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Objectives: The objective of this study is to extend the UNAIDS incidence estimation
model, the UNAIDS Estimation and Projection Package (EPP), so that it can incorporate
data from incidence assays.

Methods: We propose combining the likelihood of the incidence assay data with the
likelihood of other data, in a manner that is consistent with the biomarker-based
incidence estimator using incidence assay data. Two calibrating parameters specify the
performance of the incidence assays: the false recent rate and the mean duration of
recent infection. We then use synthetic data, based on prevalence data obtained from
antenatal clinic surveillances, and in some cases household surveys, from 24 countries,
to examine the impact of including incidence assay data, under circumstances wherein
the incidence assay data imply the same or a different incidence rate as that inferred
from the prevalence data alone, and wherein incorrect calibrating parameters for the
incidence assay data are used.

Results: Using incidence assay data, in addition to prevalence data, can improve
estimate by narrowing uncertainty intervals in derived HIV incidence estimates, and by
providing information on levels or trends in incidence that were not apparent in the
prevalence data alone. However, the effect is relatively modest if the sample size of the
incidence assay survey is small and results can be biased if the calibrating parameters for
the incidence assay data are not known accurately.

Conclusion: Incorporating information from incidence assays in the manner proposed
has the potential to improve estimates. Further work will examine in more detail the
circumstances under which the contribution of incidence assay data would be most
valuable. � 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins
AIDS 2014, 28 (Suppl 4):S515–S522
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Introduction

The incidence rate of HIV, or any infectious disease, is a
crucial quantity that informs how fast the epidemic is
spreading, and is thus used as part of prevention
programming planning, evaluation and quantifying future
programme needs. The most common estimates of HIV
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incidence rates for countries are from UNAIDS [1].
These estimates are inferred by using observed HIV
prevalence data to fit a mathematical model, called the
UNAIDS Estimation and Projection Package (EPP) [2–5],
which incorporates assumptions on survival times with
HIV and the scale-up of antiretroviral therapy (ART).
However, this is only an indirect estimate rather than a
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direct measurement and has many limitations such as not
being able to pick-up trends in HIV incidence rapidly and
being vulnerable to biases wrought by inappropriate
assumptions in the model.

One other method of estimating incidence is the use
of ‘incidence assays’ [6]. These are laboratory assays
that return a biomarker that is related to the time
that a person has been infected. If the nature of
that relationship is known, then the incidence assay
can be applied to persons who are HIV-positive in a
dZðtÞ
dt

¼ EðtÞ � rðtÞYðtÞZðtÞ
NðtÞ �mZðtÞ � a50ðtÞZðtÞ

NðtÞ þMðtÞZðtÞ
NðtÞ ;

dYðtÞ
dt

¼ rðtÞYðtÞZðtÞ
NðtÞ �HIV death� a50ðtÞYðtÞ

NðtÞ þMðtÞYðtÞ
NðtÞ ;

8>><
>>:

(1)
cross-sectional survey to form an estimate of HIV
incidence, relating to the period of time immediately
prior to the survey. The relationship between the
biomarker and the time since infection can be
summarized, for the purposes of estimating HIV
incidence by two parameters: the false recent rate,
which is the proportion of persons infected for at least
450 days that return a positive biomarker in the
incidence assay; and the mean duration of recent
infection, which is the mean time spent after infection
for which individuals return a positive biomarker
in the incidence assay [7,8]. Low false recent rates
and mean duration of recent infection on the order
of 1 year may be considered the most desirable
properties.

Many assays have been proposed for this use [6]. One
assay, the BED [9], was used in a number of surveys
but was found to have a high false recent rate that
could lead to erroneous estimates of incidence [10].
There are, however, newer assays, which are thought
to have properties more suitable to estimating
incidence in this way and the characteristics of these
assays are being measured using a large range of samples
(http://www.incidence-estimation.com/page/cephia)
and so will be better quantified. One assay in particular –
Limiting-Antigen Avidity Assay [11] – has already
been used in a national survey in South Africa [12].

