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Simple Summary: In this study, in order to provide a better understanding and new knowledge about
biochemical phenomena and gene interactions in the zebrafish transcriptome, the notion of integrative
bioinformatics was used. To do so, we used co-expression and protein–protein interaction (PPI)
networks followed by Bayesian network (BN) construction. We provide an integrative bioinformatics
pipeline to explore crucial transcriptional insights from zebrafish starvation-induced transcriptome
data in a user-friendly way with minimal programming skill requirements. In this way, many genes,
e.g., skp1, atp5h, ndufb10, rpl5b, zgc:193613, zgc:123327, zgc:123178, wu:fc58f10, zgc:111986, wu:fc37b12,
taldo1, wu:fb62f08, zgc:64133 and acp5a, were identified as hub genes affecting gene expression in
the liver of starving zebrafish. These results can be applied in many different areas of zebrafish
genomic studies.

Abstract: The present study was aimed at identifying causative hub genes within modules formed
by co-expression and protein–protein interaction (PPI) networks, followed by Bayesian network
(BN) construction in the liver transcriptome of starved zebrafish. To this end, the GSE11107 and
GSE112272 datasets from the GEO databases were downloaded and meta-analyzed using the MetaDE
package, an add-on R package. Differentially expressed genes (DEGs) were identified based upon
expression intensity N(µ = 0.2, σ2 = 0.4). Reconstruction of BNs was performed by the bnlearn
R package on genes within modules using STRINGdb and CEMiTool. ndufs5 (shared among PPI,
BN and COEX), rps26, rpl10, sdhc (shared between PPI and BN), ndufa6, ndufa10, ndufb8 (shared
between PPI and COEX), skp1, atp5h, ndufb10, rpl5b, zgc:193613, zgc:123327, zgc:123178, wu:fc58f10,
zgc:111986, wu:fc37b12, taldo1, wu:fb62f08, zgc:64133 and acp5a (shared between COEX and BN) were
identified as causative hub genes affecting gene expression in the liver of starving zebrafish. Future
work will shed light on using integrative analyses of miRNA and DNA microarrays simultaneously,
and performing in silico and experimental validation of these hub-causative (CST) genes affecting
starvation in zebrafish.
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1. Introduction

Many fish species experience natural periods of starvation in their habitat due to envi-
ronmental evolution, seasonal food shortage, migration, transportation, food competition,
reproduction and climate change [1–6]. In aquaculture, short-term starvation is considered
as a strategy to control water quality, reduce handling stress, reduce disease-causing fish
mortality, decrease feed costs, increase profitability, increase product quality and decrease
flesh lipid content [4,7]. The body’s first tangible response to starvation in fish is weight
loss, especially in the first week of starvation; however, at the cellular level, starvation is
usually characterized by a decrease in cellular metabolism [4,8]. This is a common and
severe stress for animal survival [9], causing metabolic stress due to metabolic changes for
higher energy production [10]. Starvation dramatically changes the liver transcriptome,
upregulating genes involved in gluconeogenesis and in uptake, oxidation, storage and
mobilization of fatty acids, and downregulating genes involved in fatty acid synthesis,
fatty acid elongation/desaturation and cholesterol synthesis [11]. Many genes have been
identified as clustered in each metabolic pathway (fat metabolism, protein, glycogen and
glycogenogenesis, oxidative phosphorylation) [8,12–21]. The cellular processes are con-
trolled by a set of interacting molecules whose activity and levels are often co-regulated
or co-expressed [22].

In system genetics, the hubs are referred to as genes with the highest connectivity
identified within modules and reconstructed by different network-based methods, e.g.,
COEX and PPI. Hub-causative genes (CST) are upstream genes affecting others and must
be identified by probabilistic methods, e.g., BN. Thus, for the first time, we used the
hub-CST terms to name shared upstream genes (CST genes) with the highest connectivity
(hub) between BN, COEX and PPI. In PPI, only CST genes affecting fish starvation are
introduced. In PPI and COEX, relationships are represented as inter- and intra-module
connections [23], while in BN, cause–effect relationships can also be learned [24]. The aim
of aquacultural transcriptomics research is generally to elucidate the impacts of feeding [25].
DNA microarrays allow researchers to closely follow the metabolic changes caused by
starvation [18]. A number of transcriptomics starvation studies on different tissues of fish
species are presented in Table 1. To date, a few DNA microarray data on the liver of starved
zebrafish have been submitted to the GEO database (30 March 2022) [8,12]. Intestine, gut
and muscle tissues have been investigated by RT–qPCR, DNA microarray or RNA-seq in
previous studies [7,26–29]. This study aimed to use an integrated bioinformatics approach
to identify a common list of modules and hub-CST genes in the zebrafish transcriptome.
We envision that the present study could be the basis of future studies including functional
gene analysis and regulatory mechanisms in zebrafish management systems.

