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Simple Summary: The pathological complete response (pCR) after neoadjuvant chemoradiotherapy
(CCRT) is an independent prognostic factor for progression-free and overall survival in non-small cell
lung cancer (NSCLC). 18F-FDG PET/CT has been performed for initial staging work-up, treatment
response, and follow-up in patients with NSCLC. Machine learning (ML) as an empirical data science
has become relevant to nuclear medicine. We investigated the predictive performance of 18F-FDG
PET/CT using an ML model to assess the treatment response to neoadjuvant CCRT in patients
with stage III NSCLC, and compared the performance of the ML model predictions to predictions
from conventional PET parameters and from physicians. The predictions from the ML model using
radiomic features of 18F-FDG PET/CT provided better accuracy than predictions from conventional
PET parameters and from physicians for the neoadjuvant CCRT response of stage III non-small cell
lung cancer.

Abstract: We investigated predictions from 18F-FDG PET/CT using machine learning (ML) to assess
the neoadjuvant CCRT response of patients with stage III non-small cell lung cancer (NSCLC)
and compared them with predictions from conventional PET parameters and from physicians. A
retrospective study was conducted of 430 patients. They underwent 18F-FDG PET/CT before initial
treatment and after neoadjuvant CCRT followed by curative surgery. We analyzed texture features
from segmented tumors and reviewed the pathologic response. The ML model employed a random
forest and was used to classify the binary outcome of the pathological complete response (pCR). The
predictive accuracy of the ML model for the pCR was 93.4%. The accuracy of predicting pCR using
the conventional PET parameters was up to 70.9%, and the accuracy of the physicians’ assessment
was 80.5%. The accuracy of the prediction from the ML model was significantly higher than those
derived from conventional PET parameters and provided by physicians (p < 0.05). The ML model is
useful for predicting pCR after neoadjuvant CCRT, which showed a higher predictive accuracy than
those achieved from conventional PET parameters and from physicians.
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1. Introduction

Lung cancer is the most common malignant tumor and remains the leading cause of
cancer-related death worldwide in spite of major advances in prevention and multimodal
treatment [1]. Non-small cell lung cancer (NSCLC) accounts for more than 85% of all lung
cancers and about 30% of NSCLC present with locally advanced disease in stage III [2].
Patients with stage III NSCLC are usually considered as inoperable. Neoadjuvant con-
current chemoradiotherapy (CCRT) followed by surgery has been established as being
able to improve the overall outcome by reducing the rate of local failures and distant
metastasis [3,4].

In patients receiving neoadjuvant CCRT for stage III NSCLC, surgical resection allows
for the identification of the histopathologic tumor response to determine the prognosis
and to evaluate postoperative therapeutic options. According to previous studies, the
pathologic complete response (pCR) after neoadjuvant CCRT is an independent prognostic
factor for progression-free and overall survival in NSCLC [5,6]. Although several papers
have reported a wide range of pCR values of 16–27%, it is clear that the pCR is highly
correlated with patient survival [7–10].

18F-fluorodeoxyglucose positron emission tomography/computed tomography
(18F-FDG PET/CT) has been performed for initial staging work-up, treatment response, and
follow-up in patients with NSCLC. It has also been viewed as appropriate for the precise
investigation of treatment response after CCRT [11,12]. Previous studies have focused on
the comparison of quantitative PET parameters such as the standard uptake value (SUV)
after neoadjuvant treatment and histopathologic findings after surgery [13,14]. Moreover,
the application of the PET response criteria in solid tumors (PERCIST 1.0) as an evaluation
for 18F-FDG PET/CT has been performed to enhance the limitation of anatomic tumor
response metrics [15,16]. The role of 18F-FDG PET/CT still needs to be explored because
possible misinterpretations due to radiation-induced inflammation such as pneumonitis
can cause problems in 18F-FDG PET/CT images [17,18].

