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Abstract Predictive computational modelling in

biomedical research offers the potential to integrate diverse

data, uncover biological mechanisms that are not easily

accessible through experimental methods and expose gaps

in knowledge requiring further research. Recent develop-

ments in computing and diagnostic technologies have ini-

tiated the advancement of computational models in terms

of complexity and specificity. Consequently, computational

modelling can increasingly be utilised as enabling and

complementing modality in the clinic—with medical

decisions and interventions being personalised. Myocardial

infarction and heart failure are amongst the leading causes

of death globally despite optimal modern treatment. The

development of novel MI therapies is challenging and may

be greatly facilitated through predictive modelling. Here,

we review the advances in patient-specific modelling of

cardiac mechanics, distinguishing specificity in cardiac

geometry, myofibre architecture and mechanical tissue

properties. Thereafter, the focus narrows to the mechanics

of the infarcted heart and treatment of myocardial infarc-

tion with particular attention on intramyocardial biomate-

rial delivery.
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Introduction

Cardiovascular diseases are the single leading cause of

death worldwide, accounting for 30 % of all human mor-

tality [1]. Despite recent advances in pharmaceutical, sur-

gical, device and tissue-engineered therapy strategies,

cardiovascular diseases remain one of the most costly,

common and deadly medical conditions. Since predicted

mortality of cardiovascular diseases is projected to

increase, it is expected to remain the leading cause of death

globally [1, 2].

Computational models can provide a unique framework

for assessing efficacy of therapy approaches with relatively

low resources: Therapeutic parameters can be easily

modified and assessed in multiple concurrent in silico

experiments, and computational sensitivity studies are

easily conducted to optimise treatment efficacy. Advancing

research and technologies have sparked a great deal of

interest in integrating FE models into the clinical envi-

ronment. This is becoming more achievable each year,

making it likely that computational models will serve as

the first line of the screening for future therapies in the

years to come [3].

Reliable computational models can also provide a richer

source of information for clinical decision support and

treatment planning. Patient- and subject-specific computa-

tional modelling has been increasing at an exponential rate

(Fig. 1a), and sources of patient-specific genetic, anatom-

ical and physiological information are already being

incorporated in the clinical workflow [4–6].
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This review aims at contextualising the advances and

challenges of patient-specific computational modelling

with particular focus on cardiac and infarct mechanics and

the translation of therapeutic concepts, based on intramy-

ocardial biomaterial injections, for the myocardial infarc-

tion (MI) and infarct-induced heart failure (HF). The

developments in subject- and patient-specific modelling are

detailed with focus on cardiac geometries, myofibre

architecture and the constitutive properties of cardiac tis-

sue. Thereafter, the focus narrows on computational mod-

elling of infarct mechanics and therapies for MI, in

particular intramyocardial biomaterial injection.

Patient-specific modelling of cardiac mechanics

Cardiac geometries

Anatomical simplification needs to balance model accuracy

and computational demands. Until recently, this motivated

the use of simplified left ventricular (LV) geometries

introduced by various groups [7–9] as the primary com-

putational tool for investigating cardiac mechanics. The

use of patient-specific realistic geometries has, however,

become prevalent in computational models (Fig. 1b). This

shift towards realistic geometries is indicative of the goal to

create more representative computational models for use in

clinical decision support.

The first three-dimensional patient-specific computa-

tional geometry of a heart was introduced by Okajima et al.

[10] to study electrical activation. It took over two decades

for deformable computational finite-element (FE) approa-

ches to incorporate realistic heart geometries [11]. Nielsen

et al. [12] presented a realistic biventricular model that was

novel for its accurate geometric description and definition

of myofibre orientation. Stevens et al. [13] extended the

model to account, in part, for the four valves. Since then,

realistic geometrical models have become increasingly

popular. The Living Heart Project recently developed the

first full heart model that features a four-chamber human

heart geometry with the four valves and the connecting

large vessels [14].

To date, patient-specific cardiac geometries have been

introduced as representative cases as proof of concept that

a given computational approach can be applied in a patient-

specific framework. Extending the concept to computa-

tional studies with a large number of patient-specific

geometries could generate statistically meaningful results
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for a patient population. An alternative approach is to

utilise a statistically averaged geometry that is represen-

tative of a patient population [15].