It would be desirable for data from incidence assays to
contribute to the overall estimates of the epidemic
computed by EPP. This would allow the prevalence data,
assumptions about survival and data from incidence assays
to join forces to produce better estimates. Here, we
describe a new approach that shows how information
from incidence assays can be incorporated into EPP and
examine how these data may affect HIV estimates under
different scenarios for the availability of data from
incidence assays.
Materials and methods

The EPP fits an epidemiologic model to prevalence data
obtained from sentinel surveillance systems and national
population-based HIV sero-prevalence surveys. It pro-
duces the size of infected population Y(t), the size of
uninfected population Z(t), the prevalence r(t) and the
infection rate I(t). All population counts refer to adults
aged 15–49 years and NðtÞ ¼ XðtÞ þ Y ðtÞ þ ZðtÞ. The
rates at which the group sizes change are described by
ordinary differential equations:
where E(t) is the number of new adults entering the
model at time t, a50(t) is the number of people leaving the
model because of reaching age 50, m is the non-AIDS
mortality rate and M(t) is the rate of net migration into the
population; all of these parameters are defined by an
external life-table. The infection rate, r(t), can be specified
in various functional forms such as a random walk
[13,14], a spline [15,16] or a systematic mean structure
(r-trend model) [17]. In this article, we use the r-trend
model for illustrations, but our proposed approach is
generic across all formulations.

The r-trend model assumes that the epidemic starts at t0
with an initial infection rate r0 and that the yearly change
in the infection rate r(t) can be described as:

logrðt þ 1Þ � logrðtÞ ¼ u1 � ðu0 � rðtÞÞ þ u2rðtÞ

þ u3gðtÞ; (2)

where the yearly change in r(t) depends on other key
factors: the current infection rate r(t), the prevalence r(t)
and a tendency for r(t) to reach a steady state t1 years after
t0. Informative prior distributions are placed on the
parameters, which are based on posterior values obtained
from previously applying the model to epidemic data in a
large number of countries:

t0 � U½1970; 1990�
t1 � Nð20; 4:5Þ

logr0 � Nð0:42; 0:23Þ
u0 � Nð0:46; 0:12Þ
u1 � Nð0:17; 0:07Þ

u2 � Nð�0:68; 0:24Þ
u3 � Nð�0:038; 0:009Þ

8>>>>>>>><
>>>>>>>>:

(3)

Once the above input parameters are given, the dynamic
model produces the HIV prevalence and incidence at
each year. The likelihood of prevalence data collected
from antenatal clinics (ANCs) is then defined by a
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hierarchical model that takes the clinic effects into
account [18]. Moreover, one additional parameter is used
to describe the bias in ANC data with respect to
prevalence data from National Population Based Surveys
(NPBS), for example Demographic and Health Surveys
(DHS) [19]. In keeping with the current approach to
including such data, the prevalence data from NPBS are
viewed as representative for the general population, so
that the bias parameter is only involved in the likelihood
of ANC data but not NPBS data as shown below [17].

F�1ðXANC;stÞ ¼ F�1ðrtÞ þ bs þ est; (4)

F�1ðXNPBS;tÞ ¼ F�1ðrtÞ þ eNPBS;t (5)

where XANC,st is the observed prevalence from ANC
clinics at time t, XNPBS,t is the observed prevalence from
national population-based surveys at time t, F�1 is the
inverse of standard normal cumulative distribution
function, bs is the ANC bias parameter and e’s are
independent normal errors.

We assume that newly available incidence assay data will be
collected from the same household surveys used to furnish
overall prevalence estimates. The characteristics of the
incidence assay are the false recent rate bT and VT, which
is the mean duration of recent infection. The data provided
by the use of the incidence assays at time t include:
(1) N
SðtÞ: The number of HIV-negative individuals,
(2) N
NRðtÞ: The number of nonrecently infected HIV-

positive individuals,
(3) N
RðtÞ: The number of recently infected individuals.
Following [8], we assume that (NS, NNR, NR) follow a

trinomial distribution with the following expected values,
and the time index t is ignored in the expressions for
simplicity:

EðNSÞ ¼ Nð1� rÞ (6)

EðNNRÞ ¼ Nr� Nð1� rÞIðVT � bT TÞ=365

� NbTr (7)

EðNRÞ ¼ Nð1� rÞIðVT � bTTÞ=365

þ NbTr ðsee Kassanjee et al: equation 25Þ
(8)

where r and I are prevalence and incidence produced by
the EPP model, respectively.

The log likelihood for these data furnished by the
incidence assay is therefore:

logL�inc ¼ Nslogð1� rÞ þ NNRlog½r� ð1� rÞI

ðVT � bTTÞ=365� bTr�

þNRlog½ð1� rÞIðVT � bT TÞ=365þ bTr�
(9)
And, the log-likelihood of the prevalence data and the
incidence assays combined is the sum of the two log-
likelihoods.