Machine learning (ML) as an empirical data science, which can learn patterns or
characteristics from one set of given data and use them to evaluate new data, has become
relevant to nuclear medicine. Our previous study demonstrated that ML is well suited
to performing analyses of high dimensionality radiomic feature extraction from 18F-FDG
PET/CT, and ML analysis provided better diagnostic performance than physicians for
evaluating metastatic mediastinal lymph nodes in NSCLC [19]. Although assessing the
radiomic features of a tumor in clinical practice has some challenges because of the time,
effort, and skill involved, we have shown that ML can improve the diagnostic accuracy and
its availability in NSCLC. However, there is still no study that has evaluated the predictive
performance of ML for the neoadjuvant CCRT response using the radiomic features of
18F-FDG PET/CT.

Therefore, we investigated the predictive performance of 18F-FDG PET/CT using an
ML model to assess the treatment response to neoadjuvant CCRT in patients with stage III
NSCLC, and compared the performance of the ML model predictions to predictions from
conventional PET parameters and from physicians.

2. Materials and Methods
2.1. Subjects

We retrospectively reviewed the medical records of all patients newly diagnosed
with stage III NSCLC through imaging studies such as chest X-ray, enhanced chest CT,
and 18F-FDG PET/CT, as well as pathologic studies including endobronchial ultrasound-
guided transbronchial needle aspiration, mediastinoscopic biopsy, or thoracotomy, between
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November 2008 and October 2020. To be included in the study population, patients needed
to complete a planned neoadjuvant CCRT and undergo curative-intent surgical treatment
for stage III NSCLC according to the 7th edition of the TNM classification [20], and undergo
a second 18F-FDG PET/CT within approximately 3 weeks following the completion of
neoadjuvant CCRT for restaging work-up. Patients in poor cardiopulmonary condition
that precluded surgery or who had previously been treated because of another malignant
disease were excluded from the study population. Patients who received neoadjuvant
chemotherapy or radiotherapy alone were also excluded.

This study was approved by the institutional review board of our institution (IRB
No. 2020-09-185), and the requirement for informed patient consent was waived due to its
retrospective design.

2.2. Neoadjuvant CCRT and Histopathologic Evaluation

The neoadjuvant CCRT consisted of chemotherapy and concurrent thoracic radio-
therapy. Thoracic radiotherapy was delivered to patients with a total dose of 45 Gy
with 1.8 Gy/fraction over 5 weeks from November 2008 to October 2009 or 44 Gy with
2.0 Gy/fraction over 4.5 weeks using 10-MV X-rays from October 2009 and thereafter. The
radiotherapy target volume included the known gross and clinical disease plus adequate
peripheral margins. The chemotherapy regimens mostly consisted of intravenous adminis-
tration of paclitaxel (50 mg/m2 per week) or docetaxel (20 mg/m2 per week) plus either
cisplatin (25 mg/m2 per week) or carboplatin (AUC, 1.5/week) for 5 weeks. The first dose
of chemotherapy was delivered on the first day of thoracic radiotherapy [3,4,21].

Surgical procedures were planned for 4~6 weeks following the completion of neoad-
juvant CCRT and comprised resection of the affected lung plus mediastinal lymph nodes
dissection, depending on the clinical stage. Pulmonary resection included lobectomy,
bilobectomy, pneumonectomy, or lobectomy with en bloc wedge resection according to
the extent of the primary tumor. After surgical resection, the specimens were examined
by pathologists for residual tumors based on hematoxylin and eosin-stained slides. They
reported the percentage of residual tumor, which was determined by comparing the es-
timated cross-sectional area of the viable tumor foci with the estimated cross-sectional
areas of necrosis, fibrosis, and inflammation on each slide. The absolute viable tumor
extent was also assessed based on their calculation, and pathologic complete response
(pCR) was defined as no residual viable tumor remaining in the post-therapy pathology
specimen [22,23].