Table 1. Summary of transcriptomics studies performed to investigate starvation in fish.

Reference Fish Tissue Duration Platform Endpoints

[18] Rain bow trout Liver 21 d DNA microarray+ RT-PCR Upregulation of 20S proteasome
and calpain

[12]
(GSE11107) Zebrafish Liver+ Brain 21 d DNA microarray + qRT-PCR

Downregulation of metabolic activity, lipid
metabolism, protein biosynthesis,

proteolysis, cellular respiration and
increased gluconeogenesis genes

[8]
(GSE112272) Zebrafish Liver 21 d + 15 d

refeeding DNA microarray Upregulation of TCA cycle and oxidative
phosphorylation processes

[26]
(GSE87704) Zebrafish Intestine 21 d RNA-seq

Upregulation of ribosome biogenesis;
downregulation of antiviral immunity and

lipid transport genes

[27] Zebrafish Gastrointestinal 1, 2 & 5 d DNA microarray + qRT-PCR Downregulation of CCK, GRP and GHR

[30] Zebrafish Kidney 21 d qRT-PCR Upregulation of oxidative stress, catalase
and superoxide dismutase genes

[29] S. hasta specimens Intestine 3, 7 & 14 d qRT-PCR

Downregulation of stearoyl-CoA
desaturase 1 diminishing lipid

biosynthesis, as well as upregulation of
lipolysis and fatty acid transport.
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Table 1. Cont.

Reference Fish Tissue Duration Platform Endpoints

[31] Gilthead sea bream
(Sparus aurata)

Liver and
skeletal muscle 23 d RNA-seq Upregulation of OXPHOS, cytochrome c

oxidase families and SLC25A6

[28] Chinese perch
Siniperca chuatsi Intestine 0, 7, and 14 d RT–qPCR Upregulation of ROS and MDA

[7] Nile tilapia,
Oreochromis niloticus Intestine 14 and 21 d RT–qPCR Upregulation of antioxidant gene

expression; downregulation of leptin

[4] Zebrafish Liver 70 d RT-PCR
Downregulation of genes involved in fatty

acid metabolism (elovl5, fads2, cpt1-β,
acox1, acadvl, fabp1a and fabp7a)

[25] Masu salmon Liver and gut 3 d RT–qPCR DEG involved in fatty acid and
carbohydrate metabolism

[6] Brown trout Blood 42 d RT–PCR

Downregulation of genes involved in the
elongation, desaturation and fatty acid

oxidation pathways (except ∆6fadc);
upregulation of pparα, pparγ and pparß

[32] Chinese perch Muscle 2 & 5 d RT–qPCR
Upregulation of antioxidant-related

signaling genes, Nrf2 and S6K;
downregulation of Keap1

[33] Rainbow trout Muscle 21 d RT–qPCR
Upregulation of genes in the

ubiquitin-proteasome, lysosomal, and
calpain- and caspase-dependent pathways

[34] Atlantic Salmon Gastrointestinal
tract 4 d RT-qPCR Downregulation slc15a1a and slc15a1b and

with significantly lowered slc15a1a

[35] Mozambique tilapia Intestine 14 d RT-qPCR Downregulation of slc6a19a expression

[36] Zebrafish Larvae 3 d RNA-seq

DEG of growth regulation (i.e., DNA
replication and cell cycle), energy

metabolism (i.e.,
glycolysis/gluconeogenesis and fatty acid

metabolism) and antioxidant defenses

[37] Zebrafish Intestine and gut 2 & 5 d Western blot Downregulation of PepT1 and CCK8

2. Materials and Methods
2.1. Data and Methods

First of all, we searched datasets focusing on the gene expression profile related to
starvation and feed deprivation treatment, including “starvation, feed deprivation, fasting,
delayed feeding, fish, Zebrafish and liver” and a combination of these words, via the
GEO database (https://www.ncbi.nlm.nih.gov/geo/, accessed on 1 June 2021). Accord-
ing to these selection criteria, the gene expression profiles of GSE11107 and GSE112272
datasets were found. More detailed information about the data used in this study is
presented in Table 2. GEOquery R software (version “4.2”) was used to download gene
expression data [38].

