A RTl C L E W) Check for updates

DUBStepR is a scalable correlation-based feature
selection method for accurately clustering
single-cell data
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Feature selection (marker gene selection) is widely believed to improve clustering accuracy,
and is thus a key component of single cell clustering pipelines. Existing feature selection
methods perform inconsistently across datasets, occasionally even resulting in poorer
clustering accuracy than without feature selection. Moreover, existing methods ignore
information contained in gene-gene correlations. Here, we introduce DUBStepR (Determining
the Underlying Basis using Stepwise Regression), a feature selection algorithm that leverages
gene-gene correlations with a novel measure of inhomogeneity in feature space, termed
the Density Index (DI). Despite selecting a relatively small number of genes, DUBStepR
substantially outperformed existing single-cell feature selection methods across diverse
clustering benchmarks. Additionally, DUBStepR was the only method to robustly deconvolve
T and NK heterogeneity by identifying disease-associated common and rare cell types and
subtypes in PBMCs from rheumatoid arthritis patients. DUBStepR is scalable to over a million
cells, and can be straightforwardly applied to other data types such as single-cell ATAC-seq.
We propose DUBStepR as a general-purpose feature selection solution for accurately
clustering single-cell data.
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eterogeneity in single-cell RNA sequencing (scRNA-seq)

datasets is frequently characterized by identifying cell clusters

in gene expression space, wherein each cluster represents a
distinct cell type or cell state. In particular, numerous studies have
used unsupervised clustering to discover novel cell populations in
heterogeneous samples!. The steps involved in unsupervised clus-
tering of scRNA-seq data have been well documented?. (i) Low-
quality cells are first discarded in a quality control step. (ii) Reads
obtained from the remaining cells are then normalized to remove the
influence of technical effects, while preserving true biological
variation?. (iii) After normalization, feature selection is performed to
select the subset of genes that are informative for clustering, (iv)
which are then typically reduced to a small number of dimensions
using principal component analysis (PCA)>. (v) In the reduced
principal component (PC) space, cells are clustered based on their
distance from one another (typically, Euclidean distance), and (vi) the
corresponding clusters are assigned a cell type or state label based on
the known functions of their differentially expressed (DE) genes®.

Although feature selection is a critical step in the canonical
clustering workflow described above, only a few different
approaches have been developed in this space. Moreover, there
have been only a handful of systematic benchmarking studies of
scRNA-seq feature selection methods’=?. A good feature selec-
tion algorithm is one that selects cell-type-specific (DE) genes as
features, and rejects the remaining genes. More importantly, the
algorithm should select features that optimize the separation
between biologically distinct cell clusters. A comprehensive
benchmarking study of feature selection methods would ideally
use both of these metrics.

The most widely used approach for feature selection is mean-
variance modeling: genes whose variation across cells exceeds a
data-derived null model are selected as features!®!l. Such genes
are described as highly variable genes (HVGs)!2. Some earlier
single-cell studies instead selected genes with high loading on
the top principal components of the gene expression matrix (high
loading genes, or HLGs) as features'3. M3Drop, a more recent
method, selects genes whose dropout rate (number of cells in which
the gene is undetected) exceeds that of other genes with the same
mean expression’. As an alternative approach to detect rare cell
types, GiniClust uses a modified Gini index to identify genes whose
expression is concentrated in a relatively small number of cells'4.
All of the above feature selection methods test genes individually,
without considering expression relationships between genes.
Another drawback is that existing methods for determining the size
of the feature set do not bear direct relation to the separation of cells
in the resulting space.

Here, we present Determining the Underlying Basis using
Stepwise Regression (DUBStepR), an algorithm for feature
selection based on gene-gene correlations. A key feature of
DUBStepR is the use of a stepwise approach to identify an
initial core set of genes that most strongly represent coherent
expression variation in the dataset. Uniquely, DUBStepR
defines a novel graph-based measure of cell aggregation in the
feature space (termed density index (DI)), and uses this mea-
sure to optimize the number of features. The complete DUB-
StepR workflow is shown in Fig. 1.

We benchmarked DUBStepR against 7 commonly used feature
selection algorithms on datasets from four different scRNA-seq
protocols (10x Genomics, Drop-Seq, CEL-Seq2, and Smart-Seq2)
and found that it substantially outperformed other methods on
quantitative measures of cluster separation and marker gene
detection. Further, DUBStepR uniquely deconvolved T and
NK cell heterogeneity by identifying disease-pertinent clusters
(of both rare and common abundances) in PBMCs from rheu-
matoid arthritis patients. Finally, we show that DUBStepR could
potentially be applied even to single-cell ATAC sequencing data.