2.3. 18F-FDG PET/CT Analysis

All patients fasted for at least 6 h before 18F-FDG PET/CT was performed to keep their
blood glucose level below 200 mg/dL. Torso PET and unenhanced CT images were acquired
using a dedicated PET/CT scanner (Discovery STe, GE Healthcare, Waukesha, WI, USA)
approximately 60 min after intravenous injection of 5.5 MBq/kg of 18F-FDG. CT images
were obtained using a 16-slice helical CT with the following settings: 140 keV, 30–170 mAs
with Auto A mode, and a slice section of 3.75 mm. PET images were acquired from head
to thigh and attenuation-corrected PET images (voxel size, 3.9 × 3.9 × 3.3 mm3) were
reconstructed using a 3D ordered-subset expectation-maximization algorithm (20 subsets,
2 iterations).

For quantitative analysis, the volume of interest (VOI) from the primary tumor was
delineated using the gradient-based segmentation method (PET Edge) in MIM version 6.4
(MIM Software Inc., Cleveland, OH, USA) [19]. These VOIs were saved as a DICOM-RT
structure that was imported into the Chang-Gung Image Texture Analysis toolbox (CGITA,
http://code.google.com/p/cgita, accessed on 1 March 2020) facilitated by MATLAB soft-
ware (version 2014b; MathWorks, Inc., Natick, MA, USA) to extract the radiomic features
from the PET images (Supplemental Table S1) as well as conventional PET parameters,
including the maximum SUV (SUVmax), mean SUV (SUVmean), metabolic tumor volume
(MTV), and total lesion glycolysis (TLG). We also calculated the differences of these con-

http://code.google.com/p/cgita
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ventional parameters between PET1 and PET2 by subtracting PET2 parameters from those
of PET1 and dividing by those of PET1.

Two nuclear medicine physicians (J.Y.C. and B.T.K) with more than 15 years of expe-
rience in PET/CT interpretation assessed the neoadjuvant treatment response according
to PERCIST 1.0 [16] by means of a baseline 18F-FDG PET/CT (PET1) and second PET/CT
(PET2) undertaken before surgery. They categorized all patients into four response criteria:
complete metabolic response (CMR), partial metabolic response (PMR), stable metabolic
disease (SMD), and progressive metabolic disease (PMD). After that, the accuracy of the
predicted CMR results were compared to histopathologic pCR.

2.4. Machine Learning (ML) Model

The ML model was developed as a binary classification. First, data were partitioned
into a training dataset (70%) for model building and an independent testing dataset (30%)
for internal validation. We developed an ML tree-based boosting model for pCR prediction
using a random forest (RF) algorithm, which consisted of a multitude of decision trees
and used an ensemble method to decide the outcome. Our model was trained with the
bagging method to predict the pCR. Different numbers of trees were used to classify the
binary decision of the result to achieve the best performance score. The Gini impurity was
measured to the quality of a split. The maximum depth of the tree was 5, and the square
root of the number of the features was considered for the max. number of features to look
for the best split of the model. We applied a random grid search method to determine the
optimal hyperparameter of the RF model [24–27]. A 10-fold cross-validation in the training
dataset, a technique for reducing the bias that can occur as a result of using a single training
set, was applied for method validation. All ML statistical analyses were performed using
Python (version 3.8.3).

In classic oversampling techniques, the minority data are simply replicated from
the minority data population. The ML model does not reflect on variation from the
oversampling data. Therefore, we tried to use SMOTE (Synthetic Minority Oversampling
Technique) to deal with this class problem. This technique helped with unbalanced data
by creating new synthetic data to provide balance in the distribution. SMOTE starts by
choosing random data from the minority class. Then it uses a K-Nearest Neighbor (KNN)
algorithm to set new points of the data. Next, new synthetic data are created between
the random data and new point, which is derived from KNN algorithm. This process is
repeated until the minority class reaches the same size as the majority class. Therefore, we
added 322 more participants from the existing raw data. A total of 752 participants were
analyzed using this oversampling technique.