Myofibre architecture

The myofibre orientation has a critical influence on cardiac

mechanics and electrophysiology. However, the descrip-

tion of myofibre orientation is a highly intricate and

sophisticated task, which has been the subject of substantial

historical disagreement [16–18]. The intricacy stems from

the complex multiscale branching and merging of cardiac

myocytes at microscopic scale, creating anisotropy at tissue

level that changes dramatically throughout the structure.

An accurate numerical portrayal of the myofibre architec-

ture needs to incorporate the one-dimensional directional

tangent of the myofibre and the description of the fibre

sheets [18–20] which influences both passive and active

material behaviour.

In recent work, two methods are predominant in

describing the myofibre orientation in patient-specific car-

diac models: Rule-based reconstructions and fibre orien-

tation derived from diffusion tensor magnetic resonance

imaging (DTMRI). Rule-based approaches typically

describe the fibre orientation analytically or through

aggregated experimental data, whereby a dense fibre ori-

entation field is constructed through interpolation functions

[21, 22]. This has recently been cast in the form of a

boundary value problem, whereby the fibre orientation is

prescribed along the surfaces of the ventricular structure

and solved for throughout the geometry [23]. Rule-based

reconstructions can be advantageous in their application to

highly irregular geometries and their efficient implemen-

tation. In DTMRI approaches, the myofibre orientation is

calculated from the eigenvectors of diffusion tensors. Due

to the challenges of in vivo cardiac DTMRI, this method is

often limited to a single post mortem data set. In this case,

the derived fibre orientations are projected (or mapped)

onto other subject- or patient-specific geometries obtained

from computed tomography (CT) or magnetic resonance

imaging (MRI) [24, 25]. Toussaint et al. [26] recently

captured in vivo patient-specific myofibre orientation data

and integrated these data in other LV models of other

patients. This approach involved diffeomorphic data

transformations between a realistic geometry and the pro-

late spheroidal coordinate system.

Considering the sensitivity of FE predictions to varia-

tions in fibre orientation [27–29], it is preferable to incor-

porate patient-specific DTMRI data whenever possible.

DTMRI is, however, still limited as the diffusion tensor

characterises only the mean myofibre structure in a voxel

volume. Improved accuracy may be achieved by increased

spatial resolution of the DTMRI scan or by including a

dispersion parameter accounting for the deviation of the

fibre orientation within in a voxel. Whereas homogenous

dispersion has been considered in modelling myocardial

tissue [30], dispersion at voxel scale has not yet been

considered. Toussaint et al. [26] in vivo DTMRI analysis is

the most advanced approach at present. No computational

models have investigated cardiac function using truly

individual patient-specific fibre orientation.

Constitutive properties

The first constitutive relationship for passive myocardial

behaviour, in the form of an exponential strain energy for-

mulation, has been credited to byYuan-ChengFung [31–33].

The first invariant-based constitutive model was described

byHumphrey andYin [34], introducing an additional ‘‘fibre-

specific’’ term to account for the material anisotropy,

although limited to transverse isotropy [32]. Costa et al. [35]

developed an extended orthotropic formulation featuring a

fibre-specific coordinate system and principal material

stiffness along the fibre, sheet and normal directions. With

minor modifications, the formulations are commonly rep-

resented as strain energy density function [36, 37]:

W ¼ 1

2
CeQ � 1
� �

þ Aincomp: ð1Þ

Here Q is a function of the material strains (usually Green–

Lagrange), often given as

Q ¼ bff E
2
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2
ss þ bnnE

2
nn þ
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2
E2
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fn

� �
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2
E2
ns þ E2

sn

� �
þ bsf

2
E2
sf þ E2

fs

� �
; ð2Þ

where Eij are the components of the right Cauchy-Green

deformation tensor in local fibre coordinates and bij are the

corresponding material parameters. The strain energy

function in the exponential form can also be constructed by

considering the invariants Ii of the right Cauchy-Green

strain tensor [38]:

W ¼ a

2b
eb I1�3ð Þ þ

X

i¼f ;s

ai

2bi
ebi I4i�1ð Þ2 � 1

n o

þ afs

2bfs
ebfsI

2
8fs � 1

n o
þ Aincomp; ð3Þ

The notation and material parameters detailed by Hol-

zapfel and Ogden [38] have become the most widely used

form of a passive material law for cardiac mechanics, often

recalibrated with new material parameters [22, 39, 40]. The

incompressibility of the material is handled through a

penalty function Aincomp, of which multiple variations exist,

and which is often implemented through mixed formula-

tion methods, splitting the deformation into isochoric and

deviatoric components.
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The incorporation of active tension into a mathematical

description to capture the contractile behaviour of the heart

is a significant task. The most common approach, intro-

duced by Guccione et al. [41], relies on additive contri-

bution of the active stress to the overall material stress,

typically along the local fibre orientation. Active tension

can be constructed using various physiologically mean-

ingful parameters, which has been employed by many

studies [14, 39, 42, 43]. Another emerging approach

involves multiplicative decomposition of the tensor gradi-

ent of deformation [44–46], in a similar fashion to the

theory of volumetric growth. Multiplicative decomposition

is more mathematically robust, whereas the additive

approach can capture physiological phenomena more

meaningfully. The latter is due to a more flexible formu-

lation that allows for parameter calibration on a tensor

component level [44, 45]. Contractile material behaviour

can be coupled within an electromechanical framework,

whereby a more realistic excitation–contraction pattern is

incorporated into the model. Over the last decade, this

multi-physics coupling has been introduced with great

success in various computational models [47–53].

It is impossible to meaningfully determine the three-di-

mensional patient-specific material properties from ventricu-

lar pressure–volume relationships alone [54]. To remedy this,

the identification of suitable values for the constitutive

parameters (sometimes called calibration) often utilises

additional data. In vitro biaxial and shear stress–strain

experiments [55, 56] on cardiac tissue have been used to

calibrate numerous constitutive laws.The reliability of invitro

experiments may be questionable due to tissue damage or

disruption in the process of extraction [57]. Inclusion of

in vivo data in material calibration provides a more realistic

mechanical environment for loading and deformation [58].

Obtaining these stress–strain data from magnetic resonance

electrography (MRE) or tagged MRI provides additional

advantages whereby patient-specific information can be cap-

tured into the constitutive law through optimisation approa-

ches [24, 54, 59–61]. This approach has recently been

extended to additionally estimate infarct material parameters

[62, 63]. Considering the anatomical variability amongst

patients, it becomes increasingly attractive to calibrate mate-

rial laws for geometrically consistent in vivo data, i.e., local

stress–strain data for the same geometry and fibre distribu-

tion—an inherently patient- or subject-specific process that

can easily be adopted to handle cardiac pathologies, e.g., MI.

Modelling of MI treatments

Noninvasive assessment of the heart after MI is essential

for optimal treatment. Local wall stress, in particular, can

be a key factor in assessing cardiac function and predict

post-MI effects, yet wall stress cannot be measured sys-

tematically and quantitatively with clinical modalities [64].

Imaging techniques provide high accuracy information

regarding the strain distribution in the heart, yet cannot

provide local stress information. Laplace’s law, used to

estimate cardiac wall stress, makes considerable assump-

tions with respect to the cardiac structure and provides

considerably different results to anatomically accurate FE

models [65].

FE models have been labelled as the most versatile

approach for quantitatively predicting myocardial stress

and strain distributions [66, 67]. The effects of MI on

structure and function of the heart have received increasing

attention for FE modelling. The understanding of the

aforementioned is essential when developing a treatment to

restore cardiac function and to attenuate adverse post-in-

farct remodelling. Simulating MI in silico allows the

influence on heart to be directly quantified [46, 68–71],

providing deeper insight into the underlying mechanisms

involved. For example, by complementing a study on

dosage efficacy of the ACE inhibitor ramipril, FE models

showed that apical wall stress is an independent predictor

of ventricular remodelling [72].

Surgical ventricular restoration (SVR) has been the

focus of several computational studies [73–77]. The most

recent SVR studies [75, 76] provide examples for how FE

models with increased complexity can contribute to elu-

cidating physiological processes and guiding treatment

development. For the treatment of MI, Guccione et al. [78]

investigated a ‘‘myosplint’’ device aimed at restraining the

epicardium to prevent remodelling. Wenk et al. [79]

explored the Acorn CorCap cardiac support device as

treatment for dilated cardiomyopathy. Another ventricular

restoration approach relies on the Parachute� device [80]

which was subject of a patient-specific FE study indicating

that the reduction in end-diastolic wall stress underlies the

therapeutic benefit [43]. Mitral valve regurgitation, a sec-

ondary adverse condition resulting from ventricular

remodelling, often following MI, has received recent

attention with increasingly sophisticated FE models

(Fig. 2) [81–84].

