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ABSTRACT

Reverse transcription in retroviruses and retrotrans-
posons requires nucleic acid chaperones, which
drive the rearrangement of nucleic acid conform-
ation. The nucleic acid chaperone properties of the
human immunodeficiency virus type-1 (HIV-1)
nucleocapsid (NC) protein have been extensively
studied, and nucleic acid aggregation, duplex desta-
bilization and rapid binding kinetics have been
identified as major components of its activity.
However, the properties of other nucleic acid chap-
erone proteins, such as retrotransposon Ty3 NC, a
likely ancestor of HIV-1 NC, are not well understood.
In addition, it is unclear whether a single zinc finger
is sufficient to optimize the properties characteristic
of HIV-1 NC. We used single-molecule DNA
stretching as a method for detailed characterization
of Ty3 NC chaperone activity. We found that wild
type Ty3 NC aggregates single- and double-
stranded DNA, weakly stabilizes dsDNA, and ex-
hibits rapid binding kinetics. Single-molecule
studies in the presence of Ty3 NC mutants show
that the N-terminal basic residues and the unique
zinc finger at the C-terminus are required for opti-
mum chaperone activity in this system. While the
single zinc finger is capable of optimizing Ty3 NC’s
DNA interaction kinetics, two zinc fingers may be
necessary in order to facilitate the DNA destabiliza-
tion exhibited by HIV-1 NC.

INTRODUCTION

Retrotransposons are mobile genetic elements, closely
related to retroviruses, which use their own proteins in

conjunction with cellular machinery to replicate independ-
ently of the genome. The yeast retrotransposon Ty3, and
retroviruses such as human immunodeficiency virus
type-1 (HIV-1), encode reverse transcriptase (RT), a
DNA polymerase that converts the single-stranded RNA
(ssRNA) genome of positive polarity into
double-stranded DNA (dsDNA). During this reverse
transcription process, two obligatory DNA strand trans-
fers occur to generate the long terminal repeats (LTR)
that control genomic DNA integration and its expression
(1). In the early stages of replication, a tRNA primer
anneals to the primer binding site (PBS) close to the 50-
end of the ssRNA, where RT synthesizes the complemen-
tary DNA (cDNA) strand, referred to as minus strand
strong stop DNA (-sssDNA). While RT synthesizes
-ssDNA, its RNaseH domain degrades the 50-end of the
RNA template. Further DNA polymerization requires
-sssDNA transfer, where the newly synthesized single-
stranded cDNA anneals to the 30-untranslated terminal
region (UTR) of the RNA template (1–3). However,
thermodynamically stable structures within the cDNA
and the 30-UTR RNA make duplex formation improb-
able. The nucleocapsid (NC) protein acts as a nucleic
acid chaperone that destabilizes these secondary struc-
tures and facilitates DNA–RNA hybrid formation (4–8).
NC also participates in the second DNA strand transfer,
where the plus DNA strand anneals to the structured PBS
region of the minus DNA strand (9–12). These transfer
events are required for RT to transcribe the remaining
genomic RNA into dsDNA flanked by the LTR, which
the homologous enzyme integrase inserts into the cellular
genome.
Replication of retroelements requires the nucleic acid

chaperone activity of NC proteins, which tend to be
small cationic proteins with minimal structure other than
one or two CCHC-motif zinc fingers (1–3,13–17). HIV-1
NC is 55 amino acids in length, with two zinc fingers and a
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basic N-terminal tail (1–3). It directs annealing of the
tRNAi

Lys primer to the PBS of the genomic RNA
(5,18,19). The viral RNA has 50 and 30 repeat regions
that include stable trans-activation response element
(TAR) hairpins, and HIV-1 NC facilitates rearrangement
of these nucleic acids during the minus strand transfer step
of reverse transcription (10–12). NC is also an essential
nucleic acid chaperone involved in genomic RNA dimer-
ization and virus assembly (20–24). The chaperone activity
of HIV-1 NC involves nucleic acid aggregation, duplex
destabilization and rapid binding kinetics (25–30).
Nucleic acid aggregation, an effect due to protein-induced
interactions that make the DNA molecule attracted to
itself, is associated with the cationic domain of HIV-1
NC. Duplex destabilization involves aromatic residues
in the zinc fingers, which stack with ssDNA bases
(31,32). Thus optimal chaperone activity of HIV-1 NC is
highly sensitive to the zinc-finger architecture, and relies
on a delicate balance between destabilizing secondary
structures and promoting complementary strand
annealing.
A recent study examining the nucleic acid chaperone