Several useful scaling techniques (Min–Max scaler, Normalization, Standardization)
prevent overflow and underflow of the data. They help to compare dimensional data
more efficiently through a scaling process. The process reduces the conditional number of
covariance matrices from the independent variables. This reduction enhances the speed of
conversion and stability of the model during the optimization process. We used a standard
scaler, which removes the mean and helps to scale the value’s unit variance. To adjust for
the different scales of the features, standardization of the variables is necessary for the
preprocessing steps.

For feature selection, top 10, 20, and 30 variables among 144 variables were selected
according to the importance of the variables based on the mean decrease impurity (MDI).
MDI or Gini importance was calculated as the decrease in node impurity weighted by the
probability of reaching the node. The sum over the number of splits decided the variable
importance of the model. The higher value of MDI meant the critical feature in the model.

2.5. Statistical Analysis

The association between conventional PET parameters and pCR was determined by
an independent t-test or the Mann–Whitney test according to the Kolmogorov–Smirnov
test. Receiver operating characteristic (ROC) curve analysis was performed to assess
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optimal cutoff values of continuous variables using the MedCalc software package (Ver. 9.5,
MedCalc Software, Mariakerke, Belgium). The predictive performance of conventional
PET parameters and physicians’ diagnostic results were reported using sensitivity (Sen),
specificity (Spe), positive predictive value (PPV), negative predictive value (NPV), and
accuracy (ACC).

For predictive performance of the ML model, we measured the areas under curve
(AUCs), ACC, F1 score, precision (also called PPV), and recall (also known as Sen). We
compared the measured values with those of predictions from conventional PET parameters
and from physicians by using a McNemar test or Fisher’s exact test. A p-value of less than
0.05 was considered statistically significant.

3. Results
3.1. Subject Characteristics

Among 484 consecutive patients, 430 patients were enrolled in this study. Fifty-
four patients were excluded from the analysis due to a lack of surgical treatment after
completion of neoadjuvant CCRT (Figure 1). The clinical characteristics of the 430 patients
are summarized in Table 1. The patients were predominantly male (71.9%), and there was a
high prevalence (67.2%) of adenocarcinoma among the patients. After neoadjuvant CCRT
followed by surgery, the mean percentage of viable tumor in the pathologic specimen was
28.8% (range 0–95%). The pCR was observed in 54 patients (12.6%). According to PERCIST
criteria, 16.7% of patients had CMR (n = 72).
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3.2. Predictive Performance of ML Model for pCR

The radiomic feature importance was obtained using a Gini index representing the
coefficient of the attributes on the prediction model, as listed in Figure 2. The overall
prediction performance of the ML model was compared by calculating each of the PET1
and PET2 features separately, and all variables from both PET1 and PET2 (PET3) were
analyzed (Table 2). The AUCs determined by the ML model were 0.934 in PET1, 0.975
in PET2, and 0.977 in PET3. For comparison ROC curve analysis (Figure 3), the AUCs of
PET2 and PET3 were significantly higher than that of PET1 (p = 0.009, p = 0.006, respec-
tively). However, there was no significant difference between the AUCs of PET2 and PET3
(p = 0.805). According to other indices, PET3 revealed a better predictive performance than
those results with either PET1 or PET2 variables.
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Table 1. Subjects’ characteristics.

Characteristics No.

Sex Male 309 (71.9%)
Female 121 (28.1%)

Age (years) Mean (range) 61.8 (31.1–79.5)
Tumor pathology Adenocarcinoma 289 (67.2%)

Squamous cell carcinoma 125 (29.1%)
Others 16 (3.7%)

Stage (AJCC 7th) IIIa 415 (96.5%)
IIIb 15 (3.5%)

Type of surgery Lobectomy 339 (78.8%)
Bilobectomy 32 (7.4%)

Pneumonectomy 23 (5.4%)
Lobectomy with en bloc wedge resection 36 (8.4%)

Viable tumor on pathologic specimen Mean % (range) 28.8 (0–95.0)
Pathologic response pCR 54 (12.6%)

Non-pCR 376 (87.4%)
Response by PERCIST CMR 72 (16.7%)

PMR 281 (65.4%)
SMD 72 (16.7%)
PMD 5 (1.2%)

pCR, pathologic complete response; PERCIST, PET response criteria in solid tumors; CMR, complete metabolic
response; PMR, partial metabolic response; SMD, stable metabolic disease; PMD, progressive metabolic disease.
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Table 2. Comparisons in predictive performance of the ML models using a random forest algorithm
for pCR prediction with the included PET data.