Results

Gene-gene correlations predict cell-type-specific DE genes. The
first step in DUBStepR is to select an initial set of candidate
features based on known properties of cell-type-specific DE genes
(marker genes). DE genes specific to the same cell types would
tend to be highly correlated with each other, whereas those spe-
cific to distinct cell types are likely to be anti-correlated (Fig. 2a, b;
see the “Methods” section). In contrast, non-DE genes are likely
to be only weakly correlated (Fig. 2c). We therefore hypothesized
that a correlation range score derived from the difference between
the strongest positive and strongest negative correlation coeffi-
cients of a gene (“Methods”), would be substantially elevated
among DE genes. Indeed, we found that the correlation range
score was significantly higher for DE genes relative to non-DE
genes (Fig. 2d). Moreover, the correlation range score of a gene
was highly predictive of its greatest fold change between cell
types, and also its most significant differential expression g-value
(Fig. 2e, f). Due to the strong association between correlation
range and marker gene status, DUBStepR selects genes with high
correlation range score as the initial set of candidate feature genes
(“Methods™).

Stepwise regression identifies a minimally redundant feature
subset. We observed that candidate feature genes formed correlated
blocks of varying size in the gene-gene correlation (GGC) matrix
(Fig. 3a), with each block presumably representing a distinct pattern
of expression variation across the cells. To ensure a more even
representation of the diverse cell-type-specific expression signatures
within the candidate feature set, we sought to identify a repre-
sentative minimally redundant subset, which we termed “seed”
genes. For this purpose, DUBStepR performs stepwise regression on
the GGC matrix, regressing out, at each step, the gene explaining
the largest amount of variance in the residual from the previous step
(Fig. 3b-d). We devised an efficient implementation of this pro-
cedure that requires only a single matrix multiplication at each step
(“Methods”).

This approach selects seed genes with diverse patterns of cell-
type-specificity (Fig. 3e-h). DUBStepR then uses the elbow point
of the stepwise regression scree plot to determine the optimal
number of steps (“Methods”), i.e., the size of the seed gene set

(Fig. 3i, j).

Guilt-by-association expands the feature set. Although the seed
genes in principle span the major expression signatures in the
dataset, each individual signature (set of correlated genes) is now
represented by only a handful of genes (2-5 genes, in most cases).
Given the high level of noise in scRNA-seq data, it is likely that
this is insufficient to fully capture coherent variation across cells.
DUBStepR therefore expands the seed gene set by iteratively
adding correlated genes from the candidate feature set using a
guilt-by-association approach. Guilt-by-association has pre-
viously been employed for feature selection on mass spectrometry
datal®, and provides a robust solution to order candidate feature
genes by their association to the seed gene set (Supp. Fig. S2;
“Methods”). This approach allows DUBStepR to prioritize genes
that more strongly represent an expression signature (ie., are
better features for clustering). Candidate genes are added until
DUBStepR reaches the optimal number of feature genes (see
below).

Benchmarking. To benchmark the performance of DUBStepR,
we compared it against 6 other algorithms for feature selection in
scRNA-seq data: three variants of the HVG approach (HVGDisp,
HVGVST, trendVar), deviance-based feature selection (devian-
ceFS), HLG, and M3Drop/DANB (Table 1). For completeness, we
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Fig. 1 Overview of DUBStepR workflow. After filtering out mitochondrial, ribosomal, spike-in, and pseudogenes, DUBStepR constructs a GGC matrix and bins
genes by expression to compute their correlation range z-scores, which are used to select well-correlated genes. DUBStepR then performs stepwise regression
on the GGC matrix to identify a minimally redundant subset of seed features, which are then expanded by adding correlated features (guilt-by-association). The

optimal feature set size is determined using the Density Index metric.

also benchmarked GiniClust, though it was designed only for
identifying markers of rare cell types. Each algorithm was
benchmarked on 7 datasets spanning 4 scRNA-seq protocols: 10x
Genomics, Drop-Seq, CEL-Seq2, and Smart-Seq on the Fluidigm
C1 (Supp. Note 2A). These datasets were selected because the true
cell type could be independently ascertained based on cell line
identity or FACS gate. Our benchmarking approach thus avoids
the circularity of using algorithmically defined cell type labels as
ground truth.