activity of NC proteins from several retroviruses estab-
lished that the nucleic acid interaction characteristics
that are important for nucleic acid chaperone activity
varied significantly for different viruses (33,34). From
these studies, it is clear that HIV-1 NC has optimal chap-
erone activity compared to other NC proteins. Although
nucleic acid chaperones from HIV-1 and other retro-
viruses have been extensively studied, less is known about
chaperone activity in LTR retrotransposons (4,35,36).
Since Ty3 NC is a likely ancestor of HIV-1 NC, here we
examine its nucleic acid chaperone properties and compare
them to those of HIV-1 NC. In addition to allowing com-
parison of Ty3 NC to the paradigm of nucleic acid chap-
erone proteins, understanding these differences may also
be useful for the development of drugs that target the
NC protein from the rapidly evolving HIV-1 retrovirus
(37–39). Ty3 NC is a 57-residue protein with one zinc
finger and a basic N-terminal tail (40). Ty3 NC is mono-
meric in solution, and it is required for efficient annealing
of the tRNAi

Met primer on the bipartite Ty3 PBS and
RNA dimerization (41). The UTR regions of the Ty3
genome also form secondary structures, and minus
strand transfer requires Ty3 NC to overcome the energetic
barrier in forming the DNA–RNA duplex necessary for
further reverse transcription.
There are distinct structural differences between Ty3

NC, which has only one zinc finger with two aromatic
residues, and HIV-1 NC, which has two zinc fingers
with one aromatic residue each. The cationic tail of Ty3
NC, which has minimal structure, also contains an
aromatic residue (tyrosine). Ty3 NC, with 20 basic
residues (pI� 11.5), has a slightly higher overall charge
than HIV-1 NC (pI� 10), with 15 basic residues.
Although minimal information is available about the
3D structure of Ty3 NC, it is extremely likely to have
high charge density, consistent with retroviral NC
proteins of known structure such as HIV-1 NC and
Moloney murine leukemia virus (MuLV) NC (42).
Furthermore, the length and structural complexity of the

UTR regions seem to be related to the chaperone activ-
ity of a number of retroviral NC proteins, and the second-
ary structures in the Ty3 UTR regions are not as
thermodynamically stable as the HIV-1 TAR hairpins
(25).

DNA stretching and other biophysical methods have
been used to show that the properties of HIV-1 NC are
specifically tuned to optimize its interactions with both
dsDNA and ssDNA. Specifically, both zinc fingers are
required to maintain their native order and structure,
and seemingly minor mutations result in loss of rapid
kinetics of the DNA–protein interaction (26). Other retro-
viral NC proteins exhibited less rapid kinetics in DNA
stretching experiments, particularly MuLV and human
T-cell lymphotropic virus type 1 (HTLV-1) NC (33,34).
Notably, MuLV NC is the only NC protein studied that
contained a single zinc finger, and it exhibited relatively
slow kinetics. Thus, previous results suggest that two zinc
fingers are generally required to optimize the kinetics of
NC–DNA interactions (26,27,33,34). To determine the
capability of a single zinc finger to facilitate NC–DNA
interactions and to understand the connection between
Ty3 NC’s structure and function as a nucleic acid chaper-
one, we probed the thermodynamics and kinetics of wild
type and mutant NC–DNA interactions with single DNA
molecules. We found that, despite the presence of only a
single zinc finger, wild-type Ty3 NC aggregates nucleic
acids, promotes complementary strand annealing, and
exhibits rapid kinetics resembling that of HIV-1 NC.
Four mutants of Ty3 NC demonstrate that these chaper-
one properties require the zinc finger as well as the
presence of its cationic N-terminal tail. Thus, Ty3 NC’s
single zinc finger is necessary and sufficient to facilitate
rapid DNA–protein interactions, but a second zinc
finger may be required for more effective nucleic acid de-
stabilization by NC proteins, such as that observed for
HIV-1 NC and TAR hairpins.

