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Synaptic connections in our brains change continuously and throughout our lifetime.
Despite ongoing synaptic changes, a healthy balance between excitation and inhibition is
maintained by various forms of homeostatic and activity-dependent adaptations, ensuring
stable functioning of neuronal networks. In this review we summarize experimental
evidence for activity-dependent changes occurring in inhibitory axons, in cultures as well
as in vivo. Axons form many presynaptic terminals, which are dynamic structures sharing
presynaptic material along the axonal shaft. We discuss how internal (e.g., vesicle sharing)
and external factors (e.g., binding of cell adhesion molecules or secreted factors) may affect
the formation and plasticity of inhibitory synapses.
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INTRODUCTION
Our brain is a complex organ with tremendous self-organizing
abilities. Its computational power is based in the adjustable
synaptic connections between neurons. When new experiences
and memories are established, specific synapses in specific brain
regions are changed, both in strength and in number. To ensure
proper global functioning despite changes in local connectivity,
these synaptic changes must be coordinated within neurons, as
well as within neuronal circuits. An important aspect is the coor-
dination between changes in excitatory and inhibitory synapses to
regulate and maintain an overall balance between excitation and
inhibition. When this balance is disturbed, neurological diseases
such as autism or schizophrenia can develop (Palop et al., 2007;
Yizhar et al., 2011; Han et al., 2012; Bateup et al., 2013).

Homeostatic plasticity is a term that is used for plasticity
mechanisms which ensure that overall neuronal spiking activity
is maintained within neuronal networks. Many forms of homeo-
static plasticity have been described in excitatory and inhibitory
neurons (Turrigiano, 2008; Wenner, 2011; Pozo and Goda, 2010;
Tyagarajan and Fritschy, 2010). In neuronal circuits in the brain,
inhibitory neurons serve multiple functions, making connections
to excitatory as well as inhibitory neurons, and providing feedfor-
ward inhibition to some neurons, while supplying feedback input
to others. In such complicated networks, there are multiple ways
to compensate for changes in network activity, which makes it
hard, if not impossible, to classify synaptic changes in inhibitory
axons as truly homeostatic. Therefore, we will discuss activity-
dependent feedback signals in inhibitory axons in a more general
context in this review. We will discuss experimental evidence show-
ing that synaptic activity can affect the formation and plasticity of
inhibitory synapses and we will speculate on possible mechanisms.

ACTIVITY-DEPENDENT ADAPTATIONS OF INHIBITORY
SYNAPSES
When prolonged changes occur in network activity, homeostatic
mechanisms come into play which adjust excitatory and inhibitory

synapses to compensate and restore the activity level in the net-
work (Turrigiano, 1999, 2011; Burrone and Murthy, 2003; Pozo
and Goda, 2010; Wenner, 2011). Generally speaking, when the
activity is too high, excitation must be downregulated, and inhi-
bition should be increased to bring activity levels back to baseline.
And opposite changes should occur during activity blockade.
Homeostatic plasticity has been studied extensively in cultures,
where neurons are randomly connected. Dissociated cultures pro-
vide superb access for experimental manipulations and therefore
form an excellent system to study the cell biological mechanisms
underlying homeostatic plasticity. However, in our brain neurons
are embedded in multiple neuronal networks and make specific
synaptic connections. Recurrent connections between neurons
or groups of neurons are very common and different types of
GABAergic interneurons are known to have high specificity, mak-
ing inhibitory synapses onto specific target neurons, including
inhibitory neurons (Pfeffer et al., 2013; Jiang et al., 2013). In such
complex networks, it is not easy to determine rules of homeostatic
plasticity. Adaptation to changes in the activity of the network
will be strongly synapse-specific and likely depends on the precise
function and location of the synapse in the network (Chen et al.,
2011; Maffei et al., 2004; Maffei and Turrigiano, 2008). Here we
briefly describe the experimental evidence for activity-dependent
plasticity of inhibitory synapses from in vitro (i.e., in dissociated
and organotypic cultures) and in vivo studies.