Modelling of material injection therapies for MI

There has been significant recent interest in intramyocar-

dial biomaterial injections as therapy for MI, whereby

predominantly the infarcted region of the heart is injected

with a biomaterial which aims to inhibit the adverse

remodelling that leads to HF. Injectable biomaterials are

showing promise in preclinical studies [85–92], resulting in

a range of improvements to cardiac repair, with respect to

wall thickness, ejection fraction and ventricular volume.
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Further research on the specific mechanisms by which

these biomaterials improve cardiac function is needed to

aid the development of more effective treatment.

Research into cardiac injection therapy has become

diverse due to the choice of injectable material and the

delivery method from a range of viable options [93, 94].

Due to this, the representation of intramyocardial bioma-

terial injectates in computational models relies on either

homogenisation approaches, whereby the injected material

is averaged in the description of the myocardium wall, or

through geometric approaches, whereby the injections are

considered separate inclusions embedded within the wall.

Homogenisation techniques have shown consistently

that bulking the myocardium with non-contractile material

was sufficient to offset post-MI geometric changes and,

consequently decrease stress in the myocardial wall

(Fig. 3) [95]. Material injections that result in increased

stiffness to the infarct region have also been shown to

lower stresses in the infarcted and healthy regions of the

heart in subject-specific ovine LV FE models [67] (Fig. 4)

and for idealised ellipsoid LV models [96]. Improvements

to cardiac function seen in the subject-specific ovine FE

model such as wall thickening and increased ejection

fraction [67] are consistent with in vitro and in vivo

experiments [97]. In a combined experimental and com-

putational study, Kichula et al. [98] used an ellipsoidal LV

FE model (Fig. 5) to quantify the anisotropic increase in

stiffness due to hydrogel injection and the reduction in

local and global wall stresses. Dorsey et al. [92] developed

subject-specific porcine LV FE models from cardiac MRI

data to estimate the in vivo diastolic material properties of

infarcted tissue with therapeutic hyaluronic acid-based

hydrogel injections.

For more viscous injectable materials or when the

mechanical effects of the injectate at a microstructural

level are being investigated [99–102], modelling the

injected material as a discrete inclusion more meaningfully

represents the mechanical considerations. Computational

studies have consistently shown the beneficial impact to

cardiac function from material injections of this nature.

Wenk et al. [99] studied in an ellipsoidal LV FE model the

optimal distribution of multiple spherical injectates.

Kortsmit et al. [101] and Miller et al. [100] modelled the

striated and bulk injectate distribution observed preclini-

cally [89, 90, 97], (Fig. 6a, b), as discrete sheet-like

structures embedded within the myocardium in a canine

Fig. 2 Patient-specific FE model for investigation of treatment of

mitral valve regurgitation. Reproduced with permission from Bail-

largeon et al. [115]

Fig. 3 FE prediction of midwall fibre stress in an ovine left ventricle

with anteroapical infarct without treatment (a) and with simulated

intramyocardial delivery 4.4 mL of biomaterial in four infarct border

zone locations indicated by arrows (b). Difference of midwall fibre

stress between the untreated infarct and treated infarct that demon-

strates the location of stress reduction in relation to the injection sites

(arrows) (c). Adapted with permission from Wall et al. [95]
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biventricular model and a human LV model, respectively.

These sheet-like hydrogel inclusions were shown to better

improve cardiac performance in the ischaemic infarct

stage, but bulk-like injectates were shown to be better at

improving LV function at the remodelling stage, comple-

menting an experimental study in rats which investigated

the effects of delayed gel-injection therapy [89]. Sirry et al.

[103] presented a more realistic microstructurally detailed

geometry of a striated polyethylene glycol hydrogel

injectate in an infarcted rat heart, similar to Fig. 6c.

Residual stress in the cardiac wall due to material

injections has only recently been considered. Using a

patient-specific LV FE model based on MRI data of a

patient with HF, ischaemic cardiomyopathy and hyper-

tension, Lee et al. [104] revealed a complex regional stress

field in vicinity of the a set of spherical hydrogel injectates

located equidistant between the base and the apex of the

LV (Fig. 7). These first results warrant further investigation

into the local changes the injections cause to tissue and

Fig. 4 Contour plots of fibre

stress in the lateral wall of an

ovine left ventricle with

untreated infarct at end diastole

(a) and end systole (b), and after
treatment by delivery of 2.6 mL

of a calcium hydroxyapatite-

based tissue filler distributed

over 20 evenly spaced injections

at end diastole (c) and end

systole (d). (Colour scales of the
end diastole panels are the

same, and colour scales of the

end systole panels are the

same). Adapted with permission

from Wenk et al. [67]

Fig. 5 Ellipsoidal LV FE model with 20 intramyocardial hydrogel

injectates. Adapted with permission from Kichula et al. [98]
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fibre structure, as well as the mechanisms responsible for

the clinically observed reduction in global stress [105].

