈b〉Sa,b(t)

[
a

∑
a′,b′

b′Ia′,b′ (t)

+ b
∑
a′,b′

a′Ia′,b′ (t)

]
. (3)
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The first term on the right side accounts for the infected nodes
inherited from the previous time step, minus the cases of
spontaneous recovery. The first term in the brackets represents
the probability for a susceptible node in the class (a,b) to
activate and contact an infected node in any other class, while
the second term represents the probability for an infected node
in any other class to activate and contact a susceptible node in
the class (a,b); the difference with the AD model is that now
the probability for a node in the class (a,b) to be contacted
depends on b, and the probability for it to contact a node in
the class (a′,b′) depends on b′. We can define two auxiliary
functions to simplify what follows:

θ (t) ≡
∑
a,b

aIa,b(t), (4)

φ(t) ≡
∑
a,b

bIa,b(t). (5)

In considering the initial phase of the spreading, when
Ia,b(t) � Na,b, we can take Sa,b(t) 
 Na,b; the master equa-
tion becomes

Ia,b(t + 1) 
 (1 − μ)Ia,b(t) + λm

N〈b〉Na,b[aφ(t) + bθ (t)].

(6)

From the last one, we can obtain three more equations: one by
summing aver all classes, and two more by first multiplying
by a and b, respectively, and then summing.

Switching to a continuous-time regime, we obtain a system
of three linear differential equations,

∂I (t)

∂t

 −μI (t) + λm

〈b〉 [〈a〉φ(t) + 〈b〉θ (t)], (7)

∂θ (t)

∂t

 −μθ (t) + λm

〈b〉 [〈a2〉φ(t) + 〈ab〉θ (t)], (8)

∂φ(t)

∂t

 −μφ(t) + λm

〈b〉 [〈ab〉φ(t) + 〈b2〉θ (t)], (9)

of eigenvalues:

κ0 = −μ, κ± = λm

〈b〉 (〈ab〉 ±
√

〈a2〉〈b2〉) − μ. (10)

The outbreak prevails when at least one eigenvalue is
positive. The κ± recover the eigenvalues of the AD if we use
a constant attractiveness; κ0 is not a candidate for being the
largest eigenvalue, unless κ0 = κ+; so the epidemic threshold
is determined by the positivity of κ+, leading to

β

μ
>

2〈a〉〈b〉
〈ab〉 +

√
〈a2〉〈b2〉

≡ TADA, (11)

where we have used 〈k〉 = 2m〈a〉 [18], and we introduced β ≡
λ〈k〉 as the per capita spreading rate. As for the AD (above),
we use TADA to denote the value of the epidemic threshold
encoded in the features of node activity and attractiveness.

Equation (11) is valid for any form of H (a,b); in particular,
the expression recovers the value from Eq. (2) if a constant
attractiveness is used, so that 〈b2〉 = 〈b〉2 and 〈ab〉 = 〈a〉〈b〉.
In the remainder of this section, we focus on two scenarios:

(i) when activity and attractiveness are uncorrelated, and (ii)
when they are instead deterministically correlated—either
positively or negatively.

To provide a precise estimation of the threshold value when
simulating an SIS process, we use the lifetime-based method
introduced in Ref. [9] and also used in Ref. [26] for the same
purpose. The lifetime L is defined as the amount of time
elapsed before the disease either dies out or spreads to a finite
fraction C of the network. The rationale behind this definition
is the following: when the system is below threshold, the
disease is not able to spread and dies out in a short time; above
threshold, the lifetime is also short, as the disease can quickly
reach a finite fraction of nodes. Only for values of β/μ close
to the threshold do we expect to observe a longer lifetime, as
the contrasting effects of contagion and spontaneous recovery
are almost equally strong and they struggle to prevail on each
other; we can thus take the value of β/μ corresponding to the
maximum in L as an estimation of TADA. Indeed, the lifetime,
obtained by averaging over many realizations, is equivalent
to the susceptibility in standard percolation theory [9], thus it
provides a precise method to detect the threshold numerically.

The peak in the lifetime is more pronounced for larger
values of N as, for power-law activity and attractiveness
distributions, the heterogeneity effects lowering the epidemic
threshold are constrained by the finite size of the system
[78]. For this reason, we run our simulations on networks
of increasing size, and we expect to observe the peak increase
and occur at lower values of β/μ, converging to the theoretical
value as N → ∞. In particular, here we chose to use N equal
to 104, 105, and 106; we also set C = 0.25 as the target value
for the network coverage (fraction of infected nodes).