MATERIALS AND METHODS

Single-molecule DNA stretching experiments were per-
formed as previously described (35,43). Dual beam optical
tweezers were used to capture biotin-labeled bacterio-
phage � DNA between two streptavidin-coated polystyr-
ene beads (Bangs Labs). Surrounding DNA molecules
were rinsed out of solution with buffer (50mM Na+,
10mM HEPES, pH 7.5), and the captured DNA
molecule was then stretched and released at a pulling rate
of 100 nm/s to obtain DNA-only force-extension curves
(Figure 1a, black), which are typically characterized by
models of polymer elasticity. The worm-like chain
(WLC) model describes dsDNA in terms of length bds at
a given force F:

bdsðFÞ ¼ Bds 1�
1

2

kBT

PdsF

� �1
2

+
F
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ð1Þ

where Pds is the persistence length, Bds is the contour
length and Sds is the stretch modulus. The freely jointed
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chain (FJC) model describes ssDNA in terms of length bss
at a given force F:

bssðFÞ ¼ Bss coth
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Figure 1a shows the WLC (blue) and FJC (red) polymer
models with typical parameter values [Bds=0.34 nm/bp,
Pds=48 nm and Sds=1200 pN in Equation (1),
Bss=0.55 nm/bp, Pss=0.75 nm and Sss=720 pN in
Equation (2)]. After obtaining force-extension curves of
a single DNA molecule, the buffer was replaced with pro-
tein dilutions. Ty3 NC and its mutants were introduced
into solution with the DNA held under slight tension in an
effort to reduce formation of extremely stable protein–
DNA aggregates during solution exchange. The first
force-extension curve after protein exchange was therefore
stretched from zero extension to the original starting
extension after DNA release (example in Figure 1b, solid
green curve, starting force of 10 pN). Subsequent force-
extension curves begin and end at zero extension. At least
three stretch–release cycles were performed for each meas-
urement, and subsequent force-extension curves were the
same within error in the case of wild type Ty3 NC. The
50mM Na+ concentration was used for comparison with
earlier studies of other NC proteins. Both the salt and
protein concentration in vivo are higher than those used
here, but the increased binding in low salt tends to com-
pensate for the lower protein concentration.
Melting forces were determined by averaging along the

length of the force-induced melting plateau in the presence
of each protein. Hysteresis was quantified by calculating
A1, the area between the force-extension (Figure 1b, solid
green) and release (Figure 1b, dashed green) curves of
DNA in the presence of wild-type Ty3 NC and its
mutants. A linear combination of the WLC and FJC
models (Figure 1b, blue and red, respectively) indicates
the fraction of ssDNA generated upon DNA extension
(Figure 1b, black), as described in (44). The total amount
of hysteresis possible is A2, the area between the extension
curve (Figure 1b, solid green) and this linear combination
(Figure 1b, black). Relative hysteresis is the ratio of A1

and A2, ranging from 0.1 (�0.03) in the absence of protein,
to a theoretical maximum of 1, which would indicate that
all the ssDNA generated is bound by protein upon DNA
release and does not dissociate on the time scale of the
release (�1min). Averages and uncertainties (standard

(c)

(b)

(a)

Figure 1. (a) Typical force-extension (solid) and release (dashed) curves
of �-DNA (black) obtained with optical tweezers. The WLC model
(blue line) describes dsDNA. Near the dsDNA contour length, the
molecule undergoes a force-induced melting transition, from dsDNA
to ssDNA. The FJC model describes ssDNA (red line). Minimal hys-
teresis is evident in these solution conditions (50mM Na+, 10mM
HEPES, pH 7.5). (b) Quantification of the hysteresis area ratio for a
typical DNA extension and release curve. Force–extension (solid) and
release (dashed) curve of DNA in the presence of Ty3 NC �2-NCp9 dd
are shown in green. The WLC and FJC models are shown in blue and
red, respectively. A linear combination of these two models is shown in

