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cerebral infarction accounting for the highest percentage of 
cases. Securing blood flow is the most important treatment 
strategy, and the development and improvement of throm-
bolytic therapy using tissue plasminogen activator (tPA) 
have greatly advanced treatment [3]. However, there are 
still many unresolved issues related to its therapeutic use, 
such as the limited time window for the indication of tPA 
therapy and the inability to address so-called delayed neuro-
nal cell death, in which neuronal damage and death continue 
to progress even after the blood flow is restored.

Although the development of stroke drugs has been dif-
ficult, research on “ischemic tolerance” has advanced sig-
nificantly. Ischemic tolerance is a phenomenon whereby 
the brain, the organ most vulnerable to ischemia, acquires 
resistance to subsequent invasive ischemia after prior non-
invasive ischemia (pre-conditioning [PC]), a phenomenon 
observed clinically and experimentally (Fig. 1). This has led 
to a great deal of intensive research, with an understanding 
of the molecular mechanisms of ischemic tolerance key to 
therapeutic strategies for stroke. Although several important 
molecules and intracellular signals have been reported to 
induce ischemic tolerance [4–7], most studies have focused 
on neurons and were based on the idea that tolerance is 
acquired by a neuron-autonomous mechanism. The brain 
is composed of neurons and higher numbers of glial cells, 
including microglia, oligodendrocytes, and astrocytes. Glial 
cells express neurotransmitter receptors, ion channels, and 
transporters, and release chemical transmitters called “glio-
transmitters” in response to various stimuli [8]. Through this 
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bi-directional communication between neurons and glial 
cells, glial cells regulate brain functions in a very immediate 
and active manner. Because glial cells are sensitive to envi-
ronmental changes inside and outside the brain, when they 
sense these changes, they change rapidly and significantly. 
Thus, these glial changes are particularly important for the 
initiation and development of various brain diseases. There-
fore, it is hypothesized that minor environmental changes 
in the brain, such as PC, are sensed first by glial cells, and 
that changes in their phenotypes may initiate a subsequent 
cascade leading to the induction of ischemic tolerance. It is 
well known that glial cells have protective effects on neu-
rons, for example, suppressing astrocyte functions in an in 
vivo stroke model exacerbated neuronal damage [9]. We 
think that these findings support the present hypothesis. 
However, the aforementioned role of glial cells in ischemic 
tolerance has not been well studied.

In this article, we will introduce the latest findings on 
ischemic tolerance and glial cells, and explain glial ischemic 

tolerance, in which the brain is more resistant to stroke, with 
a focus on the roles of astrocytes [10, 11, 1213].

Brain Ischemic Tolerance

Ischemic tolerance was first discovered by Murry et al. in 
1986 in a study of the heart [13]. Because the cardioprotec-
tive effect of ischemic tolerance is very strong and ischemic 
tolerance has been observed in many organs other than the 
heart, including the lung, kidney, liver, skeletal muscle, and 
the brain, which is the organ most vulnerable to ischemia, 
basic research on ischemic tolerance as well as practical 
research for clinical applications has been very active. The 
finding that ischemic tolerance was observed in vivo in 
the brain was first demonstrated in a Japanese study using 
a gerbil model of cerebral ischemia, and since then, many 
Japanese researchers have contributed to the development 
of this field [14] [15] [16]. The preceding stimulus to induce 

