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Abstract

One of the most intriguing fields emerging in current molecular biology is the study of membraneless organelles formed via
liquid–liquid phase separation (LLPS). These organelles perform crucial functions in cell regulation and signalling, and
recent years have also brought about the understanding of the molecular mechanism of their formation. The LLPS field is
continuously developing and optimizing dedicated in vitro and in vivo methods to identify and characterize these
non-stoichiometric molecular condensates and the proteins able to drive or contribute to LLPS. Building on these
observations, several computational tools and resources have emerged in parallel to serve as platforms for the collection,
annotation and prediction of membraneless organelle-linked proteins. In this survey, we showcase recent advancements in
LLPS bioinformatics, focusing on (i) available databases and ontologies that are necessary to describe the studied
phenomena and the experimental results in an unambiguous way and (ii) prediction methods to assess the potential LLPS
involvement of proteins. Through hands-on application of these resources on example proteins and representative datasets,
we give a practical guide to show how they can be used in conjunction to provide in silico information on LLPS.
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Introduction
Compartmentalization is essential for living cells to provide the
spatial regulation of biochemical reactions and interactions. In
addition to the classical membrane-bounded organelles, cells
also contain a variety of dynamic liquid condensates called
membraneless organelles (MLOs). MLOs are specialized cellular
compartments that host a variety of cellular functions. Nucleoli,
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stress granules, P-bodies, neuronal and germ granules, postsy-
naptic densities, heterochromatin and many other condensates
belong to this category [1]. One of the most exciting and most
intensively researched recent discoveries in the field of molec-
ular cell biology is that MLOs form through liquid–liquid phase
separation (LLPS), an often reversible process generally driven by
multivalent weak interactions between proteins and, optionally,

https://academic.oup.com/
https://doi.org/10.1093/bib/bbaa408
http://orcid.org/0000-0003-0919-4449
http://bio2byte.be
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


2 Pancsa et al.

other macromolecules [2]. Due to an avalanche of high-impact
publications reporting on novel MLOs formed through LLPS in
all kingdoms of life—as well as some viruses—it is now consid-
ered as a fundamental, generally employed mechanism for the
effective spatiotemporal organization of cellular space [3, 4].

MLOs distinctly differ from classical organelles as they are
not bounded by a phospholipid membrane but are only defined
by a phase boundary that allows the dynamic exchange of con-
stituent molecules with their surroundings [2]. MLOs also differ
from well-defined stoichiometric protein complexes as they are
dynamic, non-stoichiometric supramolecular assemblies. They
have unique material properties [5], with their functions emerg-
ing from the collective behaviour of their constituent molecules
[6]. By selectively compartmentalizing and recruiting certain
macromolecules and excluding others, MLOs confer diverse ben-
efits on cells [6–8]: they can serve as (1) activators of reactions
[9, 10], (2) inactivators of reactions [11], (3) biomolecular shields
[4] or filters [12], (4) sensors of changes in environmental factors
[13, 14], (5) reservoirs of temporarily inactivated macromolecules
[15, 16], (6) determinants of cell polarity and asymmetric cell
divisions [17, 18] and (7) concentration buffering systems of their
constituent macromolecules [19]. MLOs are also highly variable
regarding their shapes, sizes and compositions: While certain
MLOs act as specialized reservoirs of only a single protein [16]
or constituents of a specific pathway [15], others orchestrate
major steps of the RNA life cycle (e.g. P-bodies) or cellular stress
response and may host hundreds of proteins and mRNAs [20, 21].
Also, while certain MLOs are universally present in eukaryotic
cells (e.g. nucleoli, stress granules), others are specific to cell
types (e.g. postsynaptic densities, germ granules) [1].

The ability to undergo LLPS may be a universal property of
proteins and nucleic acids under specific conditions, i.e. almost
any macromolecule can be pushed to undergo LLPS under the
right environmental conditions; however, most of these condi-
tions will never be encountered in a living cell. In other words,
similar to the formation of amyloids, only particular protein
sequences appear to have the ability to phase separate to form
MLOs under physiologically relevant conditions [8]. Importantly,
MLOs represent a cell-level phenomenon with a very hetero-
geneous molecular background, as the molecular forces/inter-
action types contributing to their formation through LLPS are
very diverse. LLPS can be driven by protein–protein as well as
protein–nucleic acid interactions, and the former could primarily
rely on electrostatics, hydrophobic coacervation, cation-π , π–π ,
domain–motif, domain–domain or PTM-controlled molecular
interactions, just to list the major subtypes [7, 8]. Even though the
plethora of LLPS systems that have been characterized by various
experimental techniques [22] have gradually uncovered these
different subtypes, determining the LLPS-responsible protein
sequence signatures is far from straightforward as the under-
lying molecular mechanisms are heterogeneous with complex
partner dependencies. This could be the main reason why cur-
rently available computational prediction methods have not yet
reached maturity, as they are typically only able to recognize pro-
teins driving certain types of phase separation via one or a few
of the many molecular driving forces. In addition, several exper-
imentally described subtypes of biomolecular phase separation
are as of yet without dedicated prediction methods. Therefore,
the first generation of LLPS prediction methods [23] has very
specific areas of utility and serves as the stepping stones for the
future development of generic LLPS prediction algorithms.

The experimental studies of recent years have generated an
immense amount of valuable knowledge about phase separation
in cell biology. Enabling this information for computational

approaches through data storage necessitates the unambiguous
description of the experimental results by structuring these
data based on controlled vocabularies and ontologies. In other
words, the maximal exploitation of these results requires
well-structured databases that store primary data as well as
knowledge generated from them. Such databases can in turn
provide high-quality training data for the development of
sophisticated LLPS prediction methods, which can in turn
provide new targets for experimental validation. In parallel
with LLPS experiments, computational approaches that provide
structured descriptions, databases and prediction methods
have also been developed immensely. Recent years have seen
the publication of several LLPS-specific databases and publicly
available prediction methods accessible via dedicated public
web servers. These resources are highly diverse and reflect the
extremely heterogeneous nature of LLPS in terms of molecular
mechanisms, cellular functions and regulation. In this review,
we provide an overview of the resources available for users
interested in data access for, or computational study of, LLPS.
We describe the terms used to define components of LLPS
and the formed MLOs, and how these descriptions are used in
describing experiments. We give a comprehensive assessment
of databases containing LLPS-related proteins and we survey
dedicated and auxiliary prediction methods. In the closing
chapter, we show the utility of these resources through selected
examples showcasing the heterogeneity of LLPS. As a follow-up
to the assessment of the first generation of LLPS methods [23],
we give a comprehensive and hands-on guide to accessing and
using the computational resources at the disposal of LLPS savvy
researchers in 2021.

Towards a common language: nomenclature,
controlled vocabularies and ontologies
Similar to most areas of biology, the rapid expansion of the LLPS
field has brought about several new concepts and terms that are
used to describe the phenomena being studied. Some of these
terms have several alternatives being used interchangeably, and
many of them were taken from other disciplines including cell
biology, polymer physics and thermodynamics. Table 1 provides
an overview of the definition of the most commonly used terms
in order to reduce ambiguity in terminology throughout this
paper. With LLPS nomenclature evolving organically, future stan-
dardization efforts will be needed to ensure the best repre-
sentation of the knowledge being generated by the increasing
number of experiments. However, as the LLPS field overlaps with
other existing fields, some of their controlled vocabularies and
ontologies developed can already be used to describe various
aspects of phase separation.

Biocuration, i.e. the description of knowledge gained from
biological experiments in standardized ways, is essential for
the optimal exploitation of the results of measurements [24].
Biocuration becomes even more essential as a field matures and
develops its own vocabulary in parallel with the generation of
immense amounts of data—which is exactly the case for the
LLPS field. Biocuration, however, relies on the existence of con-
trolled vocabularies (CVs) and ontologies to encode the knowl-
edge being generated. Most of the main biological ontologies
developed for various applications are available via the Ontology
Lookup Service [25], and several of these might be useful in
describing the source organisms (e.g. Fission Yeast Phenotype
Ontology or the Caenorhabditis elegans Ontology) and cells that
were used in the experiment (e.g. Cell Ontology), defining the
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Table 1. The most commonly used terms in the LLPS field

Term Explanation

Liquid-liquid phase
separation (LLPS)

A process through which a solution transitions from a single-phase state where the solute or solutes are mixed
with the solvent, to a state where the solute(s) form two or more distinct phases with liquid-like properties.
The process is also often referred to as liquid demixing, coacervation (simple or complex coacervation,
depending on if LLPS requires a single or multiple proteins) or simply condensation.

Gelation A complex term, with various meanings depending on the field. In its original sense introduced in polymer
physics, gelation refers to the transition of a macromolecule solution to a gel phase via interactions between
the polymers leading to the dramatic increase of viscosity and loss of fluidity. In the LLPS field, gelation is
often used to refer to the loss of droplet dynamics, usually measured in experiments such as fluorescent
bleaching. However, the term gelation lacks a unified definition and can refer to several poorly defined
observations connected to condensation/LLPS.

Aggregation Aggregation is the non-reversible interaction between proteins leading to a large, non-stoichiometric assembly.
Aggregates can be formed by disordered or misfolded proteins and are commonly associated with disease
emergence. Aggregation is defined simply via the end state of the assembly (i.e. a non-soluble permanent
assembly of proteins) without defining the process of formation. Several phase-separated systems can
transition into a more solid aggregate phase, but aggregation does not necessarily require LLPS. Similar to
gelation, aggregation is a loosely defined term used in slightly different meanings depending on the field of
research or even the exact experiment.

Biomolecular
condensate

A non-stoichiometric assembly of biological molecules, most often proteins, RNA, DNA or a mixture of these
molecules that clearly separates from the solvent. This term describes the observed state of molecules
without specifying the underlying biophysical processes. While many condensates form via LLPS, they can
arise via several other mechanisms as well.