To demonstrate the use of this approach, we generate
synthetic data sets that do and do not include data from
incidence assays and compare the estimates of incidence
so derived. We base our synthetic data construction on
the data from urban areas of the following countries,
(1) E
astern Africa: Burundi, Ethiopia, Eritrea, Kenya,

Malawi, Rwanda, Tanzania, Uganda, Zambia;
(2) C
entral Africa: Cameroun, RCA, Chad, Congo, RDC,

Equatorial Guinea, Gabon;
(3) S
outhern Africa: Botswana, Lesotho, Namibia, Zim-

babwe;
(4) W
estern Africa: Benin, Burkina Faso, RCI, Gambia,

Ghana, Guinee, Liberia, Mali, Sierra Leone, Togo.
ANC data and NPBS data are available in these countries

starting from 1990–2000 and up to 2010. We assume that
the incidence assays become available in the most recent
year, or the year before, that prevalence data were
also available.

Our approach to comparison of model results is as follows:
(1) F
it the EPP model using only prevalence data. For each

posterior sample of EPP output, read off the incidence

and prevalence at 2010, and use them for simulation.
(2) S
et bT ¼ 2:5% and VT ¼ 150. Simulate incidence

assay data from the trinomial distribution following

equations (4–6) with an assumed sample size of 5000.
(3) R
efit the EPP model with incidence data.
(4) C
ompare the results with/without incidence data.
The above simulation offers a scenario wherein the

incidence assay data ‘agree’ with surveillance data and will
be referred as ‘Scenario I’ thereafter. We also simulate two
more scenarios to mimic the cases that the incidence assay
data imply a different incidence rate: either double the
inferred incidence (Scenario II) or half the inferred
incidence (Scenario III). All the scenarios are then
repeated with sample sizes of 10 000 and 20 000 to
investigate the influence of having larger surveys.

Finally, we conduct a sensitivity analysis to understand how
incorrect estimates bT andVT would impact our results by
fixing the values of bT and VT at different values to those
used for generating the synthetic incidence assay data.
Instead of using the EPP model, the simulated data are
produced using values of prevalence ¼ 20%, incidence ¼
2%, bT ¼ 2:5% and VT ¼ 150. In the estimation process,
we specify the following five scenarios:
(1) S
et bT ¼ 2:5% and VT ¼ 150, (all parameters are

correct)
(2) S
et bT ¼ 1:5% and VT ¼ 150, (bT too low)



S518 AIDS 2014, Vol 28 (Suppl 4)
(3) S
Tabl
form

Ben
Bots
Burk
Buru
Cam
Cha
Con
Ethio
Gha
Guin
Ken
Leso
Libe
Mal
Mal
RCA
RCI
RDC
Rwa
Sierr
Tanz
Uga
Zam
Zim
et bT ¼ 3:5% and VT ¼ 150, (bT too high)
(4) S
et bT ¼ 2:5% and VT ¼ 130, (VT too low)
(5) S
et bT ¼ 2:5% and VT ¼ 170. (VT too high).
For fixed bT and VT, we can approximate the

distributions of prevalence and incidence at the time of
the incidence assays by using the maximum likelihood.
Note that the above analysis uses neither the EPP model
nor any real prevalence data because that information
will complicate the relationships between parameters
involved in incidence assays: prevalence, incidence, bT
and VT, and make the effect of using wrong values harder
to summarize.

We emphasize that the use of data from countries is for
illustration only and results should therefore not be seen as
replacing official estimates published by those countries
or by UNAIDS.
Results

We examine the proposed method of incorporating
incidence assay data using the antenatal clinic (ANC), first
assuming that the calibrating parameters of incidence
assays are perfectly known. Table 1 summarizes the
posterior median and standard deviation of prevalence
and incidence estimates based on the combination of
ANC data and other possibly available data sources such as
NPBS and incidence assay data. If we assume that the
e 1. Scenario I: the prevalence and incidence estimates at 2010 with or
of posterior median (standard deviation).