Figure 1. Continued
black, indicating the fraction of ssDNA exposed to solution upon DNA
extension. Relative hysteresis is the ratio of A1, the area between the
stretch (solid green) and release (dashed green) curves, and A2, the area
between the stretch (solid green) and melted DNA fraction (black)
curves. (c) Equilibrium dissociation constant Kd determined from
change in average melting force �Fm as a function of protein concen-
tration c fit to a simple DNA binding isotherm [Equations (3) and (5)].
Data points for mutant �2-NCp9 dd are shown with standard error
bars, with a fit (blue line) that yields Kd=20 (� 1) nM and saturated
melting force �Fm

sat=16 (� 0.5) pN. Kd was estimated for mutants
�1-NCp9 and NCp9 dd with this method, but could not be obtained
for mutant �2-NCp9, which did not affect DNA melting force.
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error) for all values reported were calculated using at least
three measurements.
To quantify the effect of wild-type Ty3 NC on the

shape of the force-induced melting plateau, transition
width �F was determined from the slope at the midpoint
of melting transition, as described in (27,45). The
change in transition width is �F= �F – �F0, where �F0

is the transition width in the absence of protein. Change in
transition width as a function of protein concentra-
tion c may be described by a simple DNA binding
isotherm (46):

� ¼
c

Kd
1� �ð Þ ð3Þ

where Kd is the equilibrium dissociation constant and the
fractional DNA binding � is given by the change in tran-
sition width:

� ¼
�FðcÞ

�Fsat
¼
�FðcÞ � �F0

�Fsat � �F0
ð4Þ

with �Fsat defined as the transition width at saturated
protein concentration. Standard error for measured data
points was calculated from at least three measurements,
and fits to Equations (3) and (4) were performed using �2

analysis.
Ty3 NC mutants have negligible effect on the transition

width, so Kd was obtained from their effect on the average
melting force Fm, as reviewed in (43). Change in melting
force is �Fm=Fm – Fm

0, where Fm
0=61.0 (0.5) pN, the

melting force in the absence of protein. �Fm as a function
of protein concentration c may be described by Equation
(3), where the fractional binding � is given by the change in
melting force:

� ¼
�FmðcÞ

�Fsat
m

¼
FmðcÞ � F0

m

Fsat
m � F0

m

ð5Þ

with Fm
sat defined as the average melting force at satu-

rated protein concentration. Data points with standard
error were fit with Equations (3) and (5) to quantify Kd

for mutant �2-NCp9 dd (Figure 1c). This method was
used to estimate Kd for mutants �1-NCp9 and NCp9
dd, but mutant �2-NCp9 did not affect melting force
over two orders of magnitude change in protein
concentration.
Ty3 NC protein of 57 amino acids and its mutants were

synthesized on the solid phase using fmoc (9-fluorenyl-
methoxycarbonyl)- and opfp (pentafluorophenyl ester)-
protected amino acids and purified to homogeneity by
HPLC (47).

RESULTS

Wild-type Ty3 NC binds DNA with rapid kinetics and
slightly stabilizes dsDNA

Optical tweezers were used to stretch and release a single
molecule of bacteriophage � DNA in the absence of
protein and in the presence of a nearly saturated concen-
tration of wild type Ty3 NC (Figure 2a). While bacterio-
phage � DNA is not the sequence acted on by Ty3 NC, it

(c) 

(b) 

(a)

Figure 2. (a and b) Typical force-extension (solid) and release (dashed)
curves of �-DNA in the presence of wild type Ty3 NC. (a) DNA only
(black) and 5 nM wild type Ty3 NC (green). (b) 5 nM (green) and
25 nM (blue) wild type Ty3 NC. (c) Change in the transition width
�F of DNA force-induced melting as a function of wild type Ty3
NC concentration. �F= �F – �F0, where �F is the melting transition
width in the presence of protein and �F0=3.6 (�0.3) pN, the melting
transition width of DNA only. Standard error determined from at least
three measurements was used to compute error bars for �F. A �2 fit
(blue line) to a simple DNA binding isotherm [Equations (3) and (4)]
yields Kd=3.5 (�0.5) nM and �Fsat=6.2 (�0.4) pN. Protein concen-
trations significantly above saturation (80–150 nM) were also included
in the �2 fit (data not shown).
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represents a random sequence, allowing us to measure the
ability of the protein to remodel general nucleic acid struc-
tures. In the absence of protein, B-form dsDNA uncoils
with a gradual increase in force at low extensions. As the
molecule approaches its contour length of 0.34 nm/bp, the
elasticity of the backbone causes a sharp increase in force.
At �60 pN, the DNA molecule lengthens more than
1.5 times with minimal increase in force as it undergoes
a cooperative force-induced melting transition from
dsDNA to ssDNA (48–50). The force increases rapidly
again at the end of this cooperative phase transition, at
0.6 nm/bp. As the DNA is released back to low extensions,
the force-extension curve is almost completely reversible,
exhibiting only minor hysteresis, which is the difference
between the extension and release curves. The area
between these curves characterizes the amount of
hysteresis.