Fig. 1  Ischemic tolerance
 (A) Brain tissues exposed to invasive ischemia (Lethal ischemia) develop severe neuronal damage and cell death (white area surrounded by 
dotted line). (B) If the brain experiences mild non-invasive ischemia as preconditioning (PC) prior to invasive ischemia, the damage induced by 
lethal ischemia is significantly reduced. This is termed ischemic tolerance. (C) PC that induces ischemic tolerance does not necessarily have to 
be ischemia; stimuli that mimic bacterial infection such as LPS, heat, physical stimuli, or chemicals can also induce ischemic tolerance. This is 
termed cross-tolerance or remote-tolerance
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ischemic tolerance does not necessarily have to be an isch-
emic load. It is possible to acquire resistance to subsequent 
invasive ischemia even with the prior loading of a stimu-
lus different from ischemia, such as hypothermia or lipo-
polysaccharide (LPS) mimicking infection, which is called 
cross-ischemic tolerance [16] (Fig. 1 C). Cross-ischemic tol-
erance can also be induced by chemical PC using chemicals 
such as 3-nitropropionic acid [17] or resveratrol [18]. For 
example, ischemic tolerance was induced in the brain even 
when a preceding load is applied to the hindlimb, which is 
distant from the brain, a phenomenon termed remote isch-
emic tolerance[19]. Regarding the therapeutic applications 
of ischemic tolerance, “prior light stroke loading” is not 
realistic. Therefore, the discovery of cross ischemic toler-
ance and remote ischemic tolerance is very important for 
research with a view to clinical applications. In addition, it 
is very useful for elucidating the molecular mechanism of 
ischemic tolerance, which is still largely unknown.

The initial studies of ischemic tolerance induction 
focused on neurons as neuron-autonomous mechanisms, 
with neuronal membrane stabilization, inhibition of neu-
ronal excitability, and apoptosis inhibition being the main 
mechanisms proposed [16]. In addition, neurotrophic fac-
tors including heat shock protein (HSP) [6], brain-derived 
neurotrophic factor (BDNF) [7], erythropoietin (EPO) [4], 
vascular endothelial growth factor (VEGF) [5], and hypoxia 
inducible factor-1 (HIF-1) were identified as molecules 
involved in ischemic tolerance. Interestingly, these mol-
ecules are derived from neurons as well as glial cells. This 
suggests the importance of neuron non-autonomous mecha-
nisms in the acquisition of ischemic tolerance, and their role 
is described below, with a focus on glial cells.

Glial Cells and Ischemic Tolerance

(1) Microglia

Microglia are immunocompetent cells in the brain that 
are activated in the early stages of trauma, infection, and 
various neurodegenerative and psychiatric diseases. Thus, 
studies on microglia have focused on their role as inflamma-
tion-induced injurious cells linked to the molecular patho-
genesis of brain diseases. However, microglia have diverse 
functions, including the production of anti-inflammatory 
cytokines and neurotrophic factors such as BDNF, promo-
tion of synaptogenesis, reorganization of neural networks 
by removing unwanted synapses, and removal of debris 
and unwanted substances by phagocytosis. Microglia are 
also cytoprotective cells that maintain brain homeostasis. 
As mentioned above, microglia are particularly sensitive to 
environmental changes and respond quickly to such changes. 

Indeed, the activation of microglia (strong Iba1-positivity) 
is the first step in PC. Importantly, it was demonstrated that 
pretreatment with endotoxins such as LPS induced cross-
ischemic tolerance with a very strong protective effect 
against subsequent brain ischemia [20–22]. These findings 
suggest that microglia can sense LPS or LPS-related inflam-
matory microenvironments, and then change their pheno-
types to protect neurons against subsequent brain ischemia. 
LPS-induced cross-ischemic tolerance is dependent on 
proinflammatory cytokines such as tumor necrosis factor-α 
(TNF-α), and the activation of Toll-like receptors (TLRs), 
both of which are present at high levels in microglia [20] 
[23]. More recently, the depletion of microglia by an antag-
onist of colony stimulating factor-1 receptor, a receptor 
essential for the survival of microglia, abolished PC-evoked 
ischemic tolerance in the white matter of the brain [24]. 
Signaling cascades and molecular mechanisms by which 
microglia induce ischemic tolerance via various TLRs are 
also being elucidated, with type I interferon (IFN) signaling 
and related molecules being involved. Furthermore, TLR4 
and TNF-α were reported to be central in the mechanism of 
ischemic tolerance [25]. Therefore, microglia are likely to 
be key to inducing ischemic tolerance. However, how type I 
IFN-related molecules such as TNF-α induce ischemic tol-
erance and whether microglia alone can promote ischemic 
tolerance is unclear.