w/o NPBS

w/o incidence assays With incidence as

Prevalence Incidence Prevalence Inci

in 2.8 (0.3) 0.2 (0) 2.9 (0.2) 0.2
wana 34.1 (2.4) 2.2 (0.4) 34.3 (0.7) 2.2
inaFaso 3.1 (0.4) 0.2 (0) 3.1 (0.2) 0.2
ndi 5.4 (1.2) 0.3 (0.1) 5.4 (0.3) 0.3
eroun 9.7 (1) 0.8 (0.2) 9.7 (0.4) 0.8
d 4.7 (0.7) 0.4 (0.1) 4.8 (0.3) 0.4
go 5.9 (0.9) 0.5 (0.1) 5.9 (0.3) 0.5
pia 6.3 (0.6) 0.2 (0) 6.3 (0.3) 0.2

na 3.7 (0.4) 0.3 (0) 3.7 (0.2) 0.3
ea Ecuatorial 8.9 (1.3) 0.7 (0.2) 9 (0.4) 0.7

ya 7.5 (0.9) 0.4 (0.1) 7.4 (0.3) 0.3
tho 35.3 (2.7) 4.7 (0.7) 35.4 (0.7) 4.7
ria 4.5 (0.6) 0.2 (0.1) 4.5 (0.3) 0.2
awi 15.6 (1.3) 0.9 (0.2) 15.7 (0.5) 0.9
i 3.8 (0.5) 0.2 (0.1) 3.8 (0.2) 0.2

10 (1.1) 0.8 (0.2) 10.1 (0.4) 0.8
5.3 (0.6) 0.2 (0.1) 5.4 (0.3) 0.2
4.7 (0.4) 0.4 (0.1) 4.7 (0.3) 0.4

nda 7.4 (0.8) 0.3 (0.1) 7.4 (0.4) 0.3
aLeone 5 (0.6) 0.3 (0.1) 5 (0.3) 0.3
ania 9.9 (0.8) 0.9 (0.1) 9.8 (0.4) 0.9

nda 9.8 (0.9) 0.8 (0.1) 9.8 (0.4) 0.8
bia 25.3 (1.7) 2.1 (0.3) 25.2 (0.6) 2.1
babwe 15.1 (1.6) 0.6 (0.2) 15.3 (0.5) 0.6
incidence assays estimate the same HIV incidence level
as implied by the EPP model with prevalence data
(Scenario I), then introducing incidence assay data
narrows the uncertainty bounds, especially when the
incidence rate at 2010 is high and NPBS are not available,
although the posterior median of prevalence and
incidence in 2010 remain the same (Fig. 1 for six
selected countries, Table 1 left two columns, and
Appendix, http://links.lww.com/QAD/A578). If the
estimates from a country already benefit from additional
prevalence data from NPBS, then the overall uncertainty
of prevalence and incidence is reduced compared with
when only ANC data were used. In this case, the
incidence assay data can still make a contribution by
reducing uncertainty overall, albeit by a lesser amount
(Fig. 1 for six selected countries, Table 1, right two
columns, and Appendix, http://links.lww. com/QAD/
A578). This effect is relatively powerful, reducing the
standard deviation of the posterior samples on incidence
in 2010 from an average of 0.15–0.07% when NPBS data
are not available. When NPBS data are available, the effect
is more modest, reducing the standard deviation from an
average of 0.08–0.06%.

In Scenarios II and III, the incidence assay data imply that
incidence in 2010 is double or half that which would be
suggested by the prevalence data alone, respectively.
Figure 2 compares the estimated prevalence and incidence
trajectories for Lesotho with and without using incidence
assay data. The model fits find a balance between the
w/o National Population Based Surveys data and incidence assays in