In the presence of 5 nM wild type Ty3 NC, the force
increases at low extensions, below the � DNA contour
length (Figure 2a). The transition at the end of the
melting plateau also shifts to lower extensions, decreasing
by �0.025 nm/bp. These effects are due to nucleic acid
aggregation, in which protein-induced interactions make
the DNA molecule attracted to itself. A 5-fold increase in
protein concentration leads to small increases in these two
effects, reflecting additional nucleic acid aggregation
(Figure 2b).

The force-induced melting plateau is slightly sloped in
the presence of wild type Ty3 NC. This increase in tran-
sition width reflects a loss of DNA melting cooperativity,
which indicates that the DNA molecule is more likely to
undergo conformational rearrangements, an effect which
has been observed for multiple nucleic acid chaperone
proteins (27,34,45,46). A simple DNA binding isotherm
[Equations (3) and (4)] fit to the change in transition
width �F as a function of protein concentration c yields
an equilibrium dissociation constant Kd=3.5 (�0.5) nM
and saturated change in transition width �Fsat=6.2
(�0.4) pN (Figure 2c, blue line).

The lack of hysteresis indicates that Ty3 NC exhibits
rapid kinetics, allowing it to dissociate quickly from
ssDNA. Rapid kinetics, which is characteristic of nucleic
acid chaperones, is correlated with a protein’s ability to
facilitate re-annealing. In contrast, proteins that preferen-
tially bind ssDNA, such as T4 gp32, induce significant
hysteresis, and proteins that preferentially bind dsDNA,
such as HMG, stabilize the duplex and increase the
melting force (43). The melting force in the presence of
wild type Ty3 NC is slightly higher than that of DNA
only (Table 1), which indicates net stabilization of the
DNA duplex. In order to elucidate how a protein that
stabilizes duplex DNA can act as a nucleic acid chaperone,
four mutants of Ty3 NC were used to further investigate
the DNA binding role of the zinc finger and N-terminal
tail (Figure 3). The N-terminal tail was deleted to vary-
ing degrees in mutants �1-NCp9 and �2-NCp9, leaving
the zinc finger intact. In mutant �2-NCp9 dd, how-
ever, the zinc finger has also been deleted. Mutant
NCp9 dd has a largely intact N-terminal tail, but no
zinc finger.

Cationic tail deletions destroy the rapid kinetics and
duplex stabilization of wild type Ty3 NC

The N-terminal tail of mutant �1-NCp9 is missing the
first 16 residues, compromising the protein’s DNA
binding affinity by �5-fold (Table 1). Kd was estimated
as 12 (�3) nM using a simple DNA binding isotherm to
approximate the decrease in melting force as a function of
protein concentration [Equations (3) and (5)]. In striking
contrast to wild type Ty3 NC, force-extension curves in
the presence of 20 nM �1-NCp9 exhibit significant hyster-
esis (Figure 4a). The hysteresis ratio for �1-NCp9 is 0.68
(�0.1), relative to 0.26 (�0.03) for wild type (Table 1).
This indicates that the mutant does not dissociate from
ssDNA on the timescale of the experiment, leading to
the loss of rapid kinetics. Subsequent stretches reflect in-
complete protein dissociation (Figure 4b). �1-NCp9
induces less aggregation than wild type Ty3 NC, and its
effect on the force-induced melting transition width is
nominal. Furthermore, the melting force is 59.4 (�0.7)
pN in the presence of the mutant, which is significantly
lower than the 68.0 (�1.0) pN melting force in the
presence of wild type Ty3 NC (Table 1). This result
reflects weak duplex destabilization by �1-NCp9.
To identify the DNA binding activity of the zinc finger,

we examined the �2-NCp9 mutant. Deletion of the
N-terminal tail leaves a mutant that primarily consists of
the zinc finger, and has DNA binding affinity more than