Lee et al. [106] investigated a combination treatment of

biomaterial injections and coronary artery bypass grafting

with patient-specific models developed from MRI data of

three patients suffering with HF. Simulating a longitudinal

study with pre-treatment and three- and six-months post-

treatment time points revealed a more uniform distribution

and 35 % reduction in myofibre stress throughout the LV.

Discussion

Advances in patient-specific computational cardiac

mechanics over the last decade have been significant in

almost every aspect. The quality of imaging and segmen-

tation techniques coupled with increasing computational

resources have allowed for unprecedented growth. Geo-

metrically realistic multi-physics models are becoming the

new standard of computational cardiology. As structural

and functional data of the heart become more easily

available, the calibration and validation of these models

becomes more reliable.

Patient-specific models hold promise for personalising

diagnosis, treatment planning and therapy design. The

example of SVR emphasises that interventions based on

accurate patient-specific information have clear advantages

over treatments that are not personalised. Large-cohort

patient-specific computational studies, simulating treat-

ments in silico, will also be able to unlock novel and sta-

tistically meaningful findings for entire patient

populations—something that cannot be achieved with a

small number of computational models. The ability to re-

use computational models, perturb parameters and perform

Fig. 6 Histological

micrographs demonstrating the

distribution of a polyethylene

glycol hydrogel (appearing in

pink) delivered immediately

(a) and seven days (b) after
infarct induction in rat hearts

(nuclei appear blue, bar

represents 50 lm). Reproduced

with permission from Kadner

et al. [89]. Reconstructed 3D

geometry of a polyethylene

glycol hydrogel injectate with

microstructural details

reconstructed from histological

sections in a biventricular rat

heart geometry (c) (injectate
shown in pink)

Fig. 7 Patient-specific LV FE

model with 12 ellipsoidal

hydrogel injectates located

equidistant between the base

and the apex. Adapted with

permission from Lee et al. [104]
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sensitivity studies will not only provide an unprecedented

wealth of information in the aid of therapy design but can

also accelerate the translation of therapy approaches into

the clinical setting.

Despite these advantages, there has yet to be a single

high-resolution patient-specific computational cardiac

model, constructed and calibrated using data from a single

patient. Accounting for patient-specific myofibre structure

and calibrating material laws using comprehensive in vivo

data are still largely lacking in computational models

investigating cardiac mechanics.

While recent computational research on biomaterial

injection MI therapies has made substantial progress, more

work is needed to further elucidate the mechanisms

underlying the benefits observed. The local and global

changes in myocardial tissue structure after MI, including

necrosis, fibrosis and scar formation, and the representation

in computational models are one area that need to receive

increased attention. Pending availability of experimental

data, advanced numerical methods to model growth [107–

109] and tissue healing [110] may be adaptable to com-

putationally describe MI-related ‘‘reverse’’ growth and

remodelling. This will allow to study in more detail the

effects of biomaterial injectates on tissue changes which

may provide additional therapeutic cues. A related chal-

lenge is the realistic representation of in situ injectate

geometries, in particular when biomaterial infiltrates the

myocardium at microscopic level [89, 90, 97]. Also yet

unconsidered in computational models are injection ther-

apies with mechanobiological targets such as fibroblast

reprogramming [111, 112] and stem cell therapies [113,

114].

Conclusions

Realistic predictive patient-specific computational models

require comprehensive in vivo data for calibration and

validation. In the context of cardiac diseases and therapies,

current in vivo imaging technologies are not yet advanced

enough to provide such patient-specific data as part of the

clinical diagnostic modalities. Until cutting-edge modali-

ties such as in vivo cardiac DTMRI become more available

in the clinic routine, the pursuit of fully subject-specific

computational modelling remains limited to preclinical

research, where a richer resource of in vivo and ex vivo

data can be utilised. Subject-specific computational mod-

elling can, however, offer great potential to complement

experimental research and can play a crucial role in

advancing biomaterial injection therapies for MI.
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