ML Model AUC ACC F1 Precision Recall

PET1 0.934 *,† 0.827 *,† 0.853 *,† 0.802 *,† 0.912 †

PET2 0.975 * 0.902 *,‡ 0.912 *,‡ 0.905 *,‡ 0.920
PET3 0.977 † 0.934 †,‡ 0.940 †,‡ 0.937 †,‡ 0.944 †

AUC, area under curve; ACC, accuracy; PET3, combining PET1 and PET2; *, †, ‡, p < 0.05.
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Additionally, we investigated the predictive results from the ML model using four fea-
ture subsets with the top 10, 20, 30, and all features from PET3 (Supplemental Table S2 and
Supplemental Figure S1). The ML model outperformed other methods when all features
were selected (AUC = 0.977, ACC = 0.934, F1 = 0.940, Precision = 0.937, Recall = 0.944).

3.3. Predictive Performances of Conventional PET Parameters and Physicians for pCR Prediction

In conventional PET parameters, the SUVmax, SUVmean, MTV, and TLG of PET1 and
the SUVmax and SUVmean of PET2 were significantly associated with the pCR (p < 0.05).
The difference between PET1 and PET2 of the SUVmax (p < 0.001), SUVmean (p < 0.001),
MTV (p = 0.003), and TLG (p < 0.001) were also significantly associated with the pCR. In
contrast, the MTV and TLG of PET2 were not statistically associated with the pCR (Table 3).
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Table 3. Comparisons in conventional PET parameters according to the presence of pCR.

Pathologic Response p-Value
pCR Non-pCR

PET1

SUVmax Median 13.59 11.58 0.029 *
IQR 10.01–17.47 8.35–15.53

SUVmean Median 5.91 5.28 0.037 *
IQR 4.86–7.48 3.97–6.69

MTV (cm3) Median 42.96 21.13 0.003 *
IQR 16.02–74.89 7.38–47.48

TLG Median 223.26 113.63 0.001 *
IQR 96.29–436.26 30.77–279.36

PET2

SUVmax Median 3.17 4.57 <0.001 *
IQR 2.22–4.13 2.92–6.98

SUVmean Median 1.69 2.35 <0.001 *
IQR 1.43–2.15 1.74–3.33

MTV (cm3) Median 10.40 8.71 0.327
IQR 3.64–27.11 3.64–19.46

TLG Median 19.42 22.00 0.475
IQR 6.32–47.35 8.61–56.52

Delta PET
parameters (%)

dSUVmax Median 74.68 58.14 <0.001 *
IQR 64.25–84.25 36.07–74.20

dSUVmean Median 70.17 50.79 <0.001 *
IQR 54.34–78.57 31.58–66.28

dMTV (cm3) Median 68.63 48.18 0.003 *
IQR 42.81–82.49 14.76–71.75

dTLG Median 89.52 73.68 <0.001 *
IQR 79.40–95.47 50.80–88.83

pCR, pathologic complete response; PET, positron emission tomography; SUV, standard uptake value; MTV,
metabolic tumor volume; TLG, total lesion glycolysis; IQR, interquartile range; *, p < 0.05.

The optimal cutoff values that allowed significant association with the pCR were
PET1-SUVmax = 13.15, PET1-SUVmean = 4.70, PET1-MTV = 41.11, PET1-TLG = 142.97,
PET2-SUVmax = 3.97, PET2-SUVmean = 1.83, dSUVmax = 56.5%, dSUVmean = 43.9%,
dMTV = 55.4%, and dTLG = 86.2%. Using these cutoff values, the predictive performance
of the PET parameters are listed in Table 4. The predictive performance of the physicians
based on their diagnostic result are also presented in Table 4.