Table 1. Melting force and hysteresis area in the presence of wild

type Ty3 NC and its mutants, measured at protein concentrations

c (force-extension curves shown in Figures 2, 4–7), near or above

Kd. Equilibrium dissociation constants Kd reported for 50 nM Na+

Ty3 NC
protein

c (nM) Fm (pN)a Hysteresis
(ratio)b

Kd (nM)c

Wild type 5 68.0 (�1.0) 0.26 (�0.03) 3.5 (�0.5)
�1-NCp9 20 59.4 (�0.7) 0.68 (�0.1) 12 (�3)
�2-NCp9d 50 60.6 (�0.1) 0.49 (�0.1)
NCp9 dd 3 71.5 (�0.4) 0.55 (�0.1) 3 (�2)
�2-NCp9 dd 13 67.1 (�0.5) 0.67 (�0.1) 20 (�1)

All values were calculated with at least three measurements, reflecting
the uncertainty reported (standard error).
aThe melting force is an average along the length of the force-induced
melting plateau in the presence of each protein. The melting force of
DNA only in 50mM Na+ is 61.0 (�0.5) pN.
bHysteresis is an area ratio that reflects amount of protein still bound
upon DNA release (Figure 1b). The ratio increases with the amount of
ssDNA observed upon DNA release, up to a maximum value of 1. The
minimal hysteresis in the absence of protein yields an area ratio of 0.1
(�0.03).
cKd was quantified from the change in transition width in the case of
wild-type Ty3 NC (Figure 2c). Change in melting force was used to
determine Kd for Ty3 NC mutants (Figure 1c), with the exception of
�2-NCp9, which did not affect melting force upon DNA binding.
dTy3 NC mutant �2-NCp9 did not appreciably bind DNA on the first
stretch–release cycle (Figure 5a) over two orders of magnitude in
protein concentration (1–100 nM). At protein concentrations 50 nM
and above, binding that altered hysteresis was achieved only upon
the third stretch–release cycle (Figure 2b and c) and this effect did
not change significantly at higher concentrations. Therefore data from
the third force-extension curve is included in Table 1 to provide a
comparison of melting force and hysteresis ratio for this mutant.
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an order of magnitude smaller than that of wild type.
Although �2-NCp9 does not affect DNA melting force
or transition width to allow for an estimate of Kd, protein
concentrations smaller than 50 nM reflected no DNA
binding. In the presence of 50 nM protein, the first
force-extension curve lies almost exactly on top of the
DNA only curve, showing a negligible effect (Figure 5a).
The second stretch–release cycle exhibits some hysteresis,
indicating slow kinetics (Figure 5b), which increases
further in the third force-extension curve (Figure 5c).
The �2-NCp9 mutant is the only Ty3 NC protein for
which successive stretch-release cycles show additional
protein binding. The third stretch-release cycle is required
to observe an effect comparable to the other proteins
presented in Table 1 because �2-NCp9 binds DNA with

significantly lower affinity than wild type or the other mu-
tants. Furthermore, these effects remain the same within
error, even up to 100 nM protein concentration. Therefore
the hysteresis ratio of 0.49 (�0.1) is reported in Table 1 for
comparison. There is less hysteresis than that for
�1-NCp9 (Table 1), which is consistent with the likeli-
hood that �2-NCp9 has higher charge density.

DNA stretching curves in the presence of mutants
dominated by the zinc finger imply that the zinc finger
of Ty3 NC contributes to nucleic acid aggregation and
duplex destabilization. Both mutants with a compromised
N-terminal tail also lack the rapid kinetics of wild type
Ty3 NC, demonstrating that the cationic tail is required to
promote nucleic acid annealing.

Zinc-finger deletions destroy rapid kinetics and induce
strong duplex stabilization

To identify the DNA binding properties of the N-terminal
tail, we examined two mutants that lack the zinc finger
entirely, NCp9 dd and �2-NCp9 dd. The zinc-finger
deletion in mutant NCp9 dd leaves the cationic tail nearly
intact, resulting in DNA binding affinity most similar to
that of wild-type Ty3 NC, with Kd estimated as 3 (�2) nM
(Table 1). The initial force-extension curve in the presence
of 3 nM NCp9 dd exhibits a significantly higher melting
force of 71.5 (�0.4) pN, which reflects strong dsDNA sta-
bilization (Figure 6a, Table 1). The second stretch exactly
follows the previous release curve, indicating that the
mutant binds ssDNA irreversibly on the timescale of the
experiment (Figure 6b). NCp9 dd also induces strong
DNA aggregation, indicated by an increase in the DNA
stretching force to 10–20 pN below the DNA contour
length, an effect that dominates subsequent stretches.