To evaluate the quality of the selected features, we used the
well-established Silhouette index (SI), which quantifies cluster
separation, i.e., closeness between cells belonging to the same
cluster, relative to the distance to cells from other clusters!®
(Supp. Note 3A). In addition to being a well-established measure
of single-cell cluster separation!’~1%, the SI has the advantage of
being independent of any downstream clustering algorithm. We
evaluated the SI of each algorithm across a range of feature set
sizes (50-4000), scaled the SI values to a maximum of 1 for each
dataset, and then averaged the scaled SIs across the 7 datasets
(Fig. 4a; Supp. Fig. S3). Remarkably, HLG, an elementary PCA-
based method that predates scRNA-seq technology, achieved
greater average cell type separation than existing single-cell
algorithms at most feature set sizes. In contrast to DUBStepR,
which showed maximal performance at 200-300 features, the
other methods remained close to their respective performance

peaks over a broad range from 300 to 2000 features and dropped
off on either side of this range. DUBStepR substantially
outperformed all other methods across the entire range of feature
set size (Fig. 4a). Moreover, DUBStepR was the top-ranked
algorithm on 5 of the 7 datasets (Fig. 4b).

For optimal cell type clustering, a feature selection algorithm
should ideally select only DE genes, i.e., genes specific to cell types
or subtypes, as features. As an independent benchmark, we
therefore quantified the ability of feature selection algorithms to
discriminate between DE and non-DE genes. To minimize the
effect of ambiguously classified genes, we designated the top 500
most differentially expressed genes in each dataset as DE, and the
bottom 500 as non-DE (“Methods”), and then quantified
performance using the area under the receiver operating
characteristic (AUROGC; Supp. Note 3B). Remarkably, DUBStepR
achieved an AUROC in excess of 0.97 on all 7 datasets, indicating
near-perfect separation of DE and non-DE genes (Fig. 4c).
devianceFS was able to exceed the same performance threshold
on 4 of the 7 datasets and HLG on only one. All other methods
demonstrated significantly lower performance (Fig. 4c). Thus,
DUBStepR greatly improves our ability to select cell type/
subtype-specific marker genes (DE genes) for clustering scRNA-
seq data.

With the exponential increase in the size of single-cell
datasets, any new computational approach in the field must be
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Fig. 2 Expression correlations of DE genes: scRNA-seq data from five lung adenocarcinoma cell lines28. a Average expression of top 10 DE genes for
each cell line. b Gene-gene correlations of the same genes. ¢ Gene-gene correlations for non-DE genes. d Boxplot showing correlation range scores for
non-DE and DE genes. DE gene computation is detailed in Supp. Note 1A. The middle line is the median, the lower and upper box limits correspond to the
first and third quartiles, the upper and lower whiskers extend upto 1.5*IQR from the top and bottom of the box, respectively (where IQR is the inter-quartile
range), and data beyond the ends of the whiskers are outlying points that are plotted individually. P-value was calculated using two-sided Wilcoxon test
(n=8602 expressed genes). e, f Scatter plot of genes showing correlation between e log2(fold change) of cell-type-specific expression and f —log10(g-
value) of cell-type-specific expression with correlation range score. p: Spearman correlation.

able to scale to over a million cells. To improve DUBStepR’s
ability to efficiently process large datasets, we identified a
technique to reduce a key step in stepwise regression to a single
matrix multiplication, sped up calculation of the elbow point,
and implemented the entire workflow on sparse matrices
(“Methods”). To benchmark scalability, we profiled execution
time and memory consumption of DUBStepR, as well as the
other aforementioned feature selection methods, on a recent
mouse organogenesis dataset of over 1 million cells?°. This
dataset was downsampled to produce two additional datasets of
10k and 100k cells, respectively, while maintaining cell-type
diversity (Supp. Note 2B). DUBStepR, HVGDisp, HVGVST,
trendVar, devianceFS, and M3DropDANB were able to process
the entire 1 million cell dataset, while GiniClust and HLG could
not scale to 100k cells (Supp. Fig. S4). On the largest dataset,
DUBStepR ranked fourth out of the eight tested methods in
memory consumption and compute time. In terms of memory
scalability, DUBStepR used 6.4x more memory to process the
1M cell dataset as compared to the 100k dataset. In contrast,
HVGDisp, HVGVST, trendVar, devianceFS, and M3Drop-
DANB all increased their memory consumption by 12.5x.

Thus, DUBStepR is scalable to over a million cells and shows
promise for even larger datasets.