Membraneless
organelle (MO or
MLO)

A distinct compartment in the cell that is not bounded by a membrane, typically formed via LLPS. Most MLOs
are transient structures (such as stress granules), while others are permanent (such as the nucleolus). In a
more generic meaning, cellular structures formed via LLPS are often called granules, condensates, foci or
puncta, while those formed outside the cell in an in vitro environment are usually called droplets.

System A set of molecules that together are sufficient for LLPS. This might be a single protein for single-component
systems or a well-defined set of proteins and other macromolecules for multicomponent systems.

LLPS driver A protein (or a protein region) or a set of proteins (or protein regions) that can drive LLPS on its/their own. Also
referred to as scaffolds, although several scaffold proteins assemble stoichiometric macromolecular
complexes without phase separation. In the driver definition, small molecules and ions are most often
disregarded, and a protein is called a driver even if it requires a certain concentration of these accessory
molecules. In some cases, even large molecules, such as RNA, DNA, polyphosphate or polyubiquitin are
disregarded, with only linear polypeptides (i.e. ‘regular’ proteins) considered.

Clients and
regulators

Clients are proteins and other macromolecules that can partition into MOs but do not influence their
formation. Regulators are proteins that can switch the phase separation on or off or can modify its properties.
Regulators often include enzymes catalysing PTMs of the scaffold proteins.

Intrinsically
disordered
protein/region
(IDP/IDR)

A protein or a protein region that has no stable tertiary structure in isolation under a set of physiological
conditions. Many IDRs, especially ones involved in LLPS, have low sequence complexity and contain repeats;
however, this is not a universal feature of protein disorder. Most LLPS drivers incorporate IDPs/IDRs; however,
the presence of disorder is not a strict prerequisite for LLPS.

Low complexity
region/domain
(LCD)

A protein region that has a highly unbalanced residue composition, which can be quantified using information
theory principles. Low complexity regions are often, but not always, disordered. Low complexity regions are
often referred to by naming the residue(s) in which they are enriched, such as Arg-rich or acidic regions, or by
naming the repeat it contains (see ‘repeats’).

Repeat Multiple tandem copies of a single amino acid are called homorepeats, while a small protein region of at least
two residues that occurs in multiple tandem copies in the sequence is called a (hetero)repeat. The region that
contains the repeats is usually named by the repeating element(s), such as RG-repeat or FG-repeat region.
Repeat regions are often low complexity, but low sequence complexity is very often achieved without a
repeating multi-residue element.

RNA-binding
domain (RBD)

RBD is an umbrella term for any region in proteins that is able to interact with RNA. Many domain types could
constitute the RBDs of LLPS-associated proteins, RNA-recognition motifs (RRMs) being the most frequently
occurring ones, but RGG-rich regions also often play a role. While the name RRM includes the term ‘motif’,
RRMs are folded domains, in contrast to SLiMs (see next point).

Short linear motif
(SLiM)

A short, usually 3–10 residue long region in a protein, which mediates an interaction with a partner domain.
SLiMs can convey various functions, being target sites for PTMs, localization signals, signals for degradation or
various recognition sites. SLiMs are most often located in IDRs and their function is largely independent from
the rest of the protein.

Prion-like domain
(PLD or PrLD)

Prion-like domains are protein regions that typically have a highly biased sequence composition, being enriched
in Q/N, as well as aromatic residues, prolines and glycines, thus sharing a resemblance to yeast prion proteins.
PLDs are disordered, and due to their compositional bias, often have a low sequence complexity.

Notes: Several terms, such as ‘system’, ‘motif’ or ‘regulator’, have other uses outside the field of LLPS; however, here we only give a definition of the use that is common
to the field, and throughout the article, we will use these terms in the sense defined here.
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compounds used in a measurement (e.g. ChEBI) and defining the
types of post-translational modifications (PSI-MOD Ontology)
involved in the regulation of an LLPS event. A more central prob-
lem in the LLPS field is the unambiguous definition of the exper-
iments used to assert the phase separation. Currently, there are
two developed ontologies for experimental methods, each with
their own strengths and caveats. The Evidence and Conclusion
Ontology (ECO) [26] is a largely field-independent description
of methods used in biology that can provide a framework for
describing the technical side of various LLPS measurements.
However, currently several techniques central to LLPS are miss-
ing from ECO, such as absorbance/turbidity measurements or
1,6-hexanediol treatment. An alternative ontology is provided by
the PSI-MI ontology [27], developed by the Molecular Interactions
(MI) workgroup of the HUPO Proteomics Standards Initiative
(PSI), to describe experiments aimed at protein interaction detec-
tion. As LLPS is driven by protein interactions, the PSI-MI ontol-
ogy is a good candidate for the future standardization of LLPS
experiments. However, in addition to detecting the interaction
between participants of LLPS, assessing the liquid nature of the
resulting condensates is also crucial in LLPS studies, and the
techniques routinely applied for this—such as photobleaching
or describing droplet morphological traits—are missing from the
PSI-MI ontology. Therefore, current ontologies can only serve as
a starting point and not as an as-is solution for describing the
experimental setup aspects of LLPS measurements.

Arguably, the most widely used structured description of
proteins is provided by Gene Ontology (GO) [28]. GO is composed
of three separate sub-ontologies called namespaces. The ‘bio-
logical process’ namespace describes the processes the protein
is involved in, from the molecular to the organism level. The
uncovering of this aspect of proteins is not directly tied to the
study of phase separation, and the biological process terms have
limited utility in encoding the results of LLPS experiments. The
‘molecular function’ terms offer a way of describing the mech-
anistic actions of the protein. This part of the ontology already
includes several terms that can describe the cellular functions
of various phase separation events. For example, phase sepa-
ration of Ddx3 sequesters eIF4E/PABP1 to stress granules, shut-
ting down translation [29], which can be described by ‘protein
sequestering activity’ (GO:0140311). Upon stress-induced Zn2+
release, TIA1 binds Zn2+, which induces the phase transition
into stress granules [30], and this process is well captured by
the ‘zinc ion sensor activity’ term (GO:0106219). Thus, the molec-
ular function namespace of GO can be adapted to describe
several cellular level LLPS functions. However, full coverage of
known LLPS functions will definitely require the expansion of
this namespace of GO.

The ‘cellular component’ namespace of GO is probably the
most well suited to describe a crucial aspect of LLPS, namely the
type and location of the MLOs emerging via phase separation.
Several well-studied MLOs, such as P-bodies, paraspeckles or
PML bodies, are already included in GO, and these terms correctly
represent the entities that are described in the LLPS literature. In
addition, there are several terms with broader coverage, such as
‘intracellular non-membrane bounded organelle’, that capture
condensates for which the exact cellular location could not be
defined or which were only observed in vitro. However, as in
any field, there are cases that cannot be well described within
existing frameworks. For example, GW bodies [31] (named after
the Gly-Trp dipeptide containing proteins integral to them) and
TIS granules [32] (named after its constituent protein TIS11B)
are both well characterized in the literature, which warrants
the establishment of dedicated GO terms under the existing

‘cytoplasmic ribonucleoprotein granule’ term (GO:0036464) for
their exact description. Galectin has been shown to form non-
stoichiometric lattices with liquid properties [33]. Galectin was
long known to homodimerize, which can be described with
the existing ‘galectin complex’ term (GO:1990724). However, this
term explicitly requires the dimeric nature of the complex in the
definition. Thus, to enable the encoding of the liquid-like lattice,
a separate term could be introduced under the existing ‘protein
complex involved in cell–cell adhesion’ term. Figure 1 shows an
overview of the current LLPS-relevant GO ontology, together with
additional points where the knowledge accumulated in the LLPS
field could be harnessed to expand the GO cellular component
sub-ontology.

While existing ontologies can describe certain aspects of
LLPS, there are undoubtedly several types of information that do
not fit into any existing description and will prompt the devel-
opment of dedicated CVs and ontologies. This effort has already
been undertaken with publications setting conceptual frame-
works for standardization [5–8]. The most crucial LLPS-specific
aspects that require standardized descriptions are the functional
roles of phase-separated compartments in the cell, the dom-
inant interactions contributing to the phase separation [such
as electrostatic-, π–π- or short linear motif (SLiM)-mediated
interactions], the molecular determinants of LLPS (such as the
requirement of PTMs or the presence of a membrane) and the
key observations in the experiments that are the basis of assess-
ing the liquid property of the condensate (such as recovery after
photobleaching or rapid exchange with the solvent). Based on
available literature, the development of specific CVs for these
four applications has already begun in parallel with database
development [34] (see next chapter). It is still an open question
whether these CVs will serve as the expansion for existing
ontologies (which might be the case for molecular functions
with respect to GO) or will be developed into their own complete
ontologies.

Databases of proteins undergoing
liquid-liquid phase separation
Resources of MLO-related proteins

The development of a common nomenclature for the LLPS field
and the adoption of these terms into existing ontologies pro-
vided a way to more rigorously collect data on LLPS-related
proteins. Databases such as UniProt that link to GO terms pro-
vide an indirect way of filtering for proteins described as being
associated to MLOs, albeit without the definition of the protein’s
exact role in MLO formation or maintenance. Other databases,
such as CRAPome [35], also provide indirect ways of pinpointing
LLPS-related proteins. This notion is rooted in the observation
that LLPS-related proteins tend to routinely show up in mass
spectrometry experiments with high spectral counts largely irre-
spective of the exact experimental setup [36]. This observation
was found valid for proteins that phase separate via weak but
highly multivalent self-interactions dominated by π–π interac-
tions, as about 60% of the examined LLPS drivers showed up in
over 10% MS-AP measurements done with non-specific affinity
purification steps performed without the specific affinity tag.
However, as these databases have a fundamentally different
focus, their application in LLPS research is limited.