The �2-NCp9 dd mutant is �2-NCp9 without the zinc
finger. Deletion of both the N-terminal tail and the zinc
finger results in a small protein likely to have a high charge
density, with DNA binding affinity an order of magnitude
smaller than that of wild type Ty3 NC. A simple DNA
binding isotherm [Equations (3) and (5)] fit to change in
melting force �Fm as a function of protein concentration c

(a) (b)

Figure 4. Typical force-extension (solid) and release (dashed) curves of (a) DNA only (black) and in the presence of (a and b) 20 nM Ty3 NC mutant
�1-NCp9. First stretch–release curve shown in green (a and b), and second stretch–release curve shown in blue (b).

(a)

(b)

(d)

(e)

(c)

Figure 3. Structure of (a) wild-type Ty3 NC, (b) �1-NCp9, (c)
�2-NCp9, (d) NCp9 dd and (e) �2-NCp9 dd. Basic residues shown
in blue and zinc coordinating residues shown in green.
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yields Kd=20 (�1) nM with saturated change in melting
force �Fm

sat=16 (�0.5) pN. The force-extension curve
in the presence of 13 nM �2-NCp9 dd exhibits duplex
stabilization, DNA aggregation (10 pN force is required

to stretch DNA below the dsDNA contour length), and
large hysteresis (Figure 7a). In contrast with �2-NCp9
(Figure 6b), subsequent stretch–release cycles reflect in-
complete protein dissociation (Figure 7b). DNA force-
extension curves in the presence of mutants without the
zinc finger indicate that the cationic tail of Ty3 NC con-
tributes strongly to nucleic acid aggregation, and is largely
responsible for dsDNA stabilization. Both mutants also
induce strong hysteresis, and this inhibition of DNA an-
nealing abolishes rapid kinetics, which requires both the
zinc finger and the N-terminal tail of Ty3 NC.

DISCUSSION

Recent studies of nucleic acid chaperone proteins from
retroviruses and retrotransposons have shown that aggre-
gation, duplex destabilization and rapid kinetics are often
characteristic of their chaperone activity. Single-molecule
stretching experiments have also shown that an increase in
the slope of the DNA melting plateau is positively cor-
related with nucleic acid chaperone activity (34,45,46).
Force-extension curves in the presence of wild type Ty3
NC exhibit this increase in transition width, and demon-
strate that aggregation of both single- and double-
stranded nucleic acids is a key component of its chaperone
activity. The increase in the force at extensions below the
DNA contour length has also been observed with retro-
viral NCs such as HIV-1 NC and RSV NC (34). In
addition, the decrease in ssDNA contour length has
been reported for ORF1p, the nucleic acid chaperone from
the LINE-1 retrotransposon (45,46). DNA stretching
curves in the presence of Ty3 NC also exhibit very little
hysteresis, indicating that the protein dissociates quickly
from ssDNA, allowing the strands to anneal, and rapid
kinetics is a key component of its nucleic acid chaperone
activity. These results contrast significantly with those
obtained in the presence of MuLV NC, the only other
single zinc finger NC protein studied by DNA stretching
(34). DNA stretching curves in the presence of MuLV NC
exhibit significant hysteresis and much less aggregation.
Although the previous results suggested that two zinc
fingers may be required for rapid DNA interaction
kinetics, this study shows that rapid kinetics can be
observed even with a single zinc finger NC protein.
We examined several mutants to investigate the rela-

tionship between the structure of Ty3 NC and its nucleic
acid chaperone function. Stretching curves in the presence
of �1-NCp9, which has a partially deleted N-terminal tail,
indicate that the zinc finger contributes to weak duplex
destabilization, an effect that balances the strong duplex
stabilization of the cationic tail. Although the distribution
of charge depends upon the structure of Ty3 NC mutants
bound to nucleic acids, which is unavailable, both mutants
without the zinc finger must have high charge density.
Both of these mutants, NCp9 dd and �2-NCp9 dd, sig-
nificantly increase the melting force, to 71.5 (�0.4) pN and
67.1 (�0.5) pN, respectively (Table 1). The N-terminal tail
mutants demonstrate that the cationic residues on the
N-terminus stabilize dsDNA, while the zinc finger desta-
bilizes dsDNA. When the cationic region is deleted, DNA