Density index predicts the optimal feature set. As shown above,
selecting too few or too many feature genes can result in sub-
optimal clustering (Fig. 4a). Ideally, we would want to select the
feature set size that maximized cell type separation (i.e., the SI) in
the feature space. However, since the feature selection algorithm
by definition does not know the true cell type labels, it is not
possible to calculate the SI for any given feature set size. We
therefore endeavored to define a proxy metric that would
approximately model the SI without requiring knowledge of cell-
type labels. To this end, we defined a measure of the inhomo-
geneity or “clumpiness” of the distribution of cells in feature
space. If each cell clump represented a distinct cell type, then this
measure would tend to correlate with the SI. The measure, which
we termed the density index (DI), equals the root-mean squared
distance between all cell pairs, divided by the mean distance
between a cell and its k nearest neighbors (“Methods”).
Intuitively, when cells are well clustered and therefore inhomo-
geneously distributed in feature space, the distance to nearest

4 NATURE COMMUNICATIONS | (2021)12:5849 | https://doi.org/10.1038/s41467-021-26085-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/541467-021-26085-2 ARTICLE

Ln(Variance Explained)

f) AP251

Expression Elbow  Number of Steps
3.0 Point

2.5
2.0

L Y i

UMAP_1"

UMAP_2

EER
owu

A549  H1975 H2228  H838 HCC827
[ B

LGALS3
g) ALDH1A1 cD74

EEF1A1
MUC5AC

Expression PCNA
: ALDH1A1

3.0
| 25
f:g ATP5MCH1
1.0 WFDC21P
SET
H2AFZ
UMAP_1" TNFRSF12A
AP2S1
h) WFDC21P GAGE12E
SFTA2
RAN
ENO1
g UQCR10
| 20 CENPF
ZNF880
HSPY0AA1
MAL2

UMAP_2

Expression
b

0
. -1

Expression
3.

UMAP_2

1
i
{
RGN
ow

UMAP_1"

Fig. 3 Stepwise regression to identify a minimally redundant feature subset. a Gene-gene correlation matrix of candidate feature genes (high
correlation range score). b-d Residuals from stepwise regression on the gene-gene correlation matrix. @ UMAP visualization of cells in an optimal
feature space, colored by cell line. f-h Same UMAP, colored by expression of genes regressed out in the first three steps. i Scree plot: variance in GGC
matrix explained by the gene regressed out at each step. j Standardized average expression of the final seed gene set in each of the 5 cell lines.

r: Pearson correlation.

Table 1 Feature selection methods used for the benchmarking comparison.

Algorithm Description Software
devianceFS Feature selection by approximate multinomial deviance scry3940
GiniClust Gini index-based feature selection GiniClust™
HLG Features ranked by the sum of magnitude of PC loadings irlba4
HVGDisp Highly variable genes by dispersion value Seurat'®
HVGVST Highly variable genes after variance-stabilized transformation Seurat#?
M3Drop/DANB Dropout-based feature selection: M3Drop for read counts, DANB for UMIs M3Drop?
trendVar Biological and technical components of the gene-specific variance scran”
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neighbors should be minimal relative to the distance between
random pairs of cells, and thus DI should be maximal (Fig. 5a, b).
Empirically, we found that DI and SI were indeed positively
correlated and tended to reach their maxima at approximately the
same feature set size (Fig. 5c). Further, for 5 out of the 7
benchmarking datasets, the feature set with the highest DI also
maximized SI (Fig. 5d). Since our earlier analysis only tested a
discrete number of feature set sizes (Fig. 4a; Supp. Note 3A, B),
the DI-guided approach even improved on the maximum SI in 2
cases (Fig. 5d). One additional advantage of the DI is that it is
relatively straightforward to compute, since the numerator is
proportional to the square of the Frobenius norm of the gene
expression matrix (“Methods”). By default, DUBStepR therefore
selects the feature set size that maximizes DI

DUBStepR robustly detects rare cell types and cryptic cell
states in rheumatoid arthritis samples. The above quantitative
benchmarking analyses were largely based on detection of com-
mon cell types (>10% of all cells) in cell lines or FACS-purified
cell populations from healthy donors. To demonstrate the ability
of DUBStepR to cluster cells from a complex primary sample, we
generated scRNA-seq data from 8312 PBMCs from four rheu-
matoid arthritis (RA) patients (“Methods”). In this case, since the
“true” cell type labels were unknown, our objective was to qua-
litatively compare results from the various feature selection

methods. We used SingleR?! to select the T and NK cell subset
(5329 cells; “Methods”) since this cell population is challenging to
sub-cluster by conventional methods, despite its relevance to
inflammatory phenotypes. DUBStepR (with DI optimization)
identified 10 discrete subtypes in this dataset, with sharply
distinct gene expression signatures (Fig. 6a; Supp. Fig. S5). These
included four rare cell clusters that were undetected or only
partially detected by the other feature selection methods: red
blood cells (RBCs, 1.8%), proliferating cells (2%), platelet-T
doublets (3.4%), and platelet-NK doublets (3%) (Fig. 6b; Supp.
Figs. S5, S6). While RBCs reflect contamination during PBMC
isolation, platelet-lymphocyte complexes and proliferating T cells
regulated by KIAA0IOI are thought to play a role in the patho-
physiology of RA22-24 (Supp. Fig. S5).