In 2020, several dedicated LLPS-associated databases were
finally published, filling a long-standing gap in this fast devel-
oping field. Since the original publications and dedicated web
interfaces of these resources give a detailed explanation on their
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Figure 1. Existing and missing membraneless organelle types in GO. Boxes represent terms in the cellular component namespace of GO, with arrows marking the

relationships between them. Blue boxes mark terms that correspond to MLOs used in the literature. Red boxes mark MLO names that are used in the literature but

have no corresponding GO terms as of yet. Grey boxes mark existing terms in GO that are not suitable for MLO description but are shown to highlight the hierarchy of

and relationships between MLO-specific terms. The top box corresponds to the root term of the ontology (‘cellular component’).

content and usage, we here aim to provide a guide for users on
the strengths and limitations of these resources, explain how
they are complementary to each other and explain particular
use cases when they could be very beneficial. The main fea-
tures of the databases discussed are summarized in Table 2. We
collected features that highlight the basic principles on which
each of the five databases is built, represent the amount and
focus of their data content and highlight their characteristic
differences.

PhaSepDB (http://db.phasep.pro/) is a resource that aims to
collect all proteins that were reported to reside in MLOs and
groups them according to the respective MLOs [37]. The proteins
were collected based on UniProt localization annotations, liter-
ature reviews and high-throughput experiments. Importantly,
in contrast to other resources, PhaSepDB does not distinguish
between drivers and clients/regulators of LLPS but contains basi-
cally all MLO-resident proteins without providing a structured
annotation for their role in LLPS. However, the database does
provide publication and curator notes, describing LLPS cases.
Therefore, this resource is an excellent choice if one wants
to know if a particular protein has ever been reported to be
localized in any MLO, and how that was evidenced. However, it
does not provide queryable information on the mechanisms and
regulation of the formation of MLOs.

The RNA granule database (http://rnagranuledb.lunenfeld.
ca/) collects primary literature evidence (either cell biological,
physical or genetic) from high-throughput and low-throughput
approaches supporting protein (or gene) association with mam-
malian stress granules and P-bodies [38]. The obvious distinctive
feature of this database is that it is specific for these two MLOs
and is restricted to human, mouse and rat proteins. Similar to

PhaSepDB, this database provides evidence on the subcellular
localization of the collected proteins, but no experimental evi-
dence on their ability to undergo LLPS, even though predicted
LLPS propensities are provided. The resource is of interest for
those focusing on stress granule and P-body proteomes, includ-
ing if a particular protein was reported to reside in these two
MLOs (under any conditions) and what evidence supports the
reported association.

PhaSepDB and the RNA granule database are focused on
subcellular localization, the latter relying on experimental
results in the isolation and comprehensive proteomic/tran-
scriptomic analyses of stress granules [21] and P-bodies [20],
carried out recently [38]. Also, in a recent study, Yu et al. aimed
to define the phase-separated subset of the human proteome
through the systematic analysis of immunofluorescence
images of 12 073 proteins in the Human Protein Atlas and
describe important distinctive features of the identified phase-
separated candidate proteins [41]. Owing to their localization-
centric framework, these resources do not explicitly take
into account the mechanisms underlying the formation of
MLOs. The study of LLPS mechanisms represents a separate
sub-field that has seen major advances in recent years, also
fostering the discovery of some hitherto unrecognized, smaller
MLOs. The results of these mechanistic studies are necessary
in distinguishing drivers from clients, and databases that
are explicitly built on these concepts are essential for the
development of refined LLPS prediction methods. To date, three
such resources have been published, each of which has a primary
focus on LLPS as opposed to MLO localization, and therefore,
they have a characteristically different architecture and
scope.

http://db.phasep.pro/
http://rnagranuledb.lunenfeld.ca/
http://rnagranuledb.lunenfeld.ca/
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Databases for LLPS-specific proteins

LLPSDB (http://bio-comp.org.cn/llpsdb/) is a highly detailed col-
lection of in vitro experiments designed to study LLPS [39]. Con-
trary to the other resources, its entries are not proteins but in
vitro experiments. All components of the mixtures used in the
experiment and relevant measurement parameters are provided
for almost 1200 experiments, together with the outcome of
the experiment in a binary form (was LLPS observed or not?).
LLPSDB also provides details on the protein constructs and their
proteoforms, as well as the nucleic acids (if present) used in
the experiments. This is especially important, as in vitro LLPS
measurements are often carried out using non-natural systems
and conditions, and thus, LLPSDB also contains designed pro-
tein chains and physiologically irrelevant conditions (such as
extremely high protein concentrations). While these measure-
ments do not directly describe cellular processes, they can pro-
vide valuable insights into the biophysical aspects of LLPS. As
such, LLPSDB is the ideal resource for studying the generic poly-
mer physics/biophysics background of LLPS, providing a wide
range of data for possible underlying molecular mechanisms.
Also, it is an excellent resource for those who want to gain a
good overview of the in vitro experiments performed in proof
of LLPS of a given protein. However, due to the in vitro focus,
the entries often lack in vivo biological context, with no infor-
mation on associated MLOs and their functional relevance or on
the underlying molecular mechanisms or accompanying in vivo
experiments. Since the outcomes of experiments are evaluated
on a binary scale (phase separation happened or not), the effects
of partners, conditions, modifications or mutations that promote
or decrease LLPS by influencing the number and size of droplets
formed cannot be derived from this database. However, there is
enough detail for experts to judge if the described experiments
followed a reasonable design, if they represent physiological-like
conditions, and to see if a protein’s phase diagram was suffi-
ciently covered or additional experiments would be required to
fully explore its LLPS behaviour.

DrLLPS (http://llps.biocuckoo.cn) is a collection of LLPS-
related proteins that employs a three-way classification into
scaffolds, regulators and clients, providing rich annotations and
cross-references to other data resources [40]. The database is
a result of an extensive automated text mining approach, con-
taining reviewed, unreviewed and predicted entries. In addition,
potential LLPS-related proteins in a wide range of organisms
were identified through homology searches. Assignments of
clients, regulators and scaffolds are based on high-throughput
and low-throughput association, knockout and other evidence
as well as LLPS experiments directly quoted from the literature.
Owing to the heavy use of text mining and automation, the
approach behind DrLLPS is rather to aggregate data in the
form it is presented in the source literature, as opposed to
distilling high-level integrated metadata by manual curation.
As a result, proteins undergoing LLPS under physiologically
irrelevant conditions are also part of the scaffold dataset, and the
molecular mechanisms of LLPS and regulatory mechanisms of
proteins annotated as regulators are not specifically addressed.
Therefore, DrLLPS is a useful resource in applications where
high coverage and the ability to discriminate between scaffolds,
regulators and clients are important, but not the differences in
the underlying molecular mechanisms of MLO formation; it also
provides users with an extensive list of cross-references to other
resources.

PhaSePro (https://phasepro.elte.hu/) is a manually curated
resource of experimentally validated LLPS drivers [34]. Although

it has the lowest number of entries among the listed databases,
PhaSePro provides a highly reliable set of genuine LLPS drivers
that were proven to undergo LLPS alone, or as parts of well-
defined LLPS systems with a few co-drivers, in in vitro or in vivo
experimental studies. The strict annotation protocol ensures
that only LLPS cases supported by sufficient amount of physi-
ologically relevant experimental evidence are included. Another
feature of PhaSePro is that it aims to annotate the minimal set of
components required for LLPS; therefore, information on protein
region boundaries is provided whenever available. Compared to
the other databases, PhaSePro contains a more limited set of
experiments; however, it represents these in a structured way
using ECO. PhaSePro also links to other ontologies, such as GO, to
define MLOs. In addition, information outside the scope of exist-
ing CVs and ontologies—including the classification of MLOs
according to cellular function and the classification of LLPS sys-
tems according to the main biophysical interactions/molecular
driving forces involved—are represented with customized LLPS-
specific CVs. While the most limited in size and coverage, the
highly structured data representation and the careful manual
curation make PhaSePro a promising candidate to provide train-
ing sets for future high-resolution LLPS prediction methods.
Also, PhaSePro is ideal for users who wish to fully explore any
included LLPS system, including its structural and functional
features, the underlying molecular driving forces, partners or
environmental determinants influencing the process, regulation
by PTMs or alternative splicing and associations to disease.

It is important to note here that in vitro LLPS under physiolog-
ically irrelevant conditions (such as those applied for lysozyme
[42] or gamma crystalline [43], etc.) or in vivo condensate for-
mation under a strong promoter [44] says nothing about phys-
iologically relevant LLPS. Many proteins phase separate at high
concentration and low temperature, but they should not be
classified as LLPS drivers based on such observations. LLPSDB
and DrLLPS include proteins without considering the physiolog-
ical relevance of the applied experimental conditions, and thus,
the information they provide is not uniformly useful for those
who are only interested in physiologically relevant LLPS. While
LLPSDB at least refrains from assigning driver/scaffold roles to
the included proteins and provides the associated measurement
conditions, DrLLPS does categorize several proteins as scaffolds,
which were measured under non-physiological conditions in
vitro (e.g. lysozyme [42]), were only observed to form cellular
puncta in vivo when heavily overexpressed (e.g. Mip6p [44]), were
only demonstrated to partition into the condensates formed by
other proteins (e.g. CIRBP and CPEB2 [45]) or were only used as
donors of smaller protein modules that were used in tandem
repeats with (artificially) high multivalency to study the impor-
tance of multivalency in LLPS systems (e.g. ABL1 and PIAS2 [46]).
Since there clearly is not sufficient evidence that these proteins
could function as LLPS scaffolds in cells, categorizing them as
such is rather misleading. The users of the LLPS resources should
be aware of these caveats.

