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Review article/Pregledni znanstveni članek

Adipose tissue is implicated in many endocrine and metabolic processes. Leptin was among the first 
identified adipose-secreted factors, which act in an auto-, para- and endocrine manner. Since leptin, 
many other adipose tissue factors were determined, some primarily secreted from the adipocytes, some 
from other cells of the adipose tissue.
So-called adipokines are not only involved in obesity and its complications, as are insulin resistance, type 
2 diabetes and other components of the metabolic syndrome, but also in growth, reproduction, bone 
metabolism, immune response, cancer development and many other important biological processes. 
Research in the field of adipokines has revealed new insights into the physiological and pathophysiologal 
processes and opened new therapeutic possibilities. In the present article, a special emphasis is devoted 
to research in children and adolescents.

Maščobno tkivo ima vlogo pri številnih endokrinih in presnovnih procesih. Lepin je bil med prvimi 
odkritimi dejavniki iz maščobnega tkiva, ki delujejo avto-, para- in endokrino. Od opredelitve leptina 
so odkrili še številne druge dejavnike, od katerih se nekateri izločajo iz maščobnih celic, nekateri pa iz 
drugih celic maščobnega tkiva.
Tako imenovani adipokini niso povezani le z debelostjo in njenimi zapleti, kot so rezistenca proti 
inzulinu, sladkorna bolezen tipa 2 in druge komponente metabolnega sindroma, temveč tudi z rastjo, 
razmnoževanjem, presnovo kosti, imunskim odzivom, razvojem rakavih bolezni in mnogimi drugimi 
pomembnimi biološkimi procesi. Raziskave na področju adipokinov so opredelile nove fiziološke 
in patofiziološke procese in odprle nove možnosti zdravljenja. V tem prispevku poseben poudarek 
namenjamo raziskavam pri otrocih in mladostnikih.
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1 BACKGROUND

Adipose tissue was long considered to be an energy 
storage tissue only. Adipocytes store energy in the form 
of triglycerides when there is an excess of energy, and 
release it when energy is needed. By studying genetically 
obese and diabetic mice (ob/ob, db/db), it was 
determined that factors released from adipocytes are able 
to communicate with distant tissues and influence their 
function. Leptin was the first cytokine with such function 
to be determined. Since leptin, several additional factors 
with endocrine functions were determined. Some - as 
leptin and adiponectin - are released from the fat cells 
exclusively, whilst others are also released from others 
cells of the adipose tissue (macrophages, fibrocytes, 
endothelial cell), and other organs (liver, bone) (1, 2).

In the manuscript, we will discuss the role of the selected 
adipokines in obesity, and the development of components 
of metabolic syndrome, with an emphasis on their role in 
children and adolescents.

2 LEPTIN

The discovery of leptin caused a paradigm shift in 
the way adipose tissue is perceived. It is no longer 
regarded as an energy storage organ only, but also as 
an important endocrine organ with important effects on 
body metabolism. Leptin levels are increased in adipose 
tissue and circulation in human obese subjects, including 
children and adolescents (3-5). Mutations in the leptin 
gene or its receptor are associated with human morbid 
and early obesity (2, 6). Its levels are correlated with 
body mass index (BMI) and fat store content. They are 
decreased in subjects with decreased fat mass, such as 
lipodystrophy and anorexia (7, 8). Following weight loss, 
leptin levels decrease in both adults and children (9, 10).
Leptin levels are higher in subcutaneous that visceral 
adipose tissue. They are higher in females as compared to 
males, and this dimorphism is present already in children 
(5). A mechanism described behind this dimorphism is the 
suppressive effect of androgens on leptin expression in 
adipocytes (11). 

Central nervous system (CNS) leptin effects - particularly 
at the level of hypothalamus - are associated with energy 
homeostasis. Following secretion of leptin from fat stores 
into circulation, it is transported across the blood-brain 
barrier to CNS, where it stimulates processes that result in 
decreased food intake and increased energy consumption. 
In common obesity leptin resistance at the level of CNS, is 
a mechanism explaining continued energy intake despite 
severely increased circulating leptin levels (12).

In addition to CNS, leptin receptors are also present in 
peripheral tissues, where leptin decreases fat stores in 

the skeletal muscle and liver by stimulating fatty acid 
oxidation and glucose uptake. Peripheral leptin resistance 
(particularly in skeletal muscle) is also linked to insulin 
resistance (IR) in obesity (13, 14), and to the development 
of nonalcoholic fatty liver disease and metabolic syndrome 
in children (15, 16).