A. Uncorrelated distributions

In the absence of correlations, H (a,b) can be written as
a product H (a,b) = F (a)G(b), where F (a) is the activity
distribution and G(b) is the attractiveness distribution. In
Eq. (11), the mean value of the product can be factorized
to obtain

TADA = 2

1 +
√

〈a2〉〈b2〉
〈a〉2〈b〉2

. (12)

We can see that, once the average values are fixed, the
threshold can be made arbitrarily small by increasing either or
both of the second moments, i.e., introducing heterogeneity. As
the threshold depends on the moments of the two distributions
in the same way, the case with constant attractiveness and
generic F (a) (the AD) can be mapped to the one with constant
activity and attractiveness distribution F (b).

As 〈b2〉 � 〈b〉2 always holds, the threshold can only be
lower than or equal to the one found in the AD; this means
that the introduction of any amount of heterogeneity in the
attractiveness helps the epidemic spreading.

As an example of uncorrelated distributions, let us consider
two power laws: F (a) = Ca−γa and G(b) = Db−γb ; in both
cases, a and b are bounded inside the interval [ε,1] to avoid
divergences.

Figure 2 illustrates the behavior of the epidemic threshold
obtained from Eq. (12); we report the values of T −1

ADA—so that
the plot shows a maximum when the spreading potential is
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FIG. 2. Value of 1/TADA for the case of uncorrelated distributions:
H (a,b) = F (a)G(b), where both variables are distributed according
to a power law with values in the range [10−3,1]: F (a) ∝ a−γa and
G(b) ∝ b−γb . The threshold depends on the exponents γa and γb via
the moments of the two distributions. We plot the reciprocal of the
epidemic threshold, so that the larger the plotted value is, the easier it
is for the disease to spread. TADA has the same dependence on the two
exponents and it is symmetric around its maximum in γa = γb = 2.

maximum (the threshold shows a minimum)—as a function of
the two exponents γa and γb. The threshold exhibits the same
dependence on each of the two exponents, as the analytic
expression also shows, with local maxima for γa = 2 (and
γb = 2) and a global maximum in γa = γb = 2. The function
is symmetric around such a value.

In Fig. 3 we show an analytical comparison between
the ADA and the AD by plotting TAD/TADA—the ratio

FIG. 3. Plot of TAD/TADA, the ratio of the epidemic threshold in
the original model and the epidemic threshold with attractiveness,
for the case of uncorrelated distributions: H (a,b) ∝ a−γa b−γb on the
ADA. The activity on the AD in distributed according to the same
law as on the ADA: F (a) ∝ a−γa . The ratio is a function of the two
exponents (TAD depends on γa only). When γb diverges or tends to
zero, the attractiveness distribution loses heterogeneity and the ADA
converges to the AD. The difference is maximal for γb = 2.

FIG. 4. Lifetime of SIS processes on an ADA uncorrelated
network with power-law distributed activity (γa = 1.8) and attrac-
tiveness (top: γb = 2.1, bottom: γb = 2.8), plotted for different values
of β/μ. We let λ vary while we keep μ = 0.01 fixed, and 〈k〉 is
determined by the relation 〈k〉 = 2m〈a〉. The theoretical epidemic
threshold (dotted line) is appreciably lower than the threshold for
the AD (dashed line), and it is in accordance with the simulations.
We used m = 2, ε = 10−3. In the upper plot, we used the following:
for N = 104, 3000 simulations (red); for N = 105, 1000 simulations
(blue); for N = 106, 500 simulations (green). In the lower plot, we
used the following: for N = 104, 5000 simulations (red); for N =
105, 500 simulations (blue); for N = 106, 500 simulations (green).
Solid lines with markers and shaded areas represent the mean and
95% confidence interval separately.

between the epidemic threshold in the original model and the
epidemic threshold with attractiveness computed following
the analytical solution—as a function of the two power-law
exponents. As expected from the equations, we find that, for
values of γb either very large or close to zero, the ratio tends to
1 as 〈b2〉 → 〈b〉2 and consequently TADA → TAD. Otherwise,
the attractiveness always lowers the threshold, thus facilitating
the spreading of the epidemic phenomenon.