Overlap of LLPS-specific databases

Owing to the different underlying concepts of the various
databases, the sheer volume of data offered by them also varies
widely (see Table 2). From a user viewpoint, it is important to
know how the data contained in these resources relate to one
another, so users can make informed decisions on choosing the
right dataset (or a combination of datasets) for their application.
For this end, Figure 2 shows the overlap between the reviewed

http://bio-comp.org.cn/llpsdb/
http://llps.biocuckoo.cn
https://phasepro.elte.hu/
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Figure 2. Overlap between various LLPS-specific databases. From databases containing both driver and client/regulator proteins, only the drivers were used. For versions

and other database details, see Data and Methods. UniProt accessions for all proteins from each database are shown in Supplementary Table S1, available online at

https://academic.oup.com/bib.

entries of PhaSepDB, LLPSDB and scaffolds/drivers from DrLLPS
and PhaSePro. The RNA Granule Database is omitted due to
its restricted scope of only two MLO types. We only included
naturally occurring proteins that can be identified with UniProt
accessions (see Data and Methods and Supplementary Table S2
available online at https://academic.oup.com/bib for UniProt
accessions), which limits the information represented from
LLPSDB.

Only 46 proteins are included in all four databases, reflecting
the different inclusion criteria of the various databases. These 46
proteins can be considered to be the core LLPS dataset, and the
users interested in the study of any of these have access to a wide
range of information. In contrast, there are over 200 proteins
that are only included in PhaSepDB and an additional 65 that are
only included in LLPSDB. This highlights the wider scope of these
databases, aiming at high coverage with more liberal inclusion
criteria. Interestingly, the vast majority of data in DrLLPS is
also included in other databases, showing the overall reliability
of DrLLPS entries and showing that carefully tuned automated
annotation methods can be efficiently utilized, ideally as input
for later manual curation. As a counterpoint, while PhaSePro
contains the smallest number of proteins in total, over 20% of its
data is missing from all other databases, showing the advantages
of labour-intensive manual curation efforts in capturing cases
that are missed by other approaches. In addition, PhaSePro was
the last resource to be released and updated (as of writing this
paper), which gave it the possibility to include several newly
described cases.

Apart from different scope, the amount of overlap between
various databases might have technical reasons as well, such
as the inclusion of different isoforms or homologues in various
resources. In order to assess this, the data shown in Figure 2
exclude isoforms (discarding this information from LLPSDB and
PhaSePro), mapping each protein to its canonical UniProt acces-
sion. Supplementary Figure S1 available online at https://acade
mic.oup.com/bib shows the overlap between the four databases
after mapping all constituent proteins to their UniRef50 clusters
(see Supplementary Table S2 available online at https://academi
c.oup.com/bib for UniRef50 accessions), to decrease sequence

redundancy. While the actual numbers change slightly, the over-
all patterns of overlap are very similar, indicating that the limited
overlap between current LLPS databases does in fact mirror the
different scopes of the data included in them.

Prediction methods for identifying unknown
LLPS drivers
Dedicated prediction methods

Despite the advances in the field, few bioinformatics predictors
of phase-separation proteins exist [23], likely due to several
reasons. First, there is a variety of mechanisms by which phase
separation might occur, for example via interacting with RNA or
with oppositely charged proteins. In several known molecular
systems, LLPS is driven by a combination of mechanisms, and
our knowledge of mechanisms contributing to the process is
often incomplete. This translates into the second hindrance,
which is more tangible from a method development viewpoint:
the presence and sequential order of the compositional ele-
ments mediating the LLPS-driving interactions—such as low-
complexity regions or RNA binding domains—are highly vari-
able and exhibit irregular distributions in various proteins. This
complicates sequence-based prediction with traditional bioin-
formatics approaches. Third, the ability to undergo LLPS is not
an intrinsic property of proteins, such as being disordered, but it
is context dependent, usually being a highly complex function
of environmental parameters, with stimuli from temperature,
salt type and concentration, pH, macromolecular interactions
and post-translational modifications (PTMs) all being impor-
tant [8]. A simple binary classification of the protein as phase
separating is therefore too limiting, and it becomes essential
to include environmental parameters in the prediction. With
the development of context-dependent LLPS prediction meth-
ods, it would be possible to calculate a score that implies how
readily the protein phase separates within certain parameters,
or with a reversed logic, to predict values of environmental
parameters under which the protein undergoes phase sepa-
ration. In addition, methods can differ based on the role of

https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
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the protein being identified, as some methods aim to recog-
nize drivers of phase separation, while others aim to recognize
all proteins that are localized to MLOs. Therefore, when using
phase separation prediction methods, it is crucial to take note
of the type of proteins being identified for correct interpre-
tation of the results, and the ‘molecular grammar’ that the
method addresses. For example, FUS-like proteins contain prion-
like domains (PLDs), RNA-recognition motifs (RRMs) and dis-
ordered, typically arginine (Arg)-rich regions [47], interspersed
with regions that have little expected impact. Another example
are the DDX4-type proteins, which contain disordered regions
containing FG and RG groups arranged in a distinct pattern,
governing overall charge patterning in interchanging blocks of
positive and negative charge [48].

Given the complexity of the phase separation process, most
existing approaches identify individual protein characteristics
that were identified as part of the molecular grammar elements
identified in phase separation proteins. This can take the form
of databases, such as LARK [49], where low-complexity aromatic-
rich kinked regions are identified and provided. The users can
approach using these databases as a pseudo-prediction method
by checking if their specific protein or protein region is included
therein. In the case of LARKS, the authors are implementing
an automated prediction server to aid this [50]; however, at
the time of publishing this review, the server is not yet func-
tional. More accessible approaches enable direct prediction of
phase separation-related characteristics directly from protein
sequence. PLAAC [51] predicts polar-rich PLDs using a hidden
Markov model (HMM). It was developed much prior to the real-
ization of phase separation being occasionally driven by PLDs;
therefore, while PLAAC might find PLDs implicated in LLPS, we
should definitely not expect it to identify the majority of phase
separation driving regions. PScore predicts π–π interactions [36]
based on statistically expected long-range interactions between
amino acid side chains. ZipperDB collects protein regions that
have been identified to have a tendency to form fibrils using
structural profiling [52] and also enables the analysis of user
input proteins. While these methods aim to capture specific
protein regions that are known to be able to drive phase separa-
tion, catGRANULE [44] is a more generic method, predicting the
propensity of a protein to be localized in ‘granules’ by combining
self-properties of amino acids, such as their tendency towards
disorder. A review of such first-generation predictors showed
limited overlap between their results, with RNA-binding proteins
typically well predicted, but with low performances for ones that
require protein–protein interactions or PTMs [23].

These methods in essence use statistical scoring based on the
primary sequence composition, which is very useful to identify
and classify phase separation proteins. In accord, their output
is a score reflecting the predicted tendency of the input pro-
tein to drive (or be associated with) phase separation, often
together with a definition of the protein region responsible for
this behaviour. Further refinement becomes possible by inte-
grating all known molecular grammar elements for a particular
class of phase separation proteins, enabling the recognition of
multiple driver regions contributing to LLPS. The approach taken
by the PSPer method [53] is to use a variety of bioinformat-
ics approaches to first separately identify the elements impor-
tant for phase separation, in this case for the FUS-like proteins
mentioned earlier. These characteristics are predicted from the
sequence and are subsequently encoded in a HMM-like model,
which provides an overall score for the protein that depends
on whether regions with these characteristics are present. The
advantage of such an approach is that the relative positions of

these regions can be encoded without enforcing a specific orga-
nization within the protein. The method achieved a −0.87 Spear-
man correlation between its HMM score and the experimentally
determined saturation concentration of FUS-like proteins. PSPer
was trained using a negative dataset containing ordered proteins
and hence is expected to have increased performance on LLPS
driven by disordered proteins.

A parallel direction of method development is the use of
supervised machine learning approaches based on a ‘learning
set’ of proteins involved in phase separation, as implemented
by PSPredictor [54]. However, the complexity of the molecular
mechanisms involved in LLPS and the different roles that can be
adopted by its molecular components (driver, client, regulator)
result in a wide variety of relevant proteins and protein features
for which we still have little data, and particular care has to be
taken to avoid overfitting the machine learning to this currently
very limited but highly complex learning set. For all methods, but
especially for machine learning algorithms, negative controls
will be essential in this respect, especially given that up to 20% of
the human proteome could be involved in phase separation [23].
However, identifying proteins that never undergo LLPS under
physiological conditions is a huge challenge given the diversity
of protein concentration, pH and other environmental parame-
ters found in various cell compartments. The lack of a unified,
gold standard negative LLPS dataset produces implicit and hard-
to-quantify biases between various methods, as their efficiency
will depend on the features of the proteins in the used dataset.

Approaches that take the route of molecular modelling have
also been developed. These range from coarse-grained residue-
based models of disordered protein condensates [55] that can
handle contextual changes such as phosphorylation events, to
more coarse approaches, including lattice models [56]. These
approaches are showing their potential in elucidating possible
mechanisms of phase separation but remain low resolution
and do not allow detailed investigation of atomic interactions.
Full-atom simulations are also being explored but are currently
limited by computational costs and force field issues. Finally,
polymer physics-based methods excel at capturing global
behaviour of disordered regions and describing the electrostatic
interaction-driven effects. However, LLPS is often driven by
folded domains, coil-coiled regions and domain–motif interac-
tions, which are out of the scope of these methods. Overall, these
approaches have limited applicability for large-scale prediction
purposes due to their computational costs, but they are already
making significant contributions to understanding specific LLPS
mechanisms and will be instrumental in informing the next
generation of sequence-based predictors.

In summary, to identify proteins with a particular phase sep-
aration mechanism, prediction models integrating its full molec-
ular grammar are likely to be the most useful. On the other hand,
to explore proteins for which the mechanism of phase separa-
tion is unclear, the most relevant way to proceed is likely a bioin-
formatics analysis of characteristics related to phase separa-
tion, such as π–π interactions, disordered and aggregation-prone
regions, which can then be analysed to understand which mech-
anism might be responsible for driving phase separation [8].

Methods for detecting LLPS-related protein
sequence features

LLPS often involves sequence regions that possess some unique
quality or certain types of functional modules, apart from the
most apparent PLDs and RRMs. The presence of such regions
might be indicative of the protein’s involvement in LLPS by
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highlighting molecular grammar elements connected to LLPS.
There are several methods that have been developed for the
identification of such regions, and while they were not explicitly
developed to aid the identification of LLPS driver proteins, their
use might provide valuable information on proteins under study,
either reinforcing the prediction of dedicated LLPS prediction
methods or providing complementary information.