Primary cell cultures
Activity manipulations in cultures of dissociated hippocampal
or neocortical neurons generally affect excitatory and inhibitory
synapses in opposite directions. After a prolonged period of activ-
ity blockade, excitatory synapses get strengthened and inhibitory
synapses are weakened, and synaptic changes are in opposite direc-
tions when activity is enhanced (Turrigiano et al., 1998; Kilman
et al., 2002; Hartman et al., 2006; Swanwick et al., 2006). Therefore,
changes in excitation and inhibition cooperate to compensate
for the change in activity level. For inhibitory synapses, changes
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in mIPSC amplitude are most commonly reported, reflecting
changes in synaptic strength. Sometimes they are accompanied
by changes in mIPSC frequency, which could either reflect a
change in the number of synapses or a change in release prop-
erties. Dissociated cultures provide excellent experimental access
and are therefore well-suited for studying underlying mechanisms
of homeostatic plasticity. However, the artificial environment in
which neurons grow in culture may affect synaptic maturation
(Wierenga et al., 2006; Rose et al., 2013) and consequently cellular
or synaptic mechanisms of plasticity. Cellular mechanisms that
were identified to mediate the changes in inhibitory synapses after
activity manipulations include: changes in number of postsynap-
tic receptors (Kilman et al., 2002; Swanwick et al., 2006; Saliba
et al., 2007; Peng et al., 2010; Rannals and Kapur, 2011) or scaf-
folding proteins (Vlachos et al., 2012; study in slice cultures) on
the postsynaptic side, and changes in presynaptic release prob-
ability (Kim and Alger, 2010), presynaptic vesicle loading (De
Gois et al., 2005; Hartman et al., 2006; Lau and Murthy, 2012),
or GABA-producing enzymes (Peng et al., 2010; Rannals and
Kapur, 2011) on the presynaptic side. Only in a few cases, changes
in the number of inhibitory synapses were reported (Hartman
et al., 2006; Peng et al., 2010). Homeostatic changes of inhibitory
synapses could be induced in a cell autonomous fashion (Peng
et al., 2010), or required a change in activity of the entire neuronal
network (Hartman et al., 2006), emphasizing that there are multi-
ple mechanisms of homeostatic plasticity at inhibitory synapses. In
particular, distinct mechanisms could exist for activity-dependent
downregulation and upregulation of inhibitory synapses.

Organotypic cultures
In contrast to dissociated cultures neurons in more intact tissue,
such as acute slices or organotypic cultures, make more specific
connections and form structured networks. This network configu-
ration makes the interpretation of synaptic changes more complex.
In slices that were submitted to activity manipulations, changes in
inhibition have been observed opposite to (Marty et al., 2004; Kar-
markar and Buonomano, 2006; Kim and Alger, 2010) as well as
in conjunction with (Buckby et al., 2006; Echegoyen et al., 2007)
changes in excitation. It was also shown that different types of
homeostatic mechanisms have different time courses (Karmarkar
and Buonomano, 2006) and that different subsets of inhibitory
synapses can respond differently. For instance, the presence of
cannabinoid receptors in a subset of inhibitory synapses ren-
ders them selectively receptive to changes in endocannabinoid
levels induced by inactivity (Kim and Alger, 2010). In another
example, inactivity differentially affected somatic and dendritic
inhibitory inputs on CA1 pyramidal cells. Interestingly, both
types of synapses showed reduction in the number of presy-
naptic boutons and upregulation of release probability, but the
functional end-effect on inhibitory input to the postsynaptic cells
was different (Chattopadhyaya et al., 2004; Bartley et al., 2008).
This emphasizes that simple in vitro homeostatic rules for scaling
inhibitory synapses get complicated in more complex networks.
In addition, other factors such as different cell (glia) types or
the extracellular environment in more intact tissue potentially
influence homeostatic plasticity compared to dissociated cultured
cells.

In vivo studies
Typically, when studying activity-dependent or homeostatic
changes in vivo, sensory deprivation is used as experimental
paradigm to lower activity levels in the primary sensory cor-
tex (e.g., whisker trimming, monocular deprivation, or retinal
lesion). While in vitro activity manipulations by pharmacological
means affect the activity of all neurons in equal amounts, sensory
deprivation in vivo will affect different neurons in the circuitry dif-
ferentially. Therefore, in vivo responses of inhibitory synapses to
changes in activity vary widely and strongly depend on the specific
cell types, cortical layer, and specific circuitry (Maffei et al., 2004;
Maffei and Turrigiano, 2008; Chen et al., 2011). Furthermore, it
is well-known that inhibition in sensory cortex areas undergoes
important developmental changes (Hensch, 2005), which means
that the same deprivation paradigm can have different effects on
inhibitory synapses depending on the postnatal period that is con-
sidered (Chattopadhyaya et al., 2004; Maffei et al., 2006; Maffei
et al., 2010). An emerging theme from the in vivo studies is that
inhibitory synapses can respond rapidly to sensory deprivation. It
was shown that inhibitory axons in cortical layer 2/3 reduce the
number of boutons within the first 24 h after a retinal lesion or
monocular deprivation (Chen et al., 2011; Keck et al., 2011). Over
longer periods, inhibitory axons in the barrel cortex were shown
to sprout and form new axonal branches after whisker plucking
(Marik et al., 2010). Interestingly, the reduction of inhibition was
often found to precede adaptive changes of the excitatory circuitry
(Marik et al., 2010; Keck et al., 2011). The rapid downregulation
of inhibition might serve to render the local circuit more permis-
sive for excitatory plasticity to occur (Ormond and Woodin, 2011;
Gambino and Holtmaat, 2012). In two recent studies it was shown
that inhibitory synapses that are located on spines (presumably
next to an excitatory synapse) showed much higher turnover rates
compared to inhibitory synapses on shaft after visual deprivation
(Chen et al., 2012; vanVersendaal et al., 2012). It will be interest-
ing to see whether direct cross talk of the two types of synapses
exists.