Table 2. Details for datasets used for meta-analysis.

Datasets Samples Tissue Species Platform Number *** Reference

GSE11107 * GSM280434-GSM280443 Liver Zebrafish GPL1319 affymetrix 10 (5/5) [12]

GSE112272 ** GSM3064825-GSM3064831 Liver Zebrafish GPL14664 Agilent 16(4/3) [8]

* The total number of samples was 18, eight of which were related to brain tissue, which was not examined in this
study. ** The total number of samples was 16, three of were the control and four of which were the starved group
considered for meta-analysis. *** Number of samples (control/starvation).

The overall workflow used in this study is presented in Figure 1. The probe IDs
were converted to official gene symbols using corresponding data from each dataset. The
maximum value of the probes was used as the expression level for the subsequent analysis.
The probes that did not map to any official gene symbols were removed from the final
expression matrix. In cases where several probes were mapped to the same gene names,
the interquartile range (IQR) of the gene expression values in the MetaDE R package
(version “4.2”) was considered as the final value of that gene [39]. Identification of DEGs

https://www.ncbi.nlm.nih.gov/geo/
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was based on mean intensities of 0.2 and expression variance of 0.4. The Random Effect
Model (REM) method of MetaDE with FDR < 0.01 was used to integrate related samples
from GSE11107 and GSE112272 datasets [39].
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2.2. Module Detection

The CEMiTool R package (version “4.2”) was used on the final meta-analyzed matrix to
find COEX modules and hubs in the livers of starved fish. Based upon initial results, the best
soft threshold (beta value of 16) for COEX module detection was chosen. Interaction data
used for COEX reconstruction pertaining to DEGs were downloaded from the REACTOME
database [40]. COEX hubs were identified based upon adjacency parameters, unsigned
network-type and signed topological overlap matrix [22]. For COEX hub and module
detection, the p-value was filtered at p-value ≤ 0.5, and an accepted R-squared interval
between subsequent beta values (eps) was considered to be 0.1. For PPI module detection,
the STRING database (http://string-db.org/, accessed on 1 September 2021) was used to
identify PPI interactions between the proteins encoded by DEGs in starvation. Moreover, to
detect hub clustering modules in the PPI network, module analysis utilizing the Molecular
Complex Detection (MCODE) app with default parameters (degree cutoff = 2, cluster
finding = haircut, node score cutoff = 0.2, k core = 2 and max depth = 100) in Cytoscape was
performed [41]. The Venn diagram presenting the final hub-CST genes affecting starvation
in the liver of zebrafish was extracted with InteractiVenn (http://www.interactivenn.net/,
accessed on 12 October 2021) [42].

2.3. CST Gene Detection

In order to reconstruct the probabilistic network and detect causal relationships be-
tween the DEGs within the PPI and COEX modules, the bnlearn R package (version “4.2”)
was used [24]. BIC score was considered as the default score for network structure recon-
struction. With 50 bootstrap replicates, the model averaging method of the hill climbing
algorithm was used to reconstruct the final probabilistic network. In order to ensure the
relationships between the extracted genes, the threshold for acceptance and the power of a
relationship between two genes, edge strength was considered to be 50%. Reconstructions
of BNs were performed in two steps: BNs for genes within PPI modules and BNs for
genes within COEX modules. Using the cytohubba extension of Cytoscape and degree
topological parameters, CST genes were identified [43]. Graphical representation of BN
within PPI and COEX modules was performed with Cytoscape [44]. For downstream
analysis, the DAVID database (https://david.ncifcrf.gov/, accessed on 18 October 2021)
was used to comprehensively analyze KEGG pathways of these DEGs and identify hub-
CSTs [45]. Hubs were classified based on biological processes by Panther online software
(http://pantherdb.org/geneListAnalysis.do/, accessed on 25 October 2021) [46]. Both
p < 0.05 and FDR < 0.05 were considered statistically significant.

3. Results

The final expression matrices of meta-analyzed GSE11107 and GSE112272 datasets
consist of 17 rows (samples) and 379 genes, which were successfully downloaded and
are presented in Table S1. Due to the small number of samples in this study, as well as
meta-analysis of two datasets, we used the bootstrap mode of the hill climbing algorithm
to reconstruct the BN structure. Hill climbing, a heuristic search algorithm, is suited for
complex mathematical optimization problems. Measuring the degree of confidence in
a particular a Bayesian network is a key problem in the inference of network structure.
These results are from two different datasets that potentially encompass different fish
genotypes and different treatments. Any particular effects due to these factors would
need to be investigated in a larger, much more comprehensive study when more data
become available. However, our meta-analysis will provide information on the overall
identification of hub genes associated with starvation.