PLDs have been frequently described to be central drivers
of LLPS [57], and methods such as PrionW [58] and PrionScan
[59] can highlight such driver regions. In a more generalized
approach, one of the characteristic features of PLDs is their
low sequence complexity. The lack of sequence complexity can
be assessed using various methods such as SEG at the protein
level [60] and TRF at the nucleotide sequence level [61]. Apart
from the information content and sequence features of protein
regions, biochemical and structural features can also be indica-
tive of LLPS drivers. Electrostatic interactions involving charged
and aromatic residues inside disordered proteins are hallmark
features of several LLPS drivers, such as FUS and TAF15 [47].
Polymer physics-based methods, such as CIDER [62] quantifying
the charge patterning in protein regions, can pinpoint regions
with molecular behaviour governing physical properties such as
radius of gyration, consistent with phase separating disordered
regions. Disorder prediction methods and databases, such as
IUPred [63] and MobiDB [64], can reach high accuracies, espe-
cially when used in combination [65], and thus can provide
additional information in identifying LLPS drivers.

While the protein regions targeted by these methods are
clearly significant contributors to LLPS in several cases, caution
should be exercised in their use in LLPS driver identification.
PLDs, low complexity regions and polyampholytes represent
much wider functional classes of proteins than being exclusive
to LLPS. Not all such regions are connected to LLPS, and con-
versely, not all LLPS drivers display these features. This notion is
especially true for protein disorder, as the lack of a stable struc-
ture is a feature of roughly one third of the human proteome
[66]. Hence, using these methods can only indicate the protein’s
potential involvement in LLPS, but additional information is
needed to properly assess it.

Detecting conserved functional modules

Given the biological importance of non-membrane-bounded
organelles, the function of LLPS drivers is expected to be well
conserved. In many cases, LLPS is driven by low complexity
and/or disordered regions, where the conserved function does
not necessarily require sequence conservation. Therefore,
sequences of LLPS drivers that are highly disordered, containing
repetitive, highly charged or prion-like regions, are usually
difficult to align, hindering conservation score calculations.
However, ordered domains—such as RNA-binding domains—
also often contribute to LLPS formation, and the presence of
these domains can be captured by protein domain prediction
methods relying on sequence alignments. Conservation can
also be detected for regions of ‘constrained disorder’, where the
flexible character of the protein region is preserved via strong
sequence conservation [67]. Constrained, flexible and non-
conserved disorders are characteristic of different functional
classes of IDPs; however, establishing a connection between
these classes and LLPS are yet to be studied.

One of the most widely used methods for identifying
conserved protein modules from the protein sequence is Pfam
[68]. Pfam generates HMMs built on the alignment of known
protein sequences, and the recognized conserved modules are

annotated and stored in the database. These HMM profiles also
serve as a prediction tool, being able to recognize the annotated
modules in any input sequence. While Pfam regions are mostly
referred to as domains, they are not necessarily structured
domains, as their definition relies on sequence conservation
alone. Therefore, certain IDRs and even SLiMs can be identified
if their sequence is well conserved throughout evolution.

While certain domain types have been connected to LLPS
drivers in individual cases, to date no systematic survey has
assessed the overlap between Pfam regions and LLPS driving
regions, or the utility of Pfam predictions in identifying LLPS
drivers. Figure 3A shows how much on average Pfam regions
cover the known protein regions responsible for driving LLPS.
While for some proteins Pfam captures some, or even all of
the driver regions, for over 40% of known drivers, the driver
region does not overlap with any Pfam region. The correlation
between the length of the LLPS driver region and the coverage by
Pfam is negligible with r = −0.06, showing that the poor overall
coverage is not a size effect, and longer LLPS driver regions
escape identification by Pfam just as easily as short ones. This
sets a—fairly low—upper boundary for the utility of Pfam in
LLPS driver prediction. Figure 3B shows the type of Pfam regions
found to overlap with LLPS driver regions (for a detailed list, see
Supplementary Tables S3 and S4 available online at https://aca
demic.oup.com/bib). The most common Pfam region type covers
various nucleic acid binding domains, with most of them corre-
sponding to conserved RRMs. The second largest class is given
by protein-binding domains and regions, with a large portion of
these being SH2 and SH3 domains and modules mediating inter-
actions with histone tails (such as chromo domains). A smaller
portion of driver regions contains zinc finger modules, and
regions tethered to membranes, reflecting the roles of LLPS in
transmembrane signalling. However, over one-third of detected
Pfam regions cannot be easily described by a single well-defined
function.

In light of these results, the use of the identified Pfam regions
as indicators of LLPS driver proteins should be used with extreme
caution. On the one hand, only a bit more than half of true drivers
overlap with any Pfam region. On the other hand, the analysed
LLPS drivers overlap with 83 different types of Pfam regions, and
therefore, there is no good answer to questions such as ‘which
Pfam regions are responsible for driving LLPS?’ While Pfam can
provide valuable information in the search for LLPS drivers, it
should only be used in conjunction with other indicators to
achieve meaningful coverage and precision.

The potential of the combination of methods

The available methods for the identification of LLPS driver pro-
teins typically employ different underlying concepts, different
architectures and different training and testing sets. This can
make it difficult to use them in common settings, such as trying
to determine if a protein of interest is a true LLPS driver. To
date, no systematic comparative studies have been published,
and thus, there are a range of very justified questions on the
user side that are difficult—if not impossible—to answer. Which
method is the best choice for my protein of interest? How likely
are various methods to recognize a true LLPS driver, and how
likely are they to give false-positive predictions? What should
I expect when using these methods in large-scale proteome-
wide studies? Does the efficiency of methods depend on the
sequence-level, structural and functional characteristics of the
protein studied? Is there a benefit of using these methods in
combination, and if so, what can we expect from this approach?

https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 3. Pfam regions overlapping with protein regions known to drive LLPS. (A) The coverage of LLPS driver protein regions by Pfam. The dashed line marks the

coverage averaged over all LLPS driver regions taken from PhaSePro. Found Pfam regions are shown in Supplementary Table S3, available online at https://academic.

oup.com/bib. (B) Types of Pfam regions overlapping with LLPS driving regions. Groups were established assessing GO [28] terms attached to Pfam regions, taken from

InterPro mappings [69]. Nucleic acid binding excludes RRMs, and protein binding excludes histone tail binding and SH2/SH3 domains. For the classification of Pfam

objects into functional categories, see Supplementary Table S4 available online at https://academic.oup.com/bib.

In order to rigorously answer these questions, the best way
would be to test all methods on standardized datasets and
calculate standard prediction method evaluation metrics, such
as Matthews correlation coefficients or area under the receiver
operating characteristic curves. Such standardized positive
datasets containing verified LLPS drivers have just recently
appeared. Unfortunately, negative datasets that would contain
proteins verified to not drive or engage in LLPS formation under
any relevant physiological condition are absent. Considering
the challenge of assembling such a dataset that represents
the sequence heterogeneity of the known protein universe, the
construction of such datasets will take considerable time and
effort.

In lieu of rigorous testing, we outline the properties of five
LLPS prediction methods by comparing their results on a small
high-quality LLPS driver dataset taken from PhaSePro. We chose
this as a testing set as PhaSePro is limited to cataloging LLPS
drivers as opposed to client proteins, as well as defining the
residue boundaries of minimally required LLPS driver regions.
It also contains additional annotations of LLPS drivers, which
enables us to assess the utility of each method as a function
of source organism, molecular driving forces of LLPS and other
features. We further removed all proteins that do not have in
vivo evidence for driving LLPS to assess the biologically truly
relevant drivers (see Supplementary Table S5 available online at
https://academic.oup.com/bib). In total, this left 109 proteins in
the testing set: roughly 40% of these proteins are included in all
four LLPS databases (see Figure 2 and Supplementary Table S1
available online at https://academic.oup.com/bib), and only 22%
is unique to PhaSePro. However, the majority of these PhaSePro-
unique proteins have been published after the last curation
round of the other databases, and hence the lack of overlap
does not mean lack of reliability. It is important to note here
that PhaSePro is definitely not an independent testing set for
the five methods compared below; such an independent set is
currently not available. Each method did have proteins in their
respective training sets that are present in PhaSePro or are close
homologs of those (in varying numbers), so the comparison
provided below is not aiming to provide a fair benchmarking or

critical performance assessment of the methods and therefore
should not be regarded as such.

In terms of methods, we chose the ones outlined above that
(1) are built to specifically recognize LLPS proteins or have a very
close focus (in the case of PLAAC) and (2) are accessible via public
web servers for all users. In accord, we ran PScore [36], PSPer [53],
PLAAC [70], catGRANULE [44] and PSPredictor [54] on the posi-
tive dataset. All methods were run with their default settings,
except for PSPer, where the protein-level cutoff was lowered
from 0.56 to 0.38 to improve coverage. In addition, catGRANULE
protein-level scores were evaluated with a cutoff value of 0.75.
While catGRANULE does not define a default cutoff, this value
corresponds to the third quartile in the distribution of scores
calculated in the positive training set [44]. PLAAC does not assign
a protein-level score; instead, it defines the region responsible
for driving LLPS. Thus, cases with at least one predicted region of
any length were considered as positive predictions, while cases
with no predicted regions were considered as negative.

In addition to studying one protein of interest, another typical
use for such methods is in large-scale studies, often conducted at
the proteome level. To assess the utility of these five methods, we
also ran them on the 20 350 proteins of the full human proteome
(see Supplementary Table S6 available online at https://acade
mic.oup.com/bib) taken from UniProt. This can indicate poten-
tial overprediction problems. The best methods are expected
to have a large coverage on the positive set and in compari-
son a limited coverage of the full human proteome. While the
traditional evaluation measures are not applicable here, the
ratio of the fraction of proteins predicted on the two sets is an
approximate indicator of the utility of these methods in real-life
applications.