In addition to detecting multiple rare cell types, DUBStepR
identified a dichotomy in CD4+ T, CD8+ T, and NK cells,
defined by coordinated differential expression of SET, Clorf56,
Cl6orf54, CDC42SE1, and HNRNPHI1 (Supp. Fig. S5), all of which
have been previously identified as markers of a latently infected T
cell subtype in HIVZ>. Once again, DUBStepR was the only
feature selection method to clearly distinguish these cell states
(Supp. Figs. S5, S6). In summary, DUBStepR was the only feature
selection algorithm that robustly detected common and rare
cell types and subtypes in this complex primary lymphocyte
population.
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DUBStepR generalizes to scATAC-seq data. Feature selection is
typically not performed on scATAC-seq data, since their almost
binary nature (most genomic bins have zero or one count) ren-
ders them refractory to conventional single-cell feature selection

techniques based on variance-mean comparison2°. However,
since the logic of feature correlations applies even to binary or
almost binary data, we hypothesized that DUBStepR could also
improve the quality of cell type inferences from this data type. To
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test this hypothesis, we applied DUBStepR to scATAC-seq data
from eight FACS-purified subpopulations of human bone mar-
row cells2’ (Supp. Note 2D). In contrast to the common approach
of using all scATAC-seq peaks, we found that peaks selected by
DUBStepR more clearly revealed the emergence of the three
major lineages from hematopoietic stem cells: lymphoid, myeloid,
and megakarocyte/erythroid (Fig. 7). Specifically, trajectory ana-
lysis using Monocle 320 yielded a topology that matched the
known hematopoietic differentiation hierarchy?” (Fig. 7g) only in
the case of DUBStepR (Fig. 7d-f).

Discussion

DUBStepR is based on the intuition that cell-type-specific
marker genes tend to be well correlated with each other, ie.,
they typically have strong positive and negative correlations
with other marker genes. After filtering genes based on a
correlation range score, DUBStepR exploits structure in the
gene—gene correlation matrix to prioritize genes as features for
clustering. To benchmark this feature selection strategy, we used
a stringently defined collection of single-cell datasets for which
cell type annotations could be independently ascertained?8. Note
that this avoids the circularity of defining the ground truth
based on the output of one of the algorithms being tested.
Results from our benchmarking analyses indicate that, regard-
less of feature set size, DUBStepR separates cell types more
clearly other methods (Fig. 4a, b). This observation is further
corroborated by the fact that DUBStepR predicts cell-type-
specific marker genes substantially more accurately than other
methods (Fig. 4c). Thus, our results demonstrate that gene-gene
correlations, which are ignored by conventional feature selection
algorithms, provide a powerful basis for feature selection.

The plummeting cost of sequencing, coupled with rapid
progress in single-cell technologies, has made scalability an
essential feature of novel single-cell algorithms. DUBStepR scales
effectively to datasets of over a million cells without sharp
increases in time or memory consumption (Supp. Fig. S4). Thus,
the method is likely to scale well beyond a million cells. A major
contributor to the algorithm’s scalability is the fact that, once the
gene-gene correlation matrix is constructed, the time and
memory complexity of downstream steps is constant with respect
to the number of cells.

Intriguingly, DUBStepR approaches its maximum silhouette
index value at 200-500 feature genes (Supp. Fig. S3), which is well
below the default feature set size of 2000 used in most single-cell
studies!®12, Thus, our results suggest that, if feature selection is
optimized, it may not be necessary to select a larger number of
feature genes. Note, however, that the optimum feature set size
can vary across datasets (Supp. Fig. S3). Selecting a fixed number
of feature genes for all datasets could therefore result in sub-
optimal clustering (Fig. 5d).

From the perspective of cell clustering, the optimal feature set
size is that which maximizes cell type separation in feature
space, which can be quantified using the SI. As an indirect
correlate of cell type separation, we have defined a measure of
the inhomogeneity or “clumpiness” of cells in feature space,
which we term the density index (DI). To our knowledge, DI is
the only metric for scoring feature gene sets based on the dis-
tribution of cells in feature space. Our results suggest that the DI
correlates with the SI, and that cluster separation is improved in
most cases when the feature set is chosen to maximize DI.
Another important advantage of the DI is that it is computa-
tionally straightforward to calculate from the Frobenius norm of
the data matrix. It is possible that the DI measure could also be
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applied to other stages of the clustering pipeline, including
dimensionality reduction (selecting the optimal number of PCs)
and evaluation of normalization strategies.