With NPBS

says w/o incidence assays With incidence assays

dence Prevalence Incidence Prevalence Incidence

(0) 2 (0.2) 0.1 (0) 2 (0.1) 0.1 (0)
(0.2) 22.6 (0.5) 0.9 (0.1) 22.6 (0.4) 0.9 (0.1)
(0) 2.8 (0.3) 0.2 (0) 2.8 (0.2) 0.1 (0)
(0) 5.6 (0.4) 0.3 (0.1) 5.6 (0.3) 0.3 (0)
(0.1) 5.9 (0.4) 0.5 (0.1) 5.9 (0.3) 0.5 (0.1)
(0.1) 5.5 (0.5) 0.4 (0.1) 5.5 (0.3) 0.4 (0.1)
(0.1) 3.3 (0.2) 0.2 (0) 3.3 (0.2) 0.2 (0)
(0) 4.4 (0.3) 0.1 (0) 4.5 (0.2) 0.1 (0)
(0) 2.5 (0.2) 0.2 (0) 2.5 (0.2) 0.2 (0)
(0.1) 7.3 (1.1) 0.6 (0.2) 7.3 (0.3) 0.6 (0.1)
(0) 6.8 (0.3) 0.3 (0.1) 6.8 (0.2) 0.3 (0.1)
(0.3) 28 (0.9) 3.3 (0.3) 28 (0.6) 3.1 (0.3)
(0.1) 2.4 (0.2) 0.1 (0) 2.4 (0.2) 0.1 (0)
(0.1) 15.5 (0.5) 1 (0.1) 15.5 (0.4) 1 (0.1)
(0) 2.1 (0.2) 0.1 (0) 2.1 (0.1) 0.1 (0)
(0.1) 6.5 (0.4) 0.4 (0.1) 6.5 (0.3) 0.4 (0.1)
(0) 4.1 (0.3) 0.2 (0) 4.1 (0.2) 0.2 (0)
(0) 2.9 (0.3) 0.3 (0) 2.9 (0.2) 0.3 (0)
(0) 6.8 (0.5) 0.2 (0.1) 6.8 (0.3) 0.2 (0)
(0.1) 2.9 (0.3) 0.2 (0.1) 3 (0.2) 0.2 (0)
(0.1) 8.7 (0.3) 0.8 (0.1) 8.7 (0.3) 0.8 (0.1)
(0.1) 9.7 (0.6) 0.8 (0.1) 9.6 (0.3) 0.8 (0.1)
(0.1) 19.9 (0.6) 1.4 (0.1) 19.8 (0.4) 1.4 (0.1)
(0.1) 12.7 (0.5) 0.4 (0.1) 12.6 (0.4) 0.4 (0.1)
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Fig. 1. Scenario I: the prevalence and incidence trajectories using incidence assays (blue) and not using incidence assays (black)
when incidence assay data are consistent with surveillance data. The solid lines are posterior median, the dashed lines are 95%
credible intervals, the coloured dots are surveillance data collected from different clinics, the big red dots are the prevalence data
collected from NPBS and the big brown dots are the prevalence and incidence in 2010 used for generating incidence assay data.
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Fig. 2. Scenarios II and III: The prevalence and incidence trajectories using incidence assays (blue) and not using incidence
assays (black). The left two columns show prevalence and incidence when incidence assay data are simulated from a higher
incidence. The right two columns show prevalence and incidence when incidence assay data are simulated from a lower
incidence. The sample sizes of incidence assays vary across rows from 5000 to 20 000. The solid lines are posterior median, the
dashed lines are 95% credible intervals, the coloured dots are surveillance data collected from different clinics, the big red dots are
the prevalence data collected from NPBS and the big brown dots are the prevalence and incidence in 2010 used for generating
incidence assay data.
incidence levels implied by the prevalence data and that
implied by incidence assays, with that balance being
towards incidence assays when the sample size of incidence
assays is increased. With the NPBS present, the model tries
to find the best way of representing the joint information
from ANC, NPBS and incidence assays, and the incidence
assay data will still contribute to determining the
trajectories of incidence and prevalence as shown in
Fig. 2, bottom row.

Finally, we evaluate the effects of using incorrect
calibrating parameters for incidence assays (Table 2).
When bT and VT are underestimated (B and D), the
incidence assay data lead to an overestimate of incidence;
when bT and VT are overestimated (C and E), we
underestimate incidence.
Discussion

We have developed an approach by which data from
incidence assays can be incorporated into the calibration
of mathematical models of HIV, and this will be a useful
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Table 2. The prevalence and incidence distributions derived from incidence assays, summarized by mean (standard deviation), under
prevalence, 20%; incidence, 2%; and different fixed values of bT and VT.