We tested the validity of our findings by simulating an
SIS process with two different choices of the exponents: one
with γa = 1.8 and γb = 2.1, the other with the same γa and
γb = 2.8; in both cases we set m = 2 and took the median value
over a number realizations of the process varying between
500 and 5000 (depending on the size). The results are shown
in Fig. 4, where we plotted the lifetime of the process for
different values of β/μ. In particular, we let λ vary while
keeping μ = 0.01 fixed, and 〈k〉 also does not change, being
determined by the relation 〈k〉 = 2m〈a〉. The lifetime exhibits
a peak converging toward the theoretical prediction (dotted
line) for increasing values of N . Also, the comparison with
the AD (dashed line) shows that the epidemic threshold is
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appreciably lower in the ADA setting, as the heterogeneity
due to the attractiveness distribution facilitates the spreading.

B. Deterministic correlation

As a second example, we study the case of a deterministic
activity-attractiveness correlation, where the value of one
variable uniquely determines the value of the other one for
any given node. The joint distribution can be expressed in the
form

H (a,b) = F (a)δ(b − q(a)), (13)

where δ(x) is the Dirac delta and q(a) is the function that
determines the attractiveness of a node given its activity:
bi = q(ai),∀ i. Using the relation G(b) = F (a)|da/db| we
can obtain an expression for G(b) [provided q(a) has an
inverse]:

G(b) = F (q−1(b))

∣∣∣∣dq−1(b)

db

∣∣∣∣. (14)

A case of interest is q(a) ∝ aγc , γc > 0, so that if one of
the variables is power-law distributed, the other is too, with
a different exponent: if, for example, F (a) ∝ a−γa , then the

attractiveness will be distributed as G(b) ∝ b
−1+ 1−γa

γc . This
also includes the case of identical correlation for γc = 1. A
generic moment of the joint distribution can be expressed
as

〈anbm〉 = 〈an+γcm〉, (15)

and Eq. (11) becomes

TADA = 2〈a〉〈aγc 〉
〈a1+γc 〉 +

√
〈a2〉〈a2γc 〉

. (16)

Figure 5 shows the behavior of the threshold as a function
of the exponents γa , governing the activity distribution, and
γc, which determines the activity-attractiveness relation as
depicted above. We report the values of the logarithm of
T −1

ADA: as in previous plots, we choose to show the reciprocal
of the epidemic threshold. In this case, we also choose to
take the logarithm, as the value of T −1

ADA changes considerably
in the range studied. For γc = 0, which is equivalent to the
AD as G(b) is constant, the threshold shows a maximum
for γa = 2 as expected; as γc increases, the maximum
increases very quickly as the most active nodes become more
and more popular, greatly facilitating the spreading of the
disease.

We validated the case of identical correlation with computer
simulations by studying an SIS process. In Fig. 6 we plotted
the lifetime for different values of β/μ. For increasing values
of N , the lifetime exhibits a peak that converges toward
the predicted threshold (solid line)—which is significantly
lower than the one obtained in the AD (dashed line), and
also lower than the threshold for uncorrelated distributions
(dotted line)—thus confirming our analytical predictions. We
let λ vary while keeping fixed μ = 0.01, γa = 2.8,m = 2,
taking the median over a number of realizations ranging
between 500 and 3000, depending on the size of the
network.

As a second instance of the deterministically correlated
case, we consider q(a) ∝ a−1. This form of the function ac-

FIG. 5. For the case of deterministic activity-attractiveness corre-
lation of the form b ∝ aγc , with activity distribution F (a) ∝ a−γa , the
plot shows the logarithm of T −1

ADA as a function of the two exponents
γa and γc. Higher values in the plot correspond to a lower epidemic
threshold, thus to an easier spreading. In particular, when γc = 0,
which corresponds to the AD case as the attractiveness is constant,
the spreading is maximal for γa = 2 as expected. When γc increases,
the threshold value decreases very rapidly, as the most active nodes
also become the most popular ones.

counts for a case of negative activity-attractiveness correlation,
where the most active nodes are the least attractive and vice
versa. The same formulas hold as for the case of positive γc

above, leading to the expressions

〈anbm〉 = 〈an−m〉 (17)