In addition to directly affecting neuronal functions, 
microglia have attracted attention for their ability to regulate 
brain functions via microglia-astrocyte linkage. For exam-
ple, ATP released from microglia secondarily regulated 
neuronal function by inducing astrocytes to release gluta-
mate [26], and microglia that sensed traumatic brain injury 
secondarily promoted brain protective effects by transmit-
ting this information to astrocytes [27]. Thus, microglia 
and astrocytes might communicate and share the roles, i.e., 
microglia may function as sensors to detect minute PCs and 
then astrocytes may act as execution factors to induce isch-
emic tolerance (Fig. 2). Next, we discuss the importance of 
astrocytes in the execution of ischemic tolerance.

(2) Astrocytes

Astrocytes are the largest and most numerous type of glial 
cell. In addition to their classical roles of supporting neu-
rons and processing waste products, they actively regulate 
the core brain functions including synaptic transmission, 
synaptic reorganization, blood flow, and energy metabo-
lism. In a mouse model of middle cerebral artery occlusion 
(MCAO), noninvasive ischemia (brief MCAO) as PC acti-
vated astrocytes from 3 days after PC (which was slightly 
later than microglial activation) and they differentiated 
into highly glial fibrillary acidic protein (GFAP)-positive 
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receptors, which are associated with inflammation and 
cell death, are P2 receptors expressed in the normal brain, 
especially on microglia. However, a PC study revealed that 
P2X7 receptors were expressed more than 100-fold above 
normal levels in an astrocyte-specific manner, and their spa-
tiotemporal pattern correlated well with the time course of 
astrocyte activation and acquisition of ischemic tolerance. 
Furthermore, the suppression of astrocyte activation with 
FC also suppressed P2X7 receptor upregulation, indicat-
ing that it is dependent on astrocyte activation. In addi-
tion, the acquisition of ischemic tolerance by PC in P2X7 
receptor-deficient mice was completely abolished. Thus, 
PC transforms reactive astrocytes into “ischemia-resistant 
astrocytes” expressing the P2X7 receptor, suggesting that 
P2X7 receptor signaling is a prerequisite for the acquisition 
of ischemic tolerance[10].

Next, we investigated which factors promoted the 
acquisition of ischemic tolerance and found HIF-1α was 
important. HIF-1α, a master molecule in the regulation of 
oxygen homeostasis, especially in neurons, where HIF-1α 

reactive astrocytes. The findings that (1) the spatiotemporal 
distribution of reactive astrocytes and brain regions where 
ischemic tolerance was induced after PC was well matched, 
(2) and that fluorocitrate (FC), an inhibitor of astrocyte 
activation, abolished ischemic tolerance [10], indicate 
that reactive astrocytes induced by PC are essential for the 
promotion of ischemic tolerance. In addition, PC-evoked 
ischemic tolerance was abolished in a GFAP and vimentin 
double knockout mouse, both of which are intermediate fila-
ments and are known to be upregulated in astrocytes by PC 
[28], indicating that astrocyte activation was necessary for 
acquiring ischemic tolerance.

PC induced ischemic tolerance by enhancing glutamate 
transporter 1 expression, glutamate uptake, and suppress-
ing excitotoxicity [29], indicating that the negative regu-
lation of excitatory synaptic transmission is a mechanism 
of ischemic tolerance by astrocytes. Because ATP is a glial 
transmitter that has a central role in astrocyte-neuron cou-
pling [30], we screened for ATP-associated molecules and 
found that the key molecule for ischemic tolerance. P2X7 

Fig. 2  Sensing and responses to PC by glial cells and ischemic tolerance
 PC is a very mild load that does not damage neurons (non-invasive ischemia). Glial cells are sensitive to environmental changes inside and outside 
the brain, and microglia in particular are highly sensitive sensors that constantly monitor the brain. Microglia initially sense PC, which could be 
subsequently transmitted to astrocytes to form ischemic tolerance-type astrocytes. Microglia-astrocyte-neuron communication after PC is neces-
sary for the acquisition of ischemic tolerance
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microglia induce type I IFN-related molecules including 
TNF-α, which upregulates P2X7 receptor expression[31], 
during the acquisition of cross-ischemic tolerance induced 
by LPS[25]. This suggests that ischemic tolerance may be 
induced by communication between microglia and astro-
cytes, but the specific mechanisms involved require further 
study (Fig. 2).