Besides its effects on energy homeostasis, leptin has 
several other important endocrine functions. The lack of 
leptins action at the level of CNS, is also associated with 
reduced reproductive function (6). Leptin is implicated 
in the regulation of immunologic and inflammatory 
processes (17). At the level of the bone, leptin has a dual 
and opposing role. On one hand, it stimulates osteoblasts, 
bone mineralization and growth, while, on the other 
hand, it suppresses bone development (18, 19). It has 
also been implicated in tumorigenesis, as leptin receptors 
can be found in certain cancer cells, possibly enabling 
leptin to stimulate growth of these cells under certain 
conditions (20). 

Leptin has been successfully used in the therapy of leptin 
deficient subjects ameliorating hyperphagia, extreme 
obesity, hypogonadism and impaired cell immunity (6). 
Leptin is able to induce puberty in hypogonadotropic 
hypogonadism due to leptin deficiency, and to reduce liver 
steatosis associated with obesity due to leptin-deficiency 
(21, 22). In polygenic obesity, leptin therapy was not as 
successful, probably due to leptin resistance being the 
main feature in this condition (12). It could, however, be 
potentially used in subjects following weight loss. In these 
subjects, a decrease in fat content leads to decreased 
leptin levels and decreased energy expenditure, possibly 
preventing further weight loss or enabling a regain of 
lost weight. By administration of leptin at this stage, 
one could prevent a regain of weight in these subjects 
(23). In addition, leptin mimetics have been proposed 
to overcome leptin resistance, and co-administration of 
amylin with leptin was shown to positively modify leptin 
signalling (24).

3 ADIPONECTIN

Adiponectin is expressed in the mature adipocyte and 
is secreted into blood circulation, where it is present in 
3 main oligomeric forms, high molecular weight (HMW) 
form being linked with most of the effects on peripheral 
tissues (25).

In contrast to leptin, and indeed most of the other 
adipokines, adiponectin blood levels are not increased, 
but decreased in obesity, including in children (26). 
There is a strong negative correlation between plasma 
adiponectin levels with body fat mass (27). Following 
weight loss, adiponectin levels increase in both adults and 
children (26, 28). The anti-obesity effect is associated 
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with the ability of adiponectin to increase body’s energy 
expenditure and to decrease differentiation of adipocytes 
in experimental animals (29).

Adiponectin is, similarly to leptin, secreted in a gender 
dimorphic fashion, with circulating levels being higher in 
women than in men. Although stimulation of adipocytes 
with human male serum leads to a decrease in the 
expression of adiponectin, increasing concentrations 
of testosterone or estradiol do not influence either 
adiponectin mRNA expression or secretion, implicating, 
to date, unidentified serum gender specific factors (30).
In the peripheral tissues, adiponectin’s actions are 
mediated through adiponectin receptor 1 or 2 (AdipoR1, 
AdipoR2). In skeletal muscles, adiponectin acts mainly 
through AdipoR1 and through AdipoR2 in the liver. 
Variations in the expression levels of these receptors 
at the level of the peripheral tissues, are in addition to 
circulating levels associated with adiponectin’s effects 
(31). 

Adiponectin acts as an insulin sensitizer in both 
experimental animals and humans. Insulin sensitising 
mechanism is linked to a reduction of hepatic 
gluconeogenesis and an increase of muscle glucose 
transport (32). Low levels of adiponectin, especially 
HMW form, are associated with the development of IR, 
type 2 diabetes (T2D), components of the metabolic 
syndrome and cardiovascular disease (33-35). This link is 
also present in children and adolescents (36, 37). Certain 
single nucleotide polymorphisms (SNP) in the adiponectin 
gene are associated with low adiponectin levels and T2D 
(38, 39). On the other hand, increased adiponectin levels 
are associated with the reduced risk of T2D (40), and 
therapy with insulin sensitizing drugs thiazolidinediones 
increases adiponectin (primarily HMW) levels (41). In 
children, lifestyle modifications also result in a beneficial 
increase in adiponectin levels, accompanied by increased 
insulin sensitivity (26).

Adiponectin has also anti-inflammatory and anti-oxidant 
properties. It inhibits tumor necrosis factor (TNF), alpha 
and superoxide radical generation in endothelial cells, 
and TNFalpha generation in adipose tissue (42). Low levels 
of adiponectin are also associated with nonalcoholic 
steatohepatitis independent of IR (43). In addition, low 
levels of adiponectin are linked to an increased risk of 
malignancies (44).

4 VISFATIN

Previously known as pre-B cell colony enhancing factor, 
visfatin is a controversial adipokine, whose levels were 
shown to be either increased, normal or decreased in 
adult human obesity (45-48). In children and adolescents, 
circulating visfatin levels and SNPs in visfatin gene were 
also inconsistently linked to obesity determined by 

BMI or waist circumference (49-51). Furthermore, it is 
controversial whether visfatin is predominantly expressed 
in human visceral or subcutaneous adipose tissue (45, 52, 
53).