5000 assay samples 10 000 assay samples 20 000 assay samples

Scenario Prevalence Incidence Prevalence Incidence Prevalence Incidence

A. True value 20.0 (0.57) 1.98 (0.48) 20.0 (0.40) 2.01 (0.34) 20.0 (0.28) 2.01 (0.24)
B. b too low 20.0 (0.57) 2.56 (0.47) 20.0 (0.40) 2.58 (0.33) 20.0 (0.28) 2.58 (0.24)
C. b too high 20.0 (0.57) 1.36 (0.49) 20.0 (0.40) 1.39 (0.35) 20.0 (0.28) 1.40 (0.25)
D. V too low 20.0 (0.57) 2.30 (0.56) 20.0 (0.40) 2.34 (0.40) 20.0 (0.28) 2.34 (0.28)
E. V too high 20.0 (0.57) 1.73 (0.42) 20.0 (0.40) 1.75 (0.30) 20.0 (0.28) 1.75 (0.21)
addition to the EPP model in those settings wherein
incidence assays have been collected. The formulation
allows EPP estimates of incidence, as well as other
epidemiological quantities, to benefit from this additional
source of information. We have also demonstrated the use
of this approach on simulated datasets. The impact of
incidence assay data depends on both sample size and
reliable estimates of the false recent rate, bT , and the mean
duration of recent infection, VT . The approach will also
be suitable for application in other models of HIV.

The incidence assay data are assumed to be generated
from a trinomial distribution. We also considered
modelling the joint distribution of incidence and
prevalence by a bivariate normal distribution, with the
mean and standard error estimated from assays. We found
that the posterior distribution of incidence or prevalence
can be highly skewed if its point estimate is close to 0%,
and the normal approximation could be problematic
because the normal distribution is symmetric and may
take values less than zero or greater than one. Therefore,
we selected the trinomial distribution for incidence
assays. However, our approach is generic in the sense that
it incorporates the information from incidence assays as
an additional part of likelihood function. Other ways of
characterizing the performance of the incidence assays
can be used if they are properly defined.

As shown in Fig. 2, the estimated incidence curve from
EPP is nearly identical whether the assay incidence
estimate doubled or halved for some settings and when
the sample size for the incidence assay is small. Again, the
model tries to find a balance between the information
carried by the surveillance data, survey data and incidence
assays. The identical estimates of incidence with or
without using incidence assays suggest that the incidence
assays are not informative enough to suggest a different
incidence estimate. However, developments of incidence
assays and measurement of appropriate parameters will
continue, so that the impact of using data from incidence
may become greater. In addition, although the effects of
the incidence assays are reasonably modest under
assumptions of reflecting expected survey size and
calibration parameters for the incidence assays –
particularly when household surveys already furnish
prevalence data – it is nevertheless useful to incorporate all
available information into estimates. The impact of
incidence assays is also weakened because with a short
recency period for the incidence assay, few individuals
will return a positive biomarker. We define the recency
duration as 150 days as indicative because work measuring
the recency duration for LAg is ongoing and the approach
is also generic to an assay with any recency duration. It is
indeed the case that the recency duration has a profound
impact on how informative the incidence assay is on the
HIV incidence rate, so that surveys with much greater
sample sizes are required when using incidence assays
with shorter recency duration to achieve the same
precision in estimates [7].

On one hand, we have accentuated the impact of
incidence assays uses by assuming that we have complete
knowledge about the calibrating parameters bT and VT.
In fact, we do not have such good knowledge (http://
www.incidence-estimation.com/page/cephia) and the
false recent rate, for instance, might be expected to vary
by time and by place [20]. And as our final analysis shows,
uncertainty in those parameters substantially reduces the
information content of incidence assays.

On the other hand, several aspects of our analysis count
against the usefulness of incidence assay data. We did not
look at how the addition of incidence assay data affects the
ability of this modelling method to detect changes in HIV
incidence over time. That advantage may be highly
meaningful because methods based on inferring inci-
dence only from prevalence cannot reliably detect
changes in incidence until many years after the fact.
Also, the uncertainty in the estimates of incidence
without the use of incidence assays is understated because
uncertainty in the natural history of HIV is not
represented, and nor is the substantial uncertainty about
the level of ART use and its effects on incidence and
survival. This is the uncertainty that the data from the
incidence assay, being an independent source of
information, may partly help resolve. Thus, our analysis
could have underestimated the ability of data from the
incidence assay to reduce uncertainty in incidence
estimates. Each of these issues will be investigated further.

Our approach does not mix the estimation of bT and VT

with the estimation of EPP parameters. If one wants to
implement uncertainty analysis of bT and VT , informa-
tive priors for bT and VT should be used to avoid a failure

http://www.incidence-estimation.com/page/cephia
http://www.incidence-estimation.com/page/cephia
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to converge, as those four parameters are not identifiable
given the trinomial incidence assay data: prevalence,
incidence, bT and VT .

The performance of this new approach should be further
tested with actual incidence data. It would be also
interesting to explore the minimum sample sizes and
accuracy of bT and VT that allow incidence assays to
successfully detect recent changes in incidence.
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