Interestingly, although DUBStepR was not specifically designed
to detect rare cell types, it nevertheless substantially outperformed
all other methods at detecting multiple cell populations present at
low frequency (<4%) in a complex primary PBMC sample
(Fig. 6). Notably, the rare populations identified by DUBStepR-
included RBCs and platelet-containing doublets, which should
not have been present in the T/NK population. It is likely that
these cells were mis-classified as T/NK by SingleR due to the
absence of platelet and RBC transcriptomes in the reference
panel. In addition, DUBStepR greatly outperformed all other
feature selection methods at detecting T and NK cell sub-
populations over a range of higher frequencies (4.9—9.5%) in the
same dataset. Given that this dataset posed the greatest challenge
in terms of clustering difficulty, it is remarkable that DUBStepR
provided a major, qualitative improvement over all other feature
selection methods.

Algorithmic pipelines for single-cell epigenomic data, for
example scATAC-seq, typically do not incorporate a formal fea-
ture selection step2029. In most cases, such pipelines merely
discard genomic bins at the extremes of high and low sequence
coverage. This is because the sparsity and near-binary nature of
single-cell epigenomic data reduces the efficacy of conventional
feature selection based on mean-variance analysis. Since DUB-
StepR uses an orthogonal strategy based on correlations between
features, it is less vulnerable to the limitations of single-cell epi-
genomics data (Fig. 7). Thus, DUBStepR opens up the possibility
of incorporating a feature selection step in single-cell epigenomic
pipelines, including scATAC-seq, scChIP-seq, and single-cell
methylome sequencing.

Methods

DUBStepR methodology

Gene filtering. By default, DUBStepR filters out genes that are not expressed in at
least 5% of cells. We allow the user to adjust this parameter if they are interested in
genes that are more sparsely expressed in their dataset. In addition, mitochondrial
genes, ribosomal genes, and pseudogenes are identified using gene symbols or
Ensembl IDs for human, mouse, and rat datasets using the latest Ensembl refer-
ences downloaded from BioMart®0.

Correlation range. Correlation range c; for gene i can be defined for a gene-gene
correlation matrix G as

¢; = maxs(G;) — 0.75 - min(G;), (1)

where max(G;) refers to the hth-largest correlation value in column i of G. Cor-
relation range uses the second-largest non-self correlation value (3rd largest value
in GGC column) to calculate the range, so as to protect against genes with over-
lapping 5 or 3 exons!.

The minimum correlation value has been down-weighted to 0.75 to give greater
importance to stronger positive correlations over negative correlations.

We first binned genes based on their mean expression level, as mean expression
tends to correlate with technical noise32. In each bin, we compute a z-score of the
correlation range of gene i as

g ="t @)

P

where 4. is the mean correlation range of the gene and o, refers to variance in the

correlation range scores of a gene. Genes with a z-score < 0.7 are filtered out at
this step.

Stepwise regression. We define the stepwise regression equation as
G= ng + €, 3)

where G is the column-wise zero-centered gene—gene correlation matrix, g is the
column of the matrix G to be regressed out, € is the matrix of residuals and w is a
vector of regression coefficients. The squared error (e’e) is minimized when
T
T_ 8 G
~ 8% &)
8'g

Thus,
T
G
c=8",. )
g8
We calculate variance explained by the regression step as V = || G — ¢l|%, where

F indicates the Frobenius norm. To efficiently compute V for all genes, we define
X=GTG and x as the row of X corresponding to gene g. Thus, x = g/G. We can
simplify V as

V=|G—el}
_les"s|?
h H(ng)
mE:3E
@'y’

_ Tr((g0)" (gx) ©
(g'g)’
_ Tr(x"x)

g'g
XXT

F

s's
Thus, we can use a single matrix multiplication GTG to efficiently calculate
variance explained by each gene in the gene-gene correlation matrix, and then
regress out the gene explaining the greatest variance. The residual from each step
k is then used as the gene-gene correlation matrix for the next step. In other
words,

Gy = gwi + ¢ @)
Grp1 = €

For computational efficiency, we repeat this regression step 30 times and then
assume that the next 70 steps explain the amount of variance as the 30th step,
giving a total of 100 steps. We observed that this shorter procedure had little or no
impact on the results, since the variance explained changed only marginally beyond
the 30th step.

To select the genes contributing to the major directions in G, we use the elbow
point on a scree plot. Elbow point computation is described in Supp. Note 1B. The
genes that are regressed out upto the elbow point form the “seed” gene set.