Visfatin binds to insulin receptor and was suggested to 
have insulin-like effects (52). It was determined to be 
a nicotinamide phosphoribosyltransferase implicated 
in promoting insulin secretion upon glucose stimulation 
(54, 55). Circulating visfatin levels are increased by 
hyperglycaemia in mouse models of T2D and in humans 
with type 1 diabetes (T1D) and T2D (52, 56). Again, these 
results were not confirmed in all studies, and SNPs in 
visfatin gene are not linked to T2D (54). In obese children, 
visfatin levels do not differ between those with and 
without IR (51). On the other hand, in children visfatin 
gene, SNPs are linked to higher visfatin levels, components 
of metabolic syndrome and low grade inflammation (51).

A decrease in body weight - following bariatric surgery -  
and exercise in T1D subjects lowers visfatin levels (47, 
57). Treatment with insulin sensitizing drug rosiglitazone 
in humans does not lower visfatin levels (58).

Visfatin is implicated in the pathogenesis of chronic 
conditions, as are atherosclerosis and cardiovascular 
diseases (59). It is suggested to be a proinflammatory 
cytokine. As obesity is a state of chronic low-grade 
inflammation, this could be the common mechanism 
explaining some of the reported results; still, visfatin’s 
role in obesity and its complications need to be further 
addressed.

5 RESISTIN

Although resistin is also expressed in adipocytes, the 
main source of resistin in humans are macrophages 
(60). Structurally, resistin is very similar to adiponectin 
including the formation of higher-order oligomerisation 
structures. In contrast to adiponectin, however, low-
molecular structures are more physiologically active 
(61). Increased resistin levels were determined in human 
obesity in both adults and children, and a SNP in the 
resistin promoter is associated with obesity (62-65). 
More specifically, circulating levels of resistin were, in 
particular, associated with body fat mass in children (66).
In animal obesity models, increased resistin levels are 
linked to IR, and resistin was described as a possible 
link between obesity and the development of T2D (67). 
Decreasing resistin levels or blocking its action, is linked 
to improved insulin sensitivity and glucose metabolism 
(67, 68). In humans, controversial results on the role of 
resistin in the development of IR, T2D and metabolic 
syndrome are described (63, 64, 69). Increased circulating 
levels are also reported in T1D subjects (70). A SNP in 
resistin promoter is, in addition to obesity, also associated 
with T2D (71).
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Resistin is also linked with states of inflammation including 
low-grade inflammation in obesity (72, 73). Similarly as 
for visfatin, resistin’s role in the development of obesity 
and its complications needs to be further addressed.

6 RETINOL BINDING PROTEIN 4 (RBP4)

Increased circulating and adipose tissue RBP4 levels are 
linked to obesity and visceral fat mass content (74, 75). 
Several studies, however, found no correlation between 
circulating RBP4 levels, the level of obesity, and the 
amount and distribution of adipose tissue (76-78).

RBP4 is suggested to be involved in early processes of 
atherosclerosis and cardiovascular diseases (79, 80). 
Circulating and adipose tissue RBP4 levels are associated 
with IR and T2D in both adults and in children and 
adolescents (81-83). RBP4 levels also correlate with other 
components of the metabolic syndrome (84-86). They 
decrease with lifestyle interventions - reduction of weight, 
increased exercise - in adults, children and adolescents 
(76, 87, 88). The associations between RBP4 levels and 
the development of obesity and its complications, such 
as IR, impaired glucose tolerance, T2D and certain 
components of the metabolic syndrome, have, however, 
not been found consistently in both adults and children 
(77, 78, 89-92).

Obesity is a state of low-grade inflammation. Several 
adipokines have been shown to be regulated by 
inflammatory factors (93). We therefore studied RBP4 
expression in human adipocytes exposed to inflammatory 
milieu (culture media from activated machrophages), or 
selected proinflammatory cytokines interleukin 1 beta 
(IL-1beta) and TNFalpha, and determined that RBP4 
expression in adipose tissue was consistently decreased 
in a proinflammatory environment (94). These results 
link inflammation and altered expression of RBP4 in 
adipose tissue, even though it seems that changes in RBP4 
expression in adipose tissue are not directly related to the 
changes in circulating RBP4 levels that often precede the 
development of systemic IR (94, 95).

The levels of circulating RBP4 seem to be regulated in 
a sex-dependent manner. Males, including adolescents, 
showed higher levels of RBP4 compared to females (78, 
96-99). Also, women with increased androgen levels had 
in increase in circulating RBP4 (78, 96-99). This sexual 
dimorphism was, however, not demonstrated in all 
studies (75, 100-102). Two classic adipokines, leptin and 
adiponectin, are regulated in a sex-dependent manner. In 
contrast to RBP4, their levels are lower in males compared 
to females, and further studies demonstrated that the 
male sex hormone testosterone inhibited the expression 
of leptin and adiponectin in adipocytes (11, 103).