Figure 4A and B shows the results of the runs on the pos-
itive dataset and the full human proteome (for full lists of
proteins with prediction results and annotations for the pos-
itive set, see Supplementary Tables S5 and S6 available online
at https://academic.oup.com/bib). The methods show large vari-
ations in terms of the number of proteins predicted. In both
settings, the order of methods is the same, showing that PLAAC
is the most conservative of the five methods, recognizing only a

https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
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well-defined set of proteins. While true LLPS drivers recognized
by PLAAC are all predicted by at least one other method as
well, PLAAC can be excellent at avoiding overprediction when
identifying prion-like LLPS drivers. Accordingly, all of the 17 in
vivo LLPS drivers recognized by all methods contain low com-
plexity PLDs, with 7 of them belonging to the well-studied FUS-
like protein family [47] (see Supplementary Table S5 available
online at https://academic.oup.com/bib). PSPer and PScore both
predict comparable numbers of proteins, albeit with a restricted
overlap, since PSPer mostly recognizes PLDs and RNA-driven
phase separation, while PScore captures LLPS cases driven by π–
π type inter-residue interactions. Thus, PSPer and PScore have
good synergy, and their combined use extends the coverage of
predictions. catGRANULE and PSPredictor have noticeably larger
coverage, probably due to their intentionally broader scope. cat-
GRANULE takes into account disorder propensity, RG and FG
content, as well as RNA-binding propensity, and PSPredictor is
a machine learning approach trained on proteins from LLPSDB.
Accordingly, these two methods achieve the widest coverage
of true positives, both giving hits that are missed by all other
methods. However, they also predict a high number of proteins
in the full human proteome, with over 4200 and 5000 hits for
catGRANULE and PSPredictor, respectively. Given that at least
some of the methods are quite conservative, it seems reasonable
to assume that the 60 proteins in the human proteome iden-
tified by all methods are likely to be enriched in LLPS drivers.
Twenty four of these proteins are already included in at least
one of the LLPS-specific databases we presented earlier, while
the rest of these proteins would be reasonable choices for further
targeted experimental studies. In order to enable a more refined
combination of methods, Supplementary Tables S7 and S8 avail-
able online at https://academic.oup.com/bib show a quantified
similarity between the outputs of the five methods on the in
vivo LLPS protein set and the full human proteome. While it
would be useful to give objective guidance on which methods
should be combined for maximum efficiency, the calculated
Jaccard indices are mostly dominated by the difference in the
sheer number of proteins being predicted. Therefore, the best
course of action for combining methods is to be aware of the
characteristics of each method and make an informed decision
based on the task at hand.

Table 3 shows the overview of the performance of the five
tested methods, together with their observed strengths and
weaknesses. In general, the higher coverage a method achieves
on the positive dataset, the less precise it gets, judging by the
increasing fraction of proteins predicted in the full human pro-
teome (marked as fold enrichment in Table 3). Thus, PLAAC
seems to be the most precise method, while predicting the
most limited set of true drivers. PSPer and PScore both have a
more even balance between coverage and enrichment, while cat-
GRANULE and PSPredictor both achieve high coverage with low
enrichment. With the exception of PLAAC, all methods assign a
score and the threshold can be adjusted by the user to increase
coverage, albeit probably at the expense of losing precision.
Various features of the methods shown in Table 3 make them
suitable for different applications, and their combined use can
further enhance their utility. In addition, in Table 3, we also
detail where and how the users can access the methods. For
use on single proteins, the simplest way is to use the online
servers. However, for large-scale applications, it is greatly ben-
eficial if the users can automate the runs by installing a local
copy of the method, using APIs to automate queries or at least
having the option of uploading sequences in reasonably large
batches.

As a general notion, we point out that by testing on the
positive dataset 94 out of 109 proteins are identified by at least
one method. This means that some feature(s) of around 86% of
known LLPS drivers are captured by available methods. There-
fore, current methods are able to describe the main driving forces
behind LLPS, and hence their combination—possibly by develop-
ing meta-prediction approaches—might significantly increase
overall performance. Although studies relying on the combina-
tion of the above methods are still scarce, the thoughtful com-
bination of different methods (PLAAC for detecting PLDs, cat-
GRANULE for LLPS propensities and other methods for physic-
ochemical properties) along with experimental validation led to
important new insights into the interplay between RNA-binding
domains and PLDs in the formation of MLOs recently [72]. While
LLPS-prone RBDs and PLDs can already be relatively successfully
identified by multiple methods, several specific types of LLPS
drivers still pose challenges to all methods. These include viral
LLPS driving proteins, as five out of seven viral drivers in the
positive dataset were not identified by any of the methods,
possibly due to their markedly different sequence composition.
The molecular interactions driving LLPS have a profound effect
on method efficiency as well: LLPS driven by SLiM–domain inter-
actions or those that require phosphorylation or the presence
of a membrane are generally poorly recognized by all methods.
In addition, LLPS driver systems that require more than one
protein for condensate formation are largely missed by most
methods. These features are not independent but largely overlap
as SLiM-mediated interactions require more than one protein,
are often regulated by phosphorylation events as switches and
are often involved in the formation of membrane-associated
receptor clusters. The efficient prediction of these cases will
require the development of novel methods, integrating data
and relying on approaches missing from currently available
prediction services.

Examples highlight the use and utility
of LLPS resources
In this section, we demonstrate the utility and possible limi-
tations of computational resources on four examples of LLPS
drivers, chosen to represent different molecular mechanisms
and different cellular roles. All four of these proteins have been
extensively studied and can be considered textbook cases in the
field. Table 4 details the main features of each protein, together
with the molecular details and mechanisms characteristic of
their driver role. Table 4 also shows which protein is included
in which LLPS-related database. All four of the available generic
LLPS databases contain all examples, and in addition, FUS and
nucleophosmin are contained in the RNA granule database as
well, in accord with their RNA-binding roles. Incidentally, these
two proteins are also marked as having high average spectral
counts in CRAPome.

Figure 5 shows the output of LLPS-related prediction meth-
ods on these cases. In the previous section, we showed on large-
scale data that the five LLPS-specific methods are largely com-
plementary, with each having use in true LLPS detection. We also
emphasized that additional methods targeting the recognition of
domains, SLiMs, disordered regions or low complexity regions—
even though they were not specifically developed for studying
LLPS—can provide useful information in detecting various types
of LLPS drivers. Figure 5 demonstrates these concepts by visu-
alizing the output of the five LLPS predictions, together with
Pfam, SEG, ELM (the most comprehensive resource for SLiMs) and
IUPred2A for the four example drivers.

https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 4. Results and overlap of five selected LLPS prediction methods. (A) Performance of the methods on 109 LLPS driver proteins taken from PhaSePro, using only

cases that have in vivo experimental support. (B) Performance of the methods on the full human proteome. In both scenarios, the left side displays results in the form

of a Venn diagram, while the right side displays the same data in UpSet [71] presentation. For lists of proteins identified by each method and for annotations of in vivo

LLPS drivers, see Supplementary Tables S5 and S6 available online at https://academic.oup.com/bib.

FUS is one of the best known examples of LLPS drivers [47]. It
is composed of large stretches of disordered regions displaying
various compositional biases for residues or groups of residues.
FUS also contains an RNA-recognition motif (RRM), and while
FUS readily phase separates without RNA as well, the whole
protein contributes to granule formation. The low complexity
disordered regions are well captured by SEG and IUPred, and
Pfam detects the RRM, as well as a RanBP2-type zinc finger (zf),
which serves as an additional RNA-binding element [77]. The
most characteristic region in FUS is the N-terminal PLD that
harbours a large number of phosphorylation sites. This region is
correctly recognized by all five LLPS predictors. PSPer correctly
identifies the RRM as a separate region, as well as marking
surrounding Arg-rich disordered ‘spacer’ regions. These regions

are also highlighted as LLPS-prone by both catGRANULE and
PScore. PSPredictor assigns a high score (0.99 out of 1), marking
high confidence in the positive prediction and reflecting its
FUS-like protein prediction focus.

DDX4 is a DEAD-box helicase, and thus, similar to FUS, it
binds RNA. However, for DDX4, the phase separation does not
depend on the full protein; rather it is driven by the N-terminal
disordered segment rich in repeats of FG and RG [48]. The overall
structure is well captured by IUPred, and Pfam clearly recognizes
the two helicase domains. In spite of the compositional bias,
SEG does not predict large stretches of low complexity regions,
showing the clear difference of the N-terminal driver region in
comparison with the N-terminal of FUS. As the N-terminal driver
of DDX4 is not prion like, PLAAC is unable to identify DDX4 as

https://academic.oup.com/bib


Computational resources for identifying and describing proteins 15

Table 4. Annotations of the four examples

Protein name RNA-binding protein
FUS

RNA helicase DDX4 Nucleophosmin Linker for activation
of T-cells family
member 1

Basic data Gene name FUS DDX4 NPM1 LAT
Organism Human Human Human Human
UniProt accession P35637 Q9NQI0 P06748 O43561

Inclusion in
databases

PhaSePro Yes Yes Yes Yesa

PhaSepDB Yes Yes Yes Yes
LLPSDB Yes Yes Yes Yesa

DrLLPS Yesb Yesb Yesb Yesb

RNA Granule
Database

Yes No Yes No

CRAPome spectral
count

High Low High Low

Organelle name GO Perinuclear region of
cytoplasm

P granule Nucleolus/
ribonucleoprotein
complex

Immunological
synapse

Literature Cytoplasmic stress
granule

P granule Nucleolus TCR
signalosome/LAT
signalosome

Driver region(s) Region(s) driving
LLPS

PLD, RNA-binding
regions (RRMs and
RGGs)

Highly charged
flexible region

Oligomerization
domain, acidic
motifs, RNA-binding
domain

SLiMs with
phosphorylated
tyrosines

Structure Ordered + IDR IDR Ordered + IDR IDR
Reference [47] [48] [73] [74]

Molecular
background of LLPS

RNA-dependent
LLPS?