(a) 

(b)

(c)

Figure 5. Typical force-extension (solid) and release (dashed) curves of
(a) DNA only (black) and in the presence of (a–c) 50 nM Ty3
NC mutant �2-NCp9. First stretch–release curve shown in green
(a and b), second stretch–release curve shown in blue (b and c), and
third stretch-release curve shown in red (c).
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destabilization by the zinc finger, which contains two aro-
matic residues that could potentially stack with ssDNA,
dominates the overall thermodynamics of the DNA-
protein interaction. When the zinc finger is deleted, the
protein strongly stabilizes dsDNA.
While duplex stabilization such as that observed for

wild type Ty3 NC is likely to be somewhat detrimental
to nucleic acid chaperone function, this property is a con-
sequence of the high charge density of the protein. A high
charge density is required for efficient nucleic acid aggre-
gation, which is a primary requirement for nucleic acid
chaperone activity. Thus, wild type Ty3 NC balances ag-
gregation by its cationic residues and duplex destabiliza-
tion by its zinc finger, resulting in overall mild duplex
stabilization in conjunction with strong aggregation.
Although all four mutants aggregated both dsDNA and
ssDNA, the effect was strongest with zinc finger deletion.
Mutant �2-NCp9, which is primarily the zinc finger,

showed the least DNA aggregation as well as the
weakest DNA binding. Even at 100 nM protein concen-
tration, nearly 4-fold higher than saturated binding of
wild type Ty3 NC, multiple stretch–release cycles were
required to see an effect. In contrast, the zinc-finger dele-
tion of NCp9 dd is likely to result in higher charge density,
preserving DNA binding affinity. These properties are
consistent with the ability of NCp9 dd to facilitate
tRNA primer annealing, promote genomic RNA dimer-
ization, and initiate cDNA synthesis in vitro because these
processes do not require significant duplex destabilization
to proceed (47).

The rapid kinetics of wild type Ty3 NC is highly sensi-
tive to protein charge and structure, and deletion of either
the zinc finger or the cationic tail forms mutants that
induce hysteresis, which demonstrates that rapid kinetics
requires both the zinc finger and the N-terminal tail. In
fact, only wild type Ty3 NC has rapid kinetics, quickly

(a) (b)

Figure 6. Typical force-extension (solid) and release (dashed) curves of (a) DNA only (black) and in the presence of (a and b) 3 nM Ty3 NC mutant
NCp9 dd. First stretch–release curve shown in green (a and b), and second stretch–release curve shown in blue (b).

(b)(a) 

Figure 7. Typical force-extension (solid) and release (dashed) curves of (a) DNA only (black) and in the presence of (a and b) 13 nM Ty3 NC mutant
�2-NCp9 dd. First stretch–release curve shown in green (a and b), and second stretch–release curve shown in blue (b).
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switching between binding single- and double-stranded
nucleic acids. The weak duplex destabilization effect of
the zinc finger and the strong duplex stabilization effect
of the cationic tail work in concert to transiently destabil-
ize secondary structures in the 50- and 30-UTR and facili-
tate annealing of the DNA:RNA duplex during reverse
transcription (2,51). Thus, a single zinc finger is sufficient
for a highly charged NC protein to exhibit rapid DNA–
protein interaction kinetics. Although the high charge
density of the protein strongly stabilizes dsDNA, the
single zinc finger also destabilizes DNA, and the resulting
balance of these two effects makes Ty3 NC a very strong
nucleic acid aggregation protein with only weak duplex
stabilization. If Ty3 required significant duplex destabil-
ization to facilitate minus strand transfer, as is the case for
HIV-1, a second zinc finger would likely be needed. In
fact, HIV-1 NC probably evolved a second zinc finger
for this purpose, in conjunction with the requirements of
other critical HIV-1 replication processes, due to the high
thermodynamic stability of its TAR hairpins. This
suggests that nucleic acid chaperone activity of NC
proteins is specifically tuned to secondary structures in
the UTR regions of their genomic RNA. The nucleic
acid chaperone properties are then optimized to
maximize DNA aggregation while facilitating only the ne-
cessary secondary structure rearrangements required for
reverse transcriptase to synthesize a complete functional
viral DNA.
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