We therefore decided to further explore the gender specific 
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regulation of RBP4 expression in human adipocytes. As a 
model system, we used the human Simpson-Golabi-Behmel 
syndrome (SGBS) cell strain. These cells are characterized 
by a high capacity for adipogenic differentiation, and 
therefore provide a suitable cell system to study human 
adipocyte biology (104).

Effects of gender specific serum factors on RBP4 
expression in human SGBS adipocytes were investigated. 
We collected serum samples from 10 healthy non-obese 
females (estradiol 89.99 pg/ml, testosteron 0.37 ng/
ml, leptin 16.0 ng/ml) and 10 healthy non-obese males 
BMI- and age-matched volunteers (estradiol 34.58 pg/ml, 
testosterone 4.18 ng/ml, leptin 2.2 ng/ml). After pooling 
these samples, we added them to adipocyte cultures at a 
concentration of 10 % (vol/vol). As a control experiment, 
we first studied the expression of adiponectin. As 
expected from earlier studies, male serum was more 
efficient in downregulating adiponectin mRNA than 
female serum (Figure 1A) (30). Likewise, both female 
and male serum suppressed RBP4 mRNA expression, with 
male serum showing a significantly stronger inhibitory 
effect than female serum (Figure 1B). These results are in 
accordance with the data obtained from male and female 
adipose tissue explants, where significantly higher mRNA 
expression was determined in female adipose tissue when 
compared to male (100).
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Figure 1A, 1B. Effects of pooled 10 % female (F) or male 
(M) serum on adiponectin (A) and retinol 
binding protein 4 (B) mRNA expression in SGBS 
adipocytes.

mRNA expression ratios were determined by qRT-PCR, using succinate de-
hydrogenase as a reference. Data are presented as mean ± SEM of 3 or 
more independent experiments, and are normalized to the expression or 
secretion in the vehicle (1% ethanol) treated samples. *p < 0.05 when 
compared to the vehicle.
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7 CHEMERIN

Adipose tissue and liver are the main sources of chemerin, 
a chemo-attractant protein that acts through chemokine 
like receptor 1 (CMKLR1), which is located to adipocytes, 
endothelial cells and inflammatory cells (e.g. dendritic 
cells and macrophages). Chemerin is implicated in 
the process of adipogenesis, and its higher levels are 
associated with obesity, especially visceral, in both 
adults and children (105, 106). Interestingly, higher levels 
were determined in vitamin D deficient obese children, 
compared to vitamin D non-deficient obese children 
(107). Dysregulation of chemerin is associated with 
several metabolic abnormalities, such as increased blood 
pressure and total cholesterol, decreased HDL cholesterol, 
prediabetic state of IR and T2D (105). Chemerin levels 
positively correlate with leptin and negatively with 
adiponektin levels (108). In children, higher levels are 
associated with low-grade inflammation and endothelium 
dysfunction, as determined by markers of endothelial 
activation intercellular adhesion molecule-1 (ICAM-1) and 
E-selectin (109).

8 CONCLUSIONS

Adipose tissue is regarded an important endocrine tissue. 
Dysregulation of factors secreted from the adipose tissue 
– so-called adipokines – is not linked only to obesity 
and its complications, but has also important effects 
on bone metabolism, reproduction, immunity, cancer 
development, etc.

Several adipokines are considered biomarkers of patho-
physiological states, in particular those linked to obesity. 
Some are still considered controversial due to inconsistent 
experimental results, and will have to be further studied 
in larger and well-controlled studies. In the future, 
disease-specific arrays of adipokines will possibly be used 
to determine, with higher specify and sensitivity, those at 
a significant risk of selected disease, or they will be used 
as monitoring tools to evaluate the efficacy of treatment. 
Of importance, noninvasive methods that will enable us to 
determine the origin of studied adipokines (e.g. visceral 
vs. subcutaneous adipose tissue) will bring the role of 
adipokines, as biomarkers, to a new and a higher level.

In addition, it is possible that the manipulation of the 
expression or actions of selected adipokines will be 
used therapeutically in the future. To this effect, leptin 
was the first adipokine used therapeutically in states of 
leptin deficiency (e.g. congenital leptin deficiency or 
certain lypodystrophies). As adipokines have increasingly 
important endocrine and metabolic effect also in non-
obesity associated states, it is probable that adipokine 
therapy will also be used in non-obesity relates states. 
Delivery of therapeutic adipokine to a specific tissue, 

possibly with the use of combination therapy, would be 
of special benefit.
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