3.1. PPI Network Reconstruction

The identified genes within the PPI modules are presented in Table 3. Fourteen
different modules were found, with Modules 1 and 2 having 20 and 32 genes, respectively.
Modules 3 to 5 had four genes, Modules 6 to 13 had three genes and Module 14 had six

http://string-db.org/
http://www.interactivenn.net/
https://david.ncifcrf.gov/
http://pantherdb.org/geneListAnalysis.do/
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genes. In Module 1, NDUF, ATP, COX, UQCR and SDH genes were identified, and, in
Module 2 PSM, RPL, EIF and AGC genes were highlighted. Thus, the modules with the
highest number of genes (Modules 1 and 2 with 20 and 32 genes, respectively) were selected
for further analysis.

Table 3. List of genes in identified PPI modules affected by starvation in zebrafish.

Module 1 ndufb10, ndufa9, uqcrb, uqcrq, ndufa6, cox7c, ndufa10, atp5h, uqcrc1, sdhc, ndufs4, ndufs1,
ndufab1a, ndufs7, ndufs5, atp5f1, ndufb8, ndufb5, cox5aa, ndufa5

Module 2
psmd6, psma4, eif3d, rps3, shfm1, atp5a1, psmb3, mdh2, psmb5, psmb7,

eef1g, pomp, psmd7, rpl27, psmb1, uchl5, psmc5, eif3m, rpl3, eif3i, rps27.1, rpl5a, eif2s2,
psmb4, rpl22, rpl10, rpsa, psmc1a, mrpl24, rps26, psmc1b, zgc:136826, psma6a

Module 3 spcs1, srp9, srp68, sec11a

Module 4 tecb2, anapc11, cops5, cul4b

Module 5 ufsp2, cdk5rap3, ddrgk1, ufm1

Module 6 eif4a1b, eif3s10, eif3ea

Module 7 sdad1, gtpbp4, ddx21

Module 8 cirh1a, gltscr2, rcl1

Module 9 abat, aldh9a1b, hibadhb

Module 10 stx5al, sec22bb, sec22ba

Module 11 gpx4b, zgc:56493, sod2

Module 12 zgc:103761, mrpl14, mrps30

Module 13 mtx2, dnajc11, chchd3

Module 14 gatm, bola1, glrx5, dao.1, ciapin1, alas1

Figure 2 shows an interactive PPI network derived from DEGs associated with star-
vation. As can be inferred from Figure 2, a modular structure was found, indicating that
genes within modules have similar functions. This was confirmed by GSEA and KEGG
pathway analysis in subsequent analyses.

Figure 3 shows the inter-modular genes for DEGs for Module 1 (green) and Module
2 (pink). The 20 genes within Module 1 were ndufb10, ndufa9, uqcrb, uqcrq, ndufa6,
cox7c, ndufa10, atp5h, uqcrc1, sdhc, ndufs4, ndufs1, ndufab1a, ndufs7, ndufs5, atp5f1,
ndufb8, ndufb5, cox5aa and ndufa5. The most significant genes within Module 1 were
nduf, cox and uqcr, contributing to oxidative phosphorylation. The 32 genes in Module 2
were psmd6, psma4, eif3d, rps3, shfm1, atp5a1, psmb3, mdh2, psmb5, psmb7, eef1g, pomp,
psmd7, rpl27, psmb1, uchl5, psmc5, eif3m, rpl3, eif3i, rps27.1, rpl5a, eif2s2, psmb4, rpl22,
rpl10, rpsa, psmc1a, mrpl24, rps26, psmc1b, zgc:136826 and psma6a. Intramodular genes of
Module 2 were from the eif, psmb, rpl and rps families contributing to the transcriptional
process, and ribosomal structures controlling metabolism and catabolism of amino acids
during 21 days of starvation. However, it is not clear which genes are most significant and
influence the others and the CST relationship between genes of PPI modules could not be
determined; thus, we utilized a BN method to discover the intramodular casual relations
within PPI modules.

The reconstructed BN from genes within modules of the PPI network from Module
1 (right) and Module 2 (left) are shown in Figure 4. The casual relationship was inferred
from the direction of connections. For Module 2, a denser network structure was seen,
represented by more genes. For finding CSTs within a module and considering the different
number of connections to and from a gene, we recommend finding CSTs based on degree
topological parameters.