No No Yes No

Multi-protein
system?

No No No Yes

Membrane cluster? No No No Yes
Dominant
interactions

Cation–π , π–π ,
electrostatic
interactions

Electrostatic,
cation–π interactions

Discrete
oligomerization,
protein–RNA
interaction,
multivalent
domain–motif
interactions

Multivalent
domain–motif
interactions,
multivalent
domain–PTM
interactions

aAnnotated as part of a multi-protein system.
bAnnotated as a driver (‘scaffold’).

LLPS-prone. PSPer correctly detects the second helicase domain
as an RNA-binding module, as well as detecting a short PLD-
like segment between the N-terminal driver and the Q-motif
of the first helicase; however, it assigns a low overall score to
the protein. On the other hand, PScore and catGRANULE both
pick up on the sequence signatures of the N-terminal driver
region and correctly identify DDX4 as an LLPS driver. PSPredictor
assigns a reasonably high score (0.64/1), correctly detecting the
LLPS tendency.

Nucleophosmin (NPM1) is a constituent of the nucleolus,
aiding its molecular organization. NPM1 is able to drive phase
separation; however, in contrast to previous examples, it does
so in a heavily partner dependent manner [73]. There are three
main factors crucial for phase separation: oligomerization of
NPM1 via its N-terminal core domain; interaction with arginine-
rich protein partners via the three acidic patches, the first of
which is inside the core domain with the second and third in
a central disordered region and finally interaction with rRNA via
its C-terminal nucleotide-binding domain. The overall structure

and the locations of the two ordered domains are captured
by Pfam and IUPred, and the disordered low complexity acidic
tracts are captured correctly by SEG. As NPM1 does not incorpo-
rate a PLD, PLAAC is unable to identify it. PSPer does indicate
some similarity of the central disordered region to PLDs and
RRMs (probably driven by the negative charges in the acidic
regions), but these signals are not strong enough to yield an
overall positive prediction. PScore misses NPM1 as well, as the
phase separation in this case does not involve π–π or cation–
π interactions. However, catGRANULE reacts to the similarity of
the disordered regions to yeast LLPS drivers in general and gives
a positive prediction. PSPredictor gives a very high-confidence
positive prediction with a 0.99/1 score.

LAT is a distinctively different LLPS driver in comparison to
previous examples. It is part of a multi-protein system, wherein
interactions with its partners are mediated via SLiM–domain
interactions [74]. LAT is anchored to the plasma membrane,
where it is able to form liquid-like membrane clusters ampli-
fying incoming signals. This phase transition is driven by its
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Figure 5. (A) RNA-binding protein FUS, (B) ATP-dependent RNA helicase DDX4, (C) Nucleophosmin (NPM1) and (D) Linker for activation of T-cells family member 1

(LAT). Examples of LLPS drivers. Blue regions in the protein schematics designate LLPS driver regions. Ordered domains are represented by rounded rectangles, SH2-

binding SLiMs for LAT are marked with ovals and the transmembrane region is marked in black. Lollipops above the sequences represent phosphorylation (circles),

ubiquitination (squares) and SUMOylation sites (pentagons). The colour of the background of prediction method names marks positive (green) and negative (red)

predictions, based on the overall score, where applicable (see Data and Methods). Regions recognized by methods are shown with boxes. As PSPredictor does not assign

regions only an overall score, positive predictions are represented as a box covering the full protein sequence. Domains and motifs were taken from Pfam [68] and ELM

[75], low complexity and disorder were calculated using SEG [60] and IUPred2A [63] and PTMs were taken from PhosphoSitePlus [76] (see Data and methods).

interaction with SH2 domains of partner proteins, such as GRB2.
The four SH2-binding SLiMs in LAT become functional only
upon phosphorylation of their tyrosine residues. In addition to
the LAT:GRB2 interaction, phase separation also requires SOS1,
which harbours several proline-rich motifs that are able to bind
to the SH3 domains in GRB2. This way LAT, GRB2 and SOS1 form
a highly intertwined, non-stoichiometric network held together
by a large number of transient and reversible SLiM–domain inter-
actions. The modest affinity, large number and multivalency of
these interactions provide the dynamic nature and robustness of
the condensate. Figure 5 shows that the disordered nature of LAT
is well captured by IUPred. The single, dedicated region predicted
by Pfam and the lack of large low complexity regions marked by
SEG all indicate the well-conserved nature of LAT. ELM is able to
identify the SH2-binding SLiMs, which coincide with phosphory-
lation sites. However, since LAT is only one of the three protein
components of LLPS, containing no classical PLDs and not relying
on π–π or cation–π interactions, nearly all methods are unable

to identify it as an LLPS driver. A surprising exception is PSPer,
which is able to recognize regions that share a similarity with
characteristic protein modules required for LLPS in its training
model.

These four examples show that there is not one superior
method for LLPS driver detection, and the combination of meth-
ods can provide insights that no single method can. For easy
cases, such as FUS, virtually any method is sufficient for success-
ful prediction. For RNA-dependent cases, such as NPM1, methods
trained on such datasets are superior, while in cases where a
specific type of interaction is at play, methods explicitly building
on the abundance of corresponding residues (such as modelling
π–π interactions by PScore for DDX4) will be extremely useful.
Methods, such as PSPer, that assign types to identified regions
can provide valuable information on possible functions of pro-
tein regions even if the overall prediction score is low. Testing
methods on large-scale datasets (see Table 3 and Figure 4) and
on specific examples (see Figure 5) clearly show that the most
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challenging cases are those where phase separation requires the
interaction of multiple proteins. For NPM1, the nature of these
partners is reflected in the sequence of the driver with acidic
patches bearing complementary charges to the partner Arg-rich
motifs, and the RNA-binding domains hinting at the presence
of RNA in the phase-separated system. In these cases, methods
have a fair chance of taking all functional modules present in
the system into account based on the driver sequence alone.
However, cases like LAT, where the presence of domains and
motifs present in other auxiliary drivers are not reflected in
the driver sequence at all, pose the greatest challenge to LLPS
prediction methods.

Conclusions and perspectives
The recent explosion in the number of proteins experimentally
identified to be participating in LLPS has paved the way for
the development of computational methods and resources in
the LLPS field. The in silico counterpart of any field has the
potential to work in synergy with experimental efforts, with the
data generated by experiments being stored in a structured way
in databases, serving as the foundation for prediction method
development, in turn providing novel candidates for further
experimental validation. In addition, reliable prediction methods
allow for the large-scale assessment of the extent, biological
roles and evolution of the biological phenomenon being studied.
Thus, for every new field, the three most important compu-
tational aspects required to achieve synergy are the common
language we use to describe the phenomena and observations
of the measurements, structured databases to provide access
to this knowledge and the development of dedicated prediction
methods.

The development of CVs and ontologies to unambiguously
describe LLPS-related observations are past the first steps, with
the community arriving at a common language. However, as the
LLPS field works with observations at several different levels—
such as molecular interactions, types of functional protein mod-
ules, cellular components and high level biological processes—
having a single CV or ontology is neither realistic nor desirable.
Therefore, standardization efforts will need to be divided and
preferably be interfaced with already existing efforts at develop-
ing standards, such as GO, the PSI initiative or ECO. In addition,
several dedicated ontologies will surely be required to describe
features not captured by existing descriptions.

Recently published databases already utilize these emerging
concepts to describe, organize, interpret and provide access to
the immense knowledge generated by experiments. As of yet,
available databases are built on different concepts, focusing on
either the molecular drivers of LLPS or the constituents of the
formed MLOs. Thus, existing resources have different content,
and the overlap between them is limited. These resources also
have differing levels of description they utilize, and future works
consolidating their content into a common framework will be
immensely valuable. In addition, a future objective of LLPS-
related database construction should be the assembly of a gold
standard negative dataset—with proteins known to not undergo
phase separation under any physiologically relevant set of condi-
tions—as this would enable the proper training and assessment
of current and future prediction methods.

Interestingly, prediction method development of the LLPS
field was primarily not data-driven, as most current methods
predate the publication of LLPS-specific datasets. Early methods
were rather done as auxiliary works of experimental surveys,
with the methods concentrating on capturing a single feature

of sequences through an algorithmic model-based approach.
Many of these first-generation methods have been published as
supplementary materials, and several of them have no publicly
accessible web servers. However, several user friendly methods
have emerged as well, based on a limited number of known LLPS
cases at the time. Contrary to expectations, their predictions
show a much larger overlap than current databases. This might
be an indication that even our current methods capture the
main molecular backgrounds driving LLPS. That being the case,
assessing these methods on a large-scale dataset shows that
their false-positive rate might not make them ideal for sound
proteome-wide studies just yet.

Our current predictors are based on different principles,
and they mostly excel at the detection of low-complexity LLPS
driver regions, especially of RNA-binding proteins. Thus, the
future of LLPS prediction method development should primarily
focus on specific types of LLPS drivers that are currently
the most challenging, including drivers incorporating PTMs,
forming membrane clusters and relying on oligomerization
or multivalent domain–motif interactions between several
drivers that act in concert. Therefore, methods common in
bioinformatics method development, such as machine learning
algorithms, will most likely need to be complemented with
knowledge-based approaches. This will be hugely aided by
the exploitation of the finally available, recently published
databases, enabling the transition of LLPS bioinformatics into
the next generation.

Data and methods
Protein sets for assessing overlap between databases

PhaSepDB [37] (version 1.3, October 2019) was represented with
the ‘Reviewed’ dataset, containing 352 proteins. LLPSDB [39]
(version 1 July 2019) was represented with the ‘Natural proteins’
dataset in the downloaded ‘protein.xls’ table. This dataset was
filtered for proteins with a valid UniProt accession and at least
one corresponding experiment indicating involvement in LLPS in
the ‘LLPS.xls’ table. This filtered dataset contains 184 proteins.
DrLLPS [40] was represented by the 150 proteins that have a
‘scaffold’ annotation in the downloadable 1.0 version of the
database. PhaSePro [34] was represented with the downloadable
set of 121 driver proteins from version v.1.1.0.