Guilt-by-association. Guilt-by-association, also known as label propagation
through a network, allows DUBStepR to determine a robust ordering of features
in an iterative manner. Once the seed genes have been determined, the gene with
the strongest Pearson correlation to any of the seed genes is first identified. This
gene is then added to the seed genes, thereby expanding the feature set. This
feature set (now consisting of the seed genes and the newly added feature gene)
is then used to identify the next most strongly correlated gene, which is again
added to the feature set. By iteratively repeating the latter step, DUBStepR
propagates through the gene-gene correlation network until the feature set has
reached its final size.

We have developed a custom implementation of this guilt-by-association
approach as part of the DUBStepR package in R, the source code for which is
available on our GitHub repository (see “Code availability” section).

Density index. For a given feature set, PCA® is performed on the gene expression
matrix and the top D principal components (PCs) are selected, where D is a user-
specified parameter with a default value of 20. Let M be the matrix of embed-
dings of the gene expression vectors of N cells in D principal components.
The root-mean-squared distance d,,,; between pairs of cells i and j can be
calculated as

drms = \/ <d12j> = <2117):1(Mi,p - Mj_p)2>-, (8)

where <> denotes the average over all pairs {(i,j)|i € [1, N], j € [1, N]}. Note
that, for simplicity of the final result, we include pairs in which i =j. This can be
further simplified as follows:

e = \[<EDL (M2, + M2, — 2M,, M, )>

) 2 2
= \/Zp=1(<M1,p> + <M, > — 2<M; ,M;,>)

= /2L (<M}, > + <M, >) ©9)

iy

= /220 <M7,>
2

=\/= || Mllg.
\/;II Il

In the above derivation, the mean product term <M;,M;,> is zero because M;,
and M;,, have zero mean across i and j, respectively. Let k; denote the average
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Fig. 8 Heatmap showing SingleR scores for cells in the RA PBMC dataset computed against the Monaco immune reference36. Higher score indicates
greater likelihood of the cell being of that corresponding cell type. Cells pruned by SingleR are indicated in orange.

Table 2 Number of cells of each cell type annotated by SingleR that were obtained from each patient in the RA PBMC dataset.
Cell type Patient RA_1 Patient RA_2 Patient RA_3 Patient RA_4
Basophils 1 0 0 0

B cells 288 550 12 404
CD4+ T cells 492 142 501 523
CD8+ T cells 189 48 242 78
Dendritic cells 20 14 43 40
Monocytes 351 143 535 492

NK cells 710 194 680 500
Progenitors 2 5 6 7
Total 2053 2096 2119 2044

distance of cell i from its k nearest neighbors, and k,,, denote the mean of k; across
all cells. We define the DI as

Ao [21 Ml
Dl=—"—"—=/———.
k, \/; k,

Rheumatoid arthritis dataset

Patient sample collection. Fresh blood samples of patients diagnosed with rheumatoid
arthritis were collected at Tan Tock Seng Hospital, Department of Rheumatology,
Allergy & Immunology, Singapore, and were transferred to Genome Institute of
Singapore for further processing. All technical procedures and protocols for the
recruitment, blood collection, and PBMCs isolation were reviewed and approved by
the Institutional Review Board (IRB) at the National Healthcare Group Domain
Specific Review Board (NHG DSRB), Singapore (Reg. no. 2016/00899).

(10)

Single-cell RNA sequencing. For each sample, fresh PBMCs were isolated from 5 ml
Sodium Heparin tubes using standard Ficoll-Hypaque density gradient
centrifugation33. Briefly, blood samples were diluted by an equal volume of
Phosphate-buffered saline (PBS) containing 2% fetal bovine serum (FBS)
(STEMCELL, catalog #07905) and were gently added on top of Lymphopreb™
density gradient medium (STEMCELL, catalog #07801) in the SepMate™
(STEMCELL, catalog #15420) tubes. The tubes were centrifuged at 1200 x g for
15 min and the upper layer containing the enriched PBMCs and plasma was col-
lected into a new falcon tube to wash with PBS + 2% FBS and centrifuge at 300 x g
for 8 min. After counting the cells, isolated PBMCs were divided into two or three
vials and frozen down in FBS containing 10% dimethylsulfoxide (DMSO) for
downstream experiments. Immediately after isolation, fresh PBMCs were washed,
filtered (using cell strainer), and re-suspended in PBS containing 0.04 bovine serum
albumin. Single-cell suspensions from four samples were mixed at the final con-
centration of 10° cells/ml and the mixed suspension was loaded into a 10x Chro-
mium Instrument to target total number of 3000 cells from each patient (n = 4).