In Figure 5, the identified CST genes (red and orange circles) in 2 PPI network modules
are shown. In the first module, rpl and rps26, and in the second module psmb4, ndufa6
and ndufs5 were identified as CST genes affected by starvation in zebrafish. As pointed
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out earlier, these genes contribute to oxidative phosphorylation and transcriptional and
ribosomal structures. Thus, it can be inferred that starvation may trigger hormonal and
neuronal pathways leading to protein breakdown in the liver to meet body demands.
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Figure 5. Identified causative genes (red, yellow and orange circles) from reconstructed Bayesian
network of genes within Module 1 (right) and Module 2 (left) of the PPI network in Figure 4. Only
connected genes are shown.

3.2. COEX Network Reconstruction

In Figure 6, the mean-variance trend (a), beta-r2 detection (b), sample tree (c) and
histogram (d) of DEGs are shown.

In Figure 6a, the red trend line of mean expression versus variance is depicted, indicat-
ing a reasonable trend for our identified DEGs. In Figure 6b, the best soft thresholds (16)
for gene co-expression network reconstruction is identified. The beta value is a parameter
that lies in the core of the weighted gene COEX network analysis [22]; in our data, 16 was
appropriate for COEX network reconstruction. The higher the β value, the lower its mean
connectivity, with lower β values being of more interest than higher values, as long as
their R2 values are similar [22]. In Figure 6c, the sample tree of our meta-analyzed data
(control and starved) is presented according to their class. In Figure 6d, a histogram of
meta-analyzed expression data is presented. The expression profiles of DEGs are presented
in Figure 7. Samples relating to each group are distinct and shown in different colors
(red: control; green: starved).
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Figure 7. Expression profile of intra-gene modules (Module 1 (M1): (a); Module 2 (M2): (b)) affected
by starvation in zebrafish (red: control; green: starved).

The final reconstructed COEX matrices are presented in Figure 8. Two different
modules were found. Based on adjacency parameters, three different kinds of hubs (blue,
green and red) were found in each module. A list of genes within COEX Module 1
(344 genes) and Module 2 (33 genes) are presented in Table S2. Due to finding leader genes
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in the COEX modules, we also used a similar method (BN reconstruction) to the one we
used on the PPI modules.
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Figure 8. Reconstructed co-expression networks on final meta-analyzed matrix and identified
Module 1 (left) and Module 2 (right).

Figure 9 shows the CST relationship reconstructed by BN algorithms for two identified
modules (Module 1: left; Module 2: right) of the COEX network. Only connected genes are
shown in Figure 9. Denser structure was predicted for Module 1 due to the higher number
of intramodular genes. The bootstrap, model averaging method, threshold for arc direction
and strength will affect the number of genes and their connections in the BN.
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of co-expression network. Only connected genes are shown.

The identified CST genes from the reconstructed BN form modules obtained from the
COEX network and are illustrated in Figure 10. The top CST genes in the two COEX modules
were from the zgc gene family, which is different from the PPI network module results. Thus,
the results of the two networks are not the same. To better understand the molecular and
metabolic mechanisms underlying the PPI and COEX modules, we performed GSEA and
KEGG pathway analyses on the learned PPI and COEX modules, individually.

In Table 4, a list of hub and CST genes identified by different reconstruction network
methods (BN on DEGs, PPI and COEX network) are presented.
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Table 4. List of hub and CST genes identified by different network reconstruction methods by
meta-analysis of GSE11107 and 112272 liver datasets affected by starvation of zebrafish.

Method Hub/CST genes

PPI network

CST of M1 ndufa6, ndufs5, uqcrc1, ndufa10, atp5f1, ndufs1, sdhc, uqcrb, ndufb8, ndufs7

CST of M2 rps26, rpl10, psmb4, psmc1a, psmb1, psmd7, psma6a, rpsa, psmb7, eef1g

Coexpression network

By CEMiTool (adjacency)

Hub of M1 skp1, atp5h, gdi2, surf1, ndufa6, ndufs5, ndufb5, cox5aa, alg8, nnt, rab11b,
ndufa10, zgc:73210, glod4, hadh, pdcd10a, ndufb8, slc30a5, rhoaa, psmc1b

Hub of M2
ndufb10, rpl5b, zgc:193613, zgc:123327, rps3, zgc:109888, zgc:161979,
pgrmc1, zgc:123178, zgc:194876, zgc:85939, wu:fc58f10, zgc:111986,

wu:fd60d11, wu:fc37b12, taldo1, wu:fj82d09, wu:fb62f08, zgc:64133, acp5a

By BNLEARN (degree)