FIG. 6. Lifetime of an SIS process on an ADA network with iden-
tical activity-attractiveness correlation (b ∝ a), plotted for different
values of β/μ and different network sizes; we used a power-law
distributed activity with γa = 2.8 and let λ vary while keeping fixed
μ = 0.01 and 〈k〉 = 2m〈a〉. The theoretical epidemic threshold (solid
line) is lower than the threshold for the AD (dashed line). The case
of identical but uncorrelated distributions (γa = γb = 2.8, dotted
line) is also significantly different from the correlated case. We
used m = 2, ε = 10−3, and run the following: for N = 104, 3000
simulations (red); for N = 105, 800 simulations (blue); for N =
106, 500 simulations (green). Solid lines with markers and shaded
areas represent the mean and 95% confidence interval separately.
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FIG. 7. Lifetime of an SIS process on an ADA network with
negative deterministic activity-attractiveness correlation of the type
b ∝ a−1, plotted for different values of β/μ and different network
sizes; we used a power-law distributed activity with exponent γa =
2.8 and let λ vary while keeping fixed μ = 0.01 and 〈k〉 = 2m〈a〉.
We set m = 2, ε = 10−3, and run the following: for N = 104, 3000
simulations (red); for N = 105, 2000 simulations (blue); for N =
106, 2500 simulations (green). Solid lines with markers and shaded
areas represent the mean and 95% confidence interval separately. The
results match the theoretical prediction for the epidemic threshold
(solid line). The comparison with the case of identical correlation
shows how the two scenarios produce contrasting effects, with a
negative correlation hindering the spreading phenomenon.

for a generic moment, and

TADA = 2〈a〉〈a−1〉
1 +

√
〈a2〉〈a−2〉

(18)

for the threshold. In this scenario, opposite to the case of pos-
itive correlation considered above, we expect the correlations
to work against the epidemic, as the most active potential
spreaders are also the least attractive and hence the least likely
to be infected in the first place.

Our expectation is corroborated by the experiments de-
scribed in Fig. 7, where we study the lifetime of a SIS process
on an ADA network characterized by an activity-attractiveness
correlation of the form b ∝ a−1 for all nodes, the activity being
distributed as a power law with exponent γa = 2.8. We used
m = 2, ε = 10−3 and a number of realizations ranging from
2000 to 3000 for different sizes. The outcome of the simula-
tions matches well the theoretical threshold (solid line), and the
comparison with the case of identical correlation (i.e., the same
activity distribution with γa = 2.8, and attractiveness b ∝ a;
dotted line) shows a stark difference between the two cases,
highlighting the contrasting effects of the two phenomena.
The threshold for an analogous AD network (with activity

distribution of power γa = 2.8 and constant attractiveness;
dashed line) is close to the negatively correlated case.

IV. CONCLUSIONS

We studied a recent generalization (labeled ADA for
simplicity) of the activity-driven model where a second node’s
property, called attractiveness, is added. This variable accounts
for the fact that not all nodes are as likely to be the target of
interactions initiated by others. The original activity-driven
model (labeled AD for simplicity) would only account for
heterogeneity in nodes’ behavior by distinguishing between
more and less active ones, while implicitly assuming constant
attractiveness. Observations in different types of real networks
show this is not always the case.

We studied the unfolding of epidemic processes on ADA
networks. In particular, we derived analytically an expression
for the epidemic threshold of SIS models. The analytical and
numerical comparison between spreading dynamics unfolding
on ADA and AD networks shows how the introduction of a
new grade of heterogeneity due to a nonconstant attractiveness
can significantly alter the spreading of a disease. To precisely
quantify the interplay between the activity and attractiveness,
we considered three cases. In the first case, we used two
power-law uncorrelated distributions. The results in this setting
show that the introduction of heterogeneity in the attractiveness
of nodes facilitates the spreading. In the second, instead, we
considered a scenario capturing observations in real networks
[67] in which the two quantities follow heterogeneous and
correlated distributions. In this case, we found that correlations
between the two variables facilitate the spreading process even
further. Finally, we completed our analysis by considering a
case of negative correlations; opposite to the previous case,
we found that these types of correlations hinder the spreading
phenomenon.

Many of the limits of the AD model are still present in
the ADA, i.e., the absence of high-order correlations, or the
absence of burstiness. These properties will be the subject
of future extensions of the model. An investigation of the
topology of the time-integrated network could also provide
some interesting insight, particularly by determining whether
the introduction of the attractiveness, and of an appropriate
activity-attractiveness correlation, can lead to the emergence
of the desired properties that characterize most real social
systems (assortativity and clustering).

Overall, our results contribute to the recent discussion
around the effects of temporal connectivity patterns on
dynamical processes unfolding on their fabrics.
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