GEM-RT reactions, cDNA synthesis, and library preparations were performed
using Single Cell 3’ v2 10x Reagent™ Kit according to manufacturer protocols.
The single-cell libraries were run onto the Illumina HiSeq® 4000 platform as
prescribed by 10x Genomics. The raw base call (BCL) files from the sequencer were
processed through 10x Genomics Cell Ranger 2.1.1 analysis pipelines. First, the
mkfastq pipeline was run to generate FASTQ files, followed by read alignment to
the hgl9 genome reference using the count pipeline. The raw counts matrix
generated by the count pipeline was loaded into R for further analysis.

Demultiplexing pooled samples. To facilitate demultiplexing, the patients were
genotyped using the Illumina Infinium® HTS Assay following the manufacturer’s
protocol. Reads from the sequencer were attributed to each of the four patients
using Demuxlet34 at default settings. For each library, the corresponding geno-
typing data (VCF file) and scRNA-seq data (BAM file) were imported into
Demuxlet in order to infer the sample source for each cell barcode.

Data preprocessing. The raw data files were used to generate a Seurat object,
including only features that were detected in a minimum of 3 cells and cells having
at least 200 uniquely detected features. Additional filtering was performed to
remove cells having >10% mitochondrial rate (calculated using the Percentage-
FeatureSet function in Seurat?3?). Further, only cells with unique feature counts
between 200 and 2500 were retained, resulting in 8350 cells. The data was then log-
normalized using the NormalizeData function in Seurat at default settings.

Isolating T & NK cells. The normalized data were then annotated using
SingleR?!, with the Monaco et al. immune dataset3® as the reference. The Sin-
gleR function was run at default settings, using the log-normalized counts as input.
Thirty-eight cells were pruned by SingleR, leaving a total of 8312 annotated cells.
Of these, cells annotated as CD4+ T cells, CD8+ T cells, or NK cells were isolated
(Fig. 8; Table 2).
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DUBStepR analysis. Due to the lower expression of genes in the T and NK cell
population, we modified DUBStepR’s gene filtering threshold to filter out genes
expressed in less than 1% of the cells. The Seurat package was used for down-
stream processing. First, the feature genes were zero-centered and scaled, and PCA
was performed. The top 12 PCs were selected using the elbow plot of variance
explained by the PCs. Clustering was performed using the Louvain graph-based
approach—using the FindNeighbors function with 12 PCs and FindClusters at
default parameter settings. UMAP coordinates were computed using the cell
embeddings in 12 PCs.

Other feature selection methods. All other feature selection methods (HVGDisp,
HVGVST, trendVar, devianceFS, M3DropDANB, GiniClust, and HLG) were run
at default settings. To showcase the result of HVGVST, we used the Seurat
package to cluster cells, as described above. Similar to the DUBStepR result, 12 PCs
were used for both clustering and UMAP visualization.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Raw data for the 3cl_10x, 3cl_dropseq, 3cl_celseq, 5cl_10x, and 5cl_celseq datasets are
available under GEO SuperSeries GSE118767. The CRC Cell Line dataset is deposited in
GEO under the accession code GSE81861. The FACS PBMC dataset is freely available on
the 10x Genomics website (https://support.10xgenomics.com/single-cell-gene-
expression/datasets). The Mouse Organogenesis Cell Atlas dataset used to benchmark
computational scalability is freely available in the Seattle Organismal Molecular Atlases
(SOMA) Data Portal (https://oncoscape.v3.sttrcancer.org/
atlas.gs.washington.edu.mouse.rna/downloads). Finally, the accession number for the
single-cell ATAC sequencing data reported in this paper is GEO: [GSE96772]. Processed
data used for generating the figures in this paper, including our in-house-generated RA
PBMC scRNA-seq data, are available on Zenodo at https://doi.org/10.5281/
zen0do.4072260. The raw FASTQ files for the in-house-generated rheumatoid arthritis
PBMC data are part of an ongoing large-scale single-cell project which requires
controlled access. Access requests should be directed to Shyam Prabhakar
(prabhakars@gis.a-star.edu.sg) and Leong Khai Pang (khai_pang_leong@ttsh.com.sg),
and will be responded to within 3 working days.

Code availability

DUBStepR is available as an R package on CRAN (https://CRAN.R-project.org/
package=DUBStepR), and is well documented for easy integration into the Seurat
pipeline. The source code is freely available on GitHub (https://github.com/
prabhakarlab/DUBStepR)?”. R scripts for generating all the figures in this paper are
available on Zenodo at https://doi.org/10.5281/zenodo.407226038.
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