CST of M1 skp1, hsp90ab1, zgc:73269, scd, rpl10, tollip, zgc:77714, ddx21, rpl3, nap1l1,
ube2k, zgc:110609, rabggtb, uqcrq, eif3m, tspan7, atp5h, zgc:112432 , rps26, emphndufs5

CST of M2
zgc:172238, zgc:111986, zgc:63779, zgc:123327, taldo1, eif3d,

bckdk, zgc:64133, wu:fb62f08, zgc:123178, wu:fj58g06, ndufb10, rpl5b,
wu:fc58f10, zgc:56493, wu:fc37b12, sdhc, zgc:56049, acp5a, zgc:193613

Red fonts indicate hub and causative genes in Module 1. Green fonts indicate hub and causative genes in Module 2.
Purple fonts indicate hub and causative genes in Module 2 of PPI and Module 1 of BNLEARN networks.

It can be seen from Table 3 that some genes can be inferred to be either hub or
causative. In Module 1, skp1, atp5h and ndufs5, and in COEX Module 2, ndufb10, rpl5b,
zgc:193613, zgc:123327, zgc:123178, wu:fc58f10, zgc:111986, wu:fc37b12, taldo1, wu:fb62f08,
zgc:64133 and acp5a were identified as hub-CST genes in the liver of zebrafish affected by
starvation. A Venn diagram of shared genes between the PPI, BN and COEX networks is
presented in Figure 11.
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3.3. KEGG Pathway

In Table 5, KEGG pathways associated with DEGs from Module 1 and Module 2 from
the PPI network are shown.

Table 5. KEGG pathways of DEGs from Module 1 and Module 2 from the PPI network in the liver of
zebrafish affected by starvation.

Module 1

Term p-Value Benjamini Genes

Oxidative phosphorylation 1.70 × 1026 1.00 × 1025 atp5f1, atp5h, ndufa10, ndufa6, ndufb5, ndufb10, ndufb8, ndufs1,
ndufs4, ndufs5, ndufs7, coxaa, cox7c, sdhc, uqcrb, uqcrc1, uqcrq

Metabolic pathways 6.70× 1011 2.00 × 1010 atp5f1, atp5h, ndufa10, ndufa6, ndufb5, ndufb10, ndufb8, ndufs1,
ndufs4, ndufs5, ndufs7, coxaa, cox7c, sdhc, uqcrb, uqcrc1, uqcrq

Cardiac muscle contraction 1.40 × 104 2.90 × 104 cox5aa, cox7c, uqcrb, uqcrc1, uqcrq

Module 2

Term p-Value Benjamini Genes

Proteasome 9.10 × 1020 1.10 × 1018 psmc1a, psmc1b, psmc5, psmd6, psmd7, pomp, psma4,
psma6a, psmb1, psmb3, psmb4, psmb5, psmb7, shfm1

Ribosome 1.30 × 108 7.50 × 108 mrpl24, rpl10, rpl22, rpl27, rpl3, rpl5a, rps26, rps27.1, rps3, rpsa

Genes within Module 1 of the PPI networks play a role in oxidative phosphorylation,
metabolic pathways and cardiac muscle contraction pathways, while genes within Module
2 were associated with the proteasome and ribosome. The KEGG pathways of DEGs in
Module 1 from the COEX network are presented in Table 6.



Animals 2022, 12, 2724 13 of 18

Table 6. KEGG pathways of DEGs from Module 1 and Module 2 from the COEX network in the liver
of zebrafish affected by starvation.

Module 1

Term p-Value Benjamini Genes

Proteasome 6.90 × 109 3.80 × 107 psmc1a, psmc1b, psmc5, psmd6, psmd7, pomp, psma4,
psma6a, psmb1, psmb3, psmb4, psmb5, psmb7, shfm1

Oxidative phosphorylation 8.40 × 109 3.80 × 107
atp5f1, atp5h, ndufa10, ndufa6, ndufb5,

ndufb10, ndufb8, ndufs1, ndufs4, ndufs5,
ndufs7, coxaa, cox7c, sdhc, uqcrb, uqcrc1, uqcrq

Protein export 1.70 × 104 5.20 × 103 sec11a, spcs1, spcs3, srp54, srp68, srp9,

Fatty acid metabolism 5.60 × 104 1.30 × 102

Fatty acid degradation 4.20 × 103 7.50 × 102 acat2, acadm, acox1, aldh9a1b, cpt2, hadh