Protein sets for testing LLPS predictions

LLPS drivers annotated in PhaSePro [34] were used as the positive
set in testing LLPS prediction methods. Only those 109 proteins
were used that have in vivo support for driving phase separation.

The full human proteome was taken from UniProt [78] using
the accession UP000005640 on 11 May 2020. The dataset consists
of 20 350 reviewed proteins.

LLPS prediction methods

In total, five LLPS-specific prediction methods were used in
large-scale analysis and for predictions. PLAAC [51] was used by
downloading the Java package from the PLAAC server. PScore [36]
was run using the downloadable Python script locally. PSPer [53]
was run locally. catGRANULE [44] and PSPredictor [54] were run
on the web servers, uploading the sequences in batches of the
largest allowed size. All methods were run using default settings,
except for PLAAC where the residue background frequencies
were set to 100% human.
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PLAAC was considered to give a positive prediction if it
returned a non-zero length region. PSPer predictions were
evaluated with a cutoff of 0.38, regardless of the regions
predicted. PScore predictions were considered as positive if they
assigned a score greater than or equal to 4 to any position in
the sequence. catGRANULE predictions were evaluated with a
cutoff of 0.75, roughly corresponding to the third quartile of the
distribution of scores on the testing set described in the source
publication. PSPredictor was evaluated using the binary value
the method assigns to input proteins.

Other prediction methods and annotations

Pfam was run locally using release 32 [68]. GO terms were con-
nected to Pfam predictions using the service offered by GO [28,
79] via InterPro mappings [80] at http://current.geneontology.o
rg/ontology/external2go/pfam2go, using release 18 April 2020.

Low complexity regions were detected using SEG [60] with
default settings. Disorder predictions were calculated using
IUPred2A [63]. SLiMs were identified using the verified instances
on the ELM server [75], release of 12 March 2020. PTM sites were
taken from PhosphoSitePlus v6.5.9.2 [76], using only positions
where there are at least two low throughput papers supporting
the existence of the PTMs.

Visualization of data

UpSet presentations in Figures 2 and 4 were created using the
UpSetR package [71]. Venn diagrams, also in Figures 2 and 4,
were created using the web server provided by VIB/UGent at
http://bioinformatics.psb.ugent.be/webtools/Venn/. Protein dia-
grams in Figure 5 were created using the Illustrator for Biological
Sequences [81].

Key Points
• The vocabulary of the rapidly growing LLPS field is

slowly nearing a point of consensus, enabling the
unambiguous description of findings and their inclu-
sion into dedicated databases.

• The vast amount of experimental data has spurred the
development of dedicated databases and prediction
methods.

• LLPS databases cover the majority of LLPS experi-
mental results; however, various resources are built
on markedly different underlying concepts and hence
differ in coverage, scope and annotation level.

• Given the complexity of LLPS, there are no prediction
methods that are clearly superior to others, as each
method describes different underlying molecular driv-
ing forces, being able to recognize a different set of
driver proteins.

• The combination of current dedicated prediction
methods is able to identify the majority of known LLPS
drivers; however, there is a tradeoff between coverage
versus specificity and level of detail

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.

Acknowledgement

The authors are grateful for the helpful comments of Peter
Tompa, which significantly improved the manuscript.

Data Availability

The data underlying this article are available in the article
and in its online supplementary material.

Funding

European Union’s Horizon 2020 research and innovation
programme (Marie Skłodowska-Curie grant agreement no.
842490 (MIMIC) to B.M.); Hungarian Academy of Sciences
(grant PREMIUM-2017-48 to R.P.); National Research, Devel-
opment and Innovation Office (Fund FK-128133 to R.P.);
Research Foundation Flanders (FWO) (project no. G.0328.16N
to W.V.).

References
1. Banani SF, Lee HO, Hyman AA, et al. Biomolecular conden-

sates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol
2017;18:285–98.

2. Shin Y, Brangwynne CP. Liquid phase condensation in cell
physiology and disease. Science 2017;357:eaaf4382.

3. Al-Husini N, Tomares DT, Bitar O, et al. α-Proteobacterial RNA
degradosomes assemble liquid-liquid phase-separated RNP
bodies. Mol Cell 2018;71:1027–1039.e14.

4. Nikolic J, Le Bars R, Lama Z, et al. Negri bodies are viral
factories with properties of liquid organelles. Nat Commun
2017;8(1):58.

5. Kaganovich D. There is an inclusion for that: material prop-
erties of protein granules provide a platform for building
diverse cellular functions. Trends Biochem Sci 2017;42:765–76.

6. Pancsa R, Schad E, Tantos A, et al. Emergent functions of
proteins in non-stoichiometric supramolecular assemblies.
Biochim. Biophys Acta Proteins Proteomics 2019;1867:970–9.

7. Alberti S. The wisdom of crowds: regulating cell func-
tion through condensed states of living matter. J Cell Sci
2017;130:2789–96.

8. Alberti S, Gladfelter A, Mittag T. Considerations and chal-
lenges in studying liquid-liquid phase separation and
biomolecular condensates. Cell 2019;176:419–34.

9. Sheu-Gruttadauria J, MacRae IJ. Phase transitions in the
assembly and function of human miRISC. Cell 2018;173:946–
957.e16.

10. Banjade S, Rosen MK. Phase transitions of multivalent pro-
teins can promote clustering of membrane receptors. Elife
2014;3:e04123.

11. Yap K, Mukhina S, Zhang G, et al. A short tandem repeat-
enriched RNA assembles a nuclear compartment to con-
trol alternative splicing and promote cell survival. Mol Cell
2018;72:525–540.e13.

12. Schmidt HB, Görlich D. Nup98 FG domains from diverse
species spontaneously phase-separate into particles with
nuclear pore-like permselectivity. Elife 2015;4:e04251.

13. Yoo H, Triandafillou C, Drummond DA. Cellular sensing by
phase separation: using the process, not just the products. J
Biol Chem 2019;294:7151–9.

http://current.geneontology.org/ontology/external2go/pfam2go
http://current.geneontology.org/ontology/external2go/pfam2go
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa408#supplementary-data


Computational resources for identifying and describing proteins 19

14. Jung J-H, Barbosa AD, Hutin S, et al. A prion-like domain
in ELF3 functions as a thermosensor in Arabidopsis. Nature
2020;585:256–60.

15. Zacharogianni M, Aguilera-Gomez A, Veenendaal T, et al.
A stress assembly that confers cell viability by preserv-
ing ERES components during amino-acid starvation. Elife
2014;3:e04132.

16. Guillén-Boixet J, Buzon V, Salvatella X, et al. CPEB4 is reg-
ulated during cell cycle by ERK2/Cdk1-mediated phospho-
rylation and its assembly into liquid-like droplets. Elife
2016;5:e19298.

17. Wen W. Phase separation in asymmetric cell division. Bio-
chemistry 2020;59:47–56.

18. Shan Z, Tu Y, Yang Y, et al. Basal condensation of Numb
and Pon complex via phase transition during Drosophila
neuroblast asymmetric division. Nat Commun 2018;9:737.

19. Klosin A, Oltsch F, Harmon T, et al. Phase separation provides
a mechanism to reduce noise in cells. Science 2020;367:464–8.

20. Hubstenberger A, Courel M, Bénard M, et al. P-body purifica-
tion reveals the condensation of repressed mRNA regulons.
Mol Cell 2017;68:144–157.e5.

21. Khong A, Matheny T, Jain S, et al. The stress granule
transcriptome reveals principles of mRNA accumulation in
stress granules. Mol Cell 2017;68:808–820.e5.

22. Mitrea DM, Chandra B, Ferrolino MC, et al. Methods for
physical characterization of phase-separated bodies and
membrane-less organelles. J Mol Biol 2018;430:4773–805.

23. Vernon RM, Forman-Kay JD. First-generation predictors of
biological protein phase separation. Curr Opin Struct Biol
2019;58:88–96.

24. International Society for Biocuration. Biocuration: distilling
data into knowledge. PLoS Biol 2018;16:e2002846.

25. Côté R, Reisinger F, Martens L, et al. The ontology lookup
service: bigger and better. Nucleic Acids Res 2010;38:W155–60.

26. Chibucos MC, Siegele DA, Hu JC, et al. The evidence and con-
clusion ontology (ECO): supporting GO annotations. Methods
Mol Biol 2017;1446:245–59.

27. Sivade Dumousseau M, Alonso-López D, Ammari M, et al.
Encompassing new use cases—level 3.0 of the HUPO-PSI
format for molecular interactions. BMC Bioinformatics 2018;
19:134.

28. The Gene Ontology Consortium. The gene ontology
resource: 20 years and still GOing strong. Nucleic Acids
Res 2019;47:D330–8.

29. Shih J-W, Wang W-T, Tsai T-Y, et al. Critical roles of RNA heli-
case DDX3 and its interactions with eIF4E/PABP1 in stress
granule assembly and stress response. Biochem J 2012;441:
119–29.

30. Rayman JB, Karl KA, Kandel ER. TIA-1 self-multimerization,
phase separation, and recruitment into stress granules are
dynamically regulated by Zn. Cell Rep 2018;22:59–71.

31. Patel PH, Barbee SA, GW-Bodies BJT. P-bodies constitute two
separate pools of sequestered non-translating RNAs. PLoS
One 2016;11:e0150291.

32. Ma W, Mayr CA. Membraneless organelle associated with the
endoplasmic reticulum enables 3′UTR-mediated protein-
protein interactions. Cell 2018;175:1492–1506.e19.

33. Lin Y-H, Qiu D-C, Chang W-H, et al. The intrinsically disor-
dered N-terminal domain of galectin-3 dynamically medi-
ates multisite self-association of the protein through fuzzy
interactions. J Biol Chem 2017;292:17845–56.
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