(3) Mechanisms of P2X7 receptor activation

The P2X7 receptor is a low sensitivity P2 receptor that 
requires very high ATP concentrations (0.3 mM or higher) 
for its activation [32]. However, PC does not induce high 
extracellular ATP concentrations ([ATP]o) [33]. It was 
reported that P2X7 receptors on peripheral immune cells 
can be sensitized by ADP-ribosylation, for which ecto-ADP-
ribosyltransferase 2 (ARTC2) and nicotinamide adenine 
dinucleotide (NAD+), a substrate for ARTC2, have essential 
roles [34, 35]. Peripheral T cells express ARTC2 and P2X7 
receptors, and P2X7 receptors are sensitized by ARTC2-
catalyzed ADP-ribosylation. Thus, NAD+ can increase the 
sensitivity of cellular P2X7 receptors if ARTC2 is present. 
P2X 7 receptors on astrocytes might be sensitized by such 
a mechanism although astrocytes do not express ARTC2 

accumulates intracellularly during hypoxia, translocates 
into the nucleus and regulates the transcription of more 
than 100 important molecules. HIF-1α is homeostatically 
produced intracellularly, but is subject to rapid metabolism 
by oxygen-dependent degradative enzymes, and therefore 
it cannot function as a transcription factor at normal oxy-
gen concentrations. However, in astrocytes, unlike neurons, 
HIF-1α does not accumulate by a hypoxia-dependent mech-
anism, but rather is upregulated by a P2X7 receptor-depen-
dent mechanism [11]. In addition, P2X7 receptor expression 
in reactive astrocytes is persistent (several weeks), and thus 
HIF-1α expression is also persistent. This leads to a sus-
tained increase in the HIF-1α-dependent transcription of 
various brain protective molecules including EPO [4] and 
VEGF [5], resulting in the production of high levels of neu-
roprotective molecules in the brain, and thus strong resis-
tance to subsequent invasive ischemia (Fig. 3).

The importance of astrocyte P2X7 receptor and HIF-1α 
signaling in the acquisition of ischemic tolerance has 
been demonstrated. However, how astrocytes sense PC 
and the mechanism by which they enhance P2X7 recep-
tor expression remains unclear: after PC, astrocyte activa-
tion and P2X7 receptor expression increase concurrently, 
and microglial activation precedes it. As mentioned above, 

Fig. 3  Mechanism of the induction of ischemic tolerance by astrocytes
 Left: Invasive load (lethal ischemia) before PC causes severe brain damage and neuronal death. Middle: One day after PC, microglia are initially 
activated, but at this time point, lethal ischemia still cause severe brain damage, and ischemic tolerance was not observed
 Right: About 3 days after PC, astrocytes become reactive and highly express P2X7 receptors, transforming into ischemia-resistant astrocytes. 
P2X7 receptor activation causes astrocytes to continuously upregulate HIF-1α expression. HIF-1α in astrocytes does not accumulate intracellularly 
in a hypoxia/ischemia-dependent manner, as in neurons, but is upregulated by a P2X7 receptor activation-dependent mechanism. Reactive astro-
cytes express the neuroprotective molecules EPO and VEGF in a HIF-1α-dependent manner, inducing resistance to subsequent invasive ischemia, 
i.e., ischemic tolerance
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TNF-α	� tumor necrosis factor-α.
tPA	� tissue plasminogen activator.
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