Table 4. Comparisons of predictive performance from conventional PET parameters, from physicians
and from the ML model.

Cutoff AUC Sen (%) Spe (%) PPV (%) NPV (%) ACC (%)

PET1-SUVmax >13.15 0.592 57.4 61.7 17.7 90.9 61.2
PET1-SUVmean >4.70 0.588 79.6 39.1 15.8 93.0 44.2
PET1-MTV (cm3) >41.11 0.627 53.7 70.2 20.6 91.3 68.1

PET1-TLG >142.97 0.635 68.5 57.1 18.9 92.7 59.1
PET2-SUVmax ≤3.97 0.687 74.1 58.8 20.5 94.0 60.7

PET2-SUVmean ≤1.83 0.726 66.7 71.5 25.2 93.7 70.9
dSUVmax >56.5% 0.737 88.9 48.7 19.9 96.8 53.7

dSUVmean >43.9% 0.745 94.4 42.8 19.2 98.2 49.3
dMTV (cm3) >55.4% 0.625 68.5 56.6 18.5 92.6 58.1

dTLG >86.2% 0.703 68.5 69.1 24.2 93.9 69.1
Physicians 33.9 86.4 29.2 90.8 80.5
ML model 0.977 94.4 92.2 93.7 93.1 93.4

AUC, area under curve; Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive
value; ACC, accuracy.

3.4. Comparisons of the ML Model with Conventional PET Parameters and Physicians

A comparison of the predictive performances between conventional PET parameters,
physicians, and the ML model are shown in Table 4. First, the performance of the ML
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model for pCR prediction was compared with those of conventional PET parameters by
analyzing the AUCs. The ML model revealed higher AUC values than all of the single PET
parameters (p < 0.001). When the pCR was predicted with the conventional single PET
parameter, the AUC was only 0.588 to 0.745. By applying the ML model using variable
radiomic features, however, the AUC improved to 0.977. In terms of predictive performance,
the ML model showed significantly higher performance in Spe, PPV, and ACC than was
achieved with any of the conventional PET parameters (p < 0.001). When comparing the
predictive performances of physicians and of the ML model, the ACC of the ML model
was significantly higher than that of physicians (93.4 vs. 80.5%, p < 0.001). Not only ACC,
but also Sen, Spe, and PPV showed that the ML model significantly increased the results
of physicians (94.4 vs. 33.9%, p < 0.001; 92.2 vs. 86.4%, p = 0.001; 93.7 vs. 29.2%, p < 0.001;
respectively). NPV was the only case where there was no significant difference between
the ML model and prediction by physicians (93.1 vs. 90.8%, p = 0.155).

4. Discussion

We have demonstrated that the ML model using an RF algorithm could be robust
and useful in determining the pCR following neoadjuvant CCRT by radiomic features of
18F-FDG PET/CT. Although several studies evaluating ML for treatment response have
been published recently [28–31], they mainly conducted research with multiparametric MRI
features and not with 18F-FDG PET/CT. Only a few studies have used 18F-FDG PET/CT
features to assess neoadjuvant treatment response in breast and rectal cancer using ML
models [26,27]. To the best of our knowledge, this is the first study to predict the response
to neoadjuvant CCRT in patients with NSCLC using an ML model.

The response to neoadjuvant CCRT is critical because it affects postoperative treatment
and individual prognosis. Furthermore, the correct prediction of the pCR can determine
which patients will require more or less aggressive adjuvant treatment to reduce the risk of
complications. Despite improvements in therapeutic modalities of neoadjuvant CCRT, the
pCR rate still remains with a variety of outcomes. The gold standard for assessing the pCR
is based on postoperative histopathologic findings, which could be inefficient to implement
in all patients with advanced NSCLC. Therefore, it is necessary to develop a method of
improving the predictive significance of non-invasive imaging modalities for establishing a
personalized therapeutic strategy.