Metabolic pathways 5.10 × 103 7.70 × 102

agpat2, hibadhb, abat, alg8, atp5a1, atp5f1, atp5h,
atp6v0d1, atp6v1g1, dao.1, ndufa10, ndufa6, ndufb5,

ndufb4, ndufb8, ndufs1, ndufs4, ndufs5, ndufs7,
acat2, acadm, acox1, ahcy, aldh9a1b, alas1, alg6,

cmpk, cyp3a65, cox5aa, cox7c, dpm1, dpm3,
gapdh, gatm, hadh, idh1, idh2, lap3, nnt,

pla2g12b, pklr, sps2, uqcrb, uqcrc1, uqcrq, urod,

PPAR signaling pathway 6.90 × 103 8.10 × 102 Acadm, acox1, cpt2, fabp3, fabp7a, fads2, scd,

Peroxisome 7.20 × 103 8.10 × 102 dao.1, acox1, idh1, idh2, pex19, pex3, sod1, sod2

Valine, leucine and isoleucine
degradation 9.40 × 103 9.40 × 102 hibadhb abat, acat2, acadm, aldh9a1b, hadh

Biosynthesis of unsaturated fatty acids 2.10 × 102 1.90 × 101 elovl5, acox1, fads2, scd

Ribosome 5.10 × 102 4.20 × 101 mrpl24, rpl10, rpl22, rpl27,
rpl3, rpl5a, rps26, rps27.1, rps3, rpsa

Biosynthesis of antibiotics 6.80 × 102 5.10 × 101 dao.1, acat2, acadm, aldh9a1b,
fntb, gapdh, hadh, idh1, idh2, pklr, zmpste24,

alpha-linolenic acid metabolism 7.40 × 102 5.10 × 101 acox1, fads2, pla2g12b

3.4. GSEA

Biological processes of identified PPI network modules in the liver of zebrafish affected
by starvation are shown in Figure 12. In PPI Module 1, genes were active in localization,
metabolic, cellular process and response to stimulus processes, while genes within PPI Module
2 involved cellular and metabolic processes, but also biological regulation processes.
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Biological processes associated with genes from Module 1 (upper graph) and Module
2 (lower graph) from the COEX network are shown in Figure 13.
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Genes within COEX Module 1 mainly contribute to metabolic processes, cellular
processes, localization and biological regulation, while in Module 2, genes are mainly
involved in binding, catalytic, structural molecule and translation regulator activities.

4. Discussion

With the advent of new genomic tools, it is expected that new genes and processes con-
trolling key traits of starvation will be recognized and characterized. We used meta-analysis
for integration of two DNA microarray datasets—GSE1107 and GSE112272. Meta-analysis
will increase the experimental sample size and maximize the statistical power, reducing the
probability of false-negative results [47,48]. Therefore, two microarray datasets obtained
from GEO relating to starvation in liver tissues of zebrafish were selected to identify reli-
able hub-CST genes. Considering the different platforms used (Affymetrix for GSE11107;
Agilent for GS112272), soft files (preprocessed data) of these datasets were used for analysis.
Modification of biochemical profiles included transition from the anabolic to catabolic states.
In the short term, starvation reduces glycogen and fat deposits. The zebrafish (Danio rerio)
has high-resolution genetic maps available, a large number of offspring, ease of breeding,
short life span, small size, low husbandry costs, whole genomic sequence availability, a
transparent embryo, and is easily mutagenized using; therefore, it has been widely used in
developmental, immunological, drug discovery, physiological, toxicological, nutrigenomic,
and recently cancer and starvation studies [4,5,49,50]. Nduf, atp, cox, uqcr and sdh are gene
families found in Module 1 of our PPI network In Module 2 of the PPI network, psm, rpl, eif
and agc were the most significant gene families. The role of each of these genes in the study
performed by Drew et al. (2008) has been discussed in more detail [12].