Radiomics is an emerging field where various imaging modalities are performed to
extract features that may reflect changes in human tissues at the cellular levels and estimate
detailed information on tumor biology and microenvironment in nuclear medicine [32,33].
The radiomic features delineated on PET/CT images can represent tumor heterogeneity
including fractal dimension, tumor shape, and proliferation [34]. In our experiments, voxel
statistics of radiomic features were highly ranked in the prediction for the pCR, followed
by texture spectrum and co-occurrence matrix. Although there are differences in the feature
importance of many radiomic variables, the ML model using them demonstrated better
predictive performance for the pCR than the single conventional PET/CT parameters.
Conventional PET parameters and their changes in FDG uptake before and after CCRT
have been previously evaluated in determining the treatment response in patients with
NSCLC [11]. We also performed these analyses; however, the ACC of the predictive perfor-
mance using them was only shown to be 44.2–70.9%. Therefore, it seemed unfavorable to
evaluate the predictive performance using single PET parameters even though they were
statistically significantly correlated with the pCR.

The ML model significantly outperformed the physicians in terms of Sen, Spe, PPV,
and ACC. The outcomes of conducting the ML model with PET2 data revealed higher
predictive performance than those of the ML model with PET1 data. It appears that ra-
diomic features obtained from PET/CT after neoadjuvant CCRT have more relevant clinical
value in the prediction of the pCR. Compared to the results of the ML model with only the
variables from each time of PET/CT images, the predictive performance also increased by
inputting all variables from both PET1 and PET2. We assumed that the improvement in
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performance is probably because of the feature importance for predicting the pCR, which
is somewhat different between radiomics of PET1 and PET2. If more significant variables
were input into the ML model, the predictive performance may be further improved. The
PET-based radiomics can provide the potential to characterize intratumoral heterogeneity
indicating resistance to neoadjuvant CCRT. Therefore, it is clinically important to evalu-
ate treatment response not only to obtain baseline PET/CT images but also to examine
PET/CT after neoadjuvant CCRT. As the current study demonstrated, the use of ML with
radiomics features could be predictive of treatment response and thus help to select a more
aggressive treatment for those with high-risk factors after curative surgery in patients with
stage III NSCLC.

This study had several limitations. First, this study was conducted in a retrospective
manner with a limited sample size from a single center. Because radiomic features can be
highly dependent on reconstruction methods and imaging parameters [35], it is planned to
obtain a prospective multicenter trial to be more generalizable in the future. Second, the
study population was composed of patients with different therapeutic schemes. Although
we addressed a homogeneous population of patients with stage III NSCLC, it is also
needed to select patients with a more uniform therapeutic modality based on the consistent
guideline. Third, various pulmonary side effects can arise after radiotherapy, such as
pneumonitis or fibrosis, which may challenge the response assessment, although we tried
our best to exclude the possibility of treatment-induced inflammatory changes based on the
relative intensity and distribution of FDG uptake in the lung parenchyma and automatically
generated tumor VOI [36]. Finally, although the proposed ML model was analyzed using
a 10-fold cross-validation for minimizing overfitting instead of splitting the dataset into
training and test sets, external validation using an independent dataset is necessary to
verify the clinical significance using a larger cohort.

5. Conclusions

In conclusion, the developed ML model using an RF algorithm and 18F-FDG PET/CT
radiomics features was useful for predicting the pCR after neoadjuvant CCRT in NSCLC.
The predictions of the ML model had higher accuracy than predictions from conventional
PET parameters and from physicians. The ML model using radiomics features can be used
to facilitate the preoperative individualized prediction for the pCR. Our findings further
highlight the potential, non-invasive, and effective clinical significance of an ML model
to predict the pCR in patients with stage III NSCLC who had received neoadjuvant CCRT
followed by surgery.
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feature selection
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