After reconstructing the BN, two genes were identified—ndufas5, and ndufa6—within
Module 1, with rps26, rpl10 and psmb4 having influence on other genes in these PPI modules.
The biological process analysis suggested that the upregulated genes were implicated in
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multiple processes, with the most important pathways of the PPI modules being oxidative
phosphorylation, metabolic and cellular processes, ribosome and proteasome. Rpl and rps
gene families are genes encoding large and small ribosomal subunits contributing to protein
synthesis and degradation, the inflammatory immune system and developmental growth
in the embryo [48]. Ribosomal structure is conserved in all life forms, and Rpl and rps are
known as standard housekeeping reference genes for multi-organism comparisons [48,51].
The first tangible response of the liver to starvation is body mass [8], indicating rpl and
rps families are activated for protein degradation after 21 days of starvation in zebrafish.
Furthermore, KEGG results identified ribosomal and proteasome pathways following star-
vation. Studies have shown that expression of rpl and rps gene families is affected by amino
acid starvation [52]. Metabolic response to starvation includes the induction of proteolytic
enzyme activities and energy consumption [3]. Starvation causes protein catabolism and is
accompanied by the depletion of carbon and energy sources from liver and the stimulation
of gluconeogenesis from amino acids [3]. Protein degradation by autophagy is an important
adaptive mechanism in fish that allows them to survive nutritional starvation [3]. However,
autophagy remains constant, increasing slightly or decreasing during starvation depending
on the circumstances [3]. Expression patterns of several proteins related to fatty acid and
amino acid metabolism also suggested the utilization of non-carbohydrate resources for
energy during starving conditions [5]. Proteins with chaperoning and antioxidative roles
such as glucose-regulated protein, paraxonase and heat-shock protein were also upregu-
lated in starvation conditions [5]. The Nduf family (NADH dehydrogenase) includes genes
involved in the respiratory chain of the inner membrane of mitochondria and contributes to
lipid metabolism, binding and transport [12]. During starvation, in the absence of regular
feeding and unavailability of glucose and glycolysis, other metabolic cycles such as fatty
acid beta-oxidation are activated; thus, oxidative phosphorylation, fatty acid metabolism
and degradation are among meaningful KEGG pathways and biological processes.

The sample size of our study was quite small, so the examination of further DNA
microarrays and NGS data will be essential in supporting findings from this study, in
order to investigate the different regulatory mechanisms in zebrafish subjected to starva-
tion. Our results indicates the body’s need to produce energy in the absence of glucose
(glycolysis) or to produce glucose (gluconeogenesis, beta oxidation or pentose phosphate)
for tissue consumption. Previous research showed that starvation causes oxidative stress
and mitochondrial malfunction in fish as a result of mitochondrial breakdown energy
metabolism mRNA under expression. [28]. Within gene modules identified by COEX, the
most meaningful pathways were fatty acid metabolism and degradation, suggesting that
elovl5, acat2, acadm, acox1, cpt2, fads2, hadh, scd acat2, acadm, acox1, aldh9a1b, cpt2 and hadh
have a role in loss of body mass in zebrafish after 21 days of starvation. This finding is
in accordance with some previous studies [36]. The PPAR signaling pathway is highly
expressed in adipose tissue and regulates adipogenic and lipogenic pathways [53]. Other
studies have shown that mRNA expression of the peroxisome proliferator-activated recep-
tor (PPAR) was upregulated by short-term starvation through activation of lipolysis-related
genes, lipid uptake-related genes and PPAR [30]. Some genes during starvation contribute
to antibiotic biosynthesis (dao.1, acat2, acadm, aldh9a1b, fntb, gapdh, hadh, idh1, idh2, pklr,
zmpste24) pathways which is in agreement with previous findings [54] demonstrating that
short-term starvation prior to infection could be beneficial in obtaining better capability to
battle against some infections in red sea bream [54]. Cortisol, aspartate aminotransferase,
alanine aminotransferase and leptin play a major role in fish metabolism during starva-
tion [7,10]. Here, we used a set of comprehensive bioinformatics tools to detect the genes
potentially involved in starvation by comparing different groups of zebrafish. Furthermore,
the molecular mechanisms associated with the starvation-related genes affected by feed
deprivation of zebrafish should be further confirmed by functional validation experiments.



Animals 2022, 12, 2724 16 of 18

5. Conclusions

In this study, starvation was investigated by integrated bioinformatics and system
genetics methods. Gene ontology and enrichment of meta-analyzed DEGs were studied
individually. For this purpose, PPI and COEX networks were reconstructed; then, a BN
was reconstructed within the aforementioned modules to find hub-CST genes affected
by starvation in zebrafish. The results of this study also showed that BNs are useful to
determine the direction of relationships between genes (CST). The hub-CST genes identified
in this study are a good basis for studying starvation in zebrafish. If the hub-CST genes
affected by starvation are also confirmed in vitro and in silico, their allelic frequencies could
be manipulated using other Hardy–Weinberg equilibrium disturbance methods (migration,
mutation and selection) and CRISPR-Cas9 technology.
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