In conclusion, there is a large amount of compelling evidence
for activity-dependent adaptations in inhibitory synapses in vitro
as well as in vivo. The precise expression mechanisms significantly
vary between different preparations and experimental paradigms.

AXONS
In this review we focus on possible feedback signals that occur
in inhibitory axons in response to changes in network or synap-
tic activity and that induce changes in the number or properties
of presynaptic terminals along the axon. The axon of a single
neuron forms several thousands of presynaptic terminals (i.e.,
“boutons”) along its shaft and contacts many different postsy-
naptic neurons. Presynaptic boutons along an axon show a large
variety in their volumes, in the number of synaptic vesicles and in
the presence or absence of mitochondria (Shepherd and Harris,
1998). It is now well-established that neighboring boutons are not
independent entities, but they continuously share and exchange
molecular components of the release machinery and synaptic vesi-
cles (Krueger et al., 2003; Darcy et al., 2006; Sabo et al., 2006; Staras,
2007; Yamada et al., 2013). Synaptic vesicles may not belong to a
specific presynaptic terminal, but form a super pool of vesicles in
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the axonal shaft and are shared by multiple release sites (Staras
et al., 2010).

The exchange of presynaptic proteins means that the exact com-
position of presynaptic terminals is continuously changing. These
changes can occur in a correlated fashion with the postsynaptic
site in some synapses, but can be uncoordinated in others (Fisher-
Lavie et al., 2011; Fisher-Lavie and Ziv, 2013). Release properties
and synaptic strength are highly variable between individual bou-
tons along the same axon (Branco et al., 2008; Zhao et al., 2011;
Rose et al., 2013). Therefore the demand for synaptic vesicles or
other presynaptic proteins will vary between presynaptic boutons
and neighboring boutons compete for available resources. Indeed,
reduced availability of synaptic proteins within the axon has been
shown to enhance competition between boutons (Yamada et al.,
2013). In addition, vesicle exchange is regulated by neuronal activ-
ity through changes in axonal calcium levels (Kim and Ryan, 2013,
2010).

Synaptic vesicles are kept at the presynaptic terminal by inter-
acting with a scaffolding meshwork of actin, β-catenin, synapsin,
and many other proteins (Bamji et al., 2003; Takamori et al., 2006;
Cingolani and Goda, 2008; Fernández-Busnadiego et al., 2010;
Peng et al., 2012; Taylor et al., 2013). Synaptic vesicles can escape
from the presynaptic terminal into the axon, while other vesi-
cles that were traveling along the axonal shaft can be captured.
Although the loss of a strict presynaptic compartmentalization
may seem disadvantageous at first, the main advantage of sharing
presynaptic material between boutons is flexibility. When presy-
naptic material is continuously being lost and gained at synapses,
synapses can rapidly change their strength by adjusting the ratio of
vesicle capture and release (Wu et al., 2013). In addition, synapses
can be formed or disassembled within a few hours. It was shown
that presynaptic proteins can be transported together in small
packages in axons (Friedman et al., 2000; Zhai et al., 2001; Wu et al.,
2013). Such multi-protein packages can be recruited to locations
where new synapses are being formed and a few of these ready-to-
go packages are enough to rapidly build a functional active zone
and release site (Jin and Garner, 2008; Owald and Sigrist, 2009).

Live imaging of axons have shown that transient and mobile
release sites exist (Krueger et al., 2003) and that transient boutons
occur at predefined locations along the axon (Sabo et al., 2006;
Ou and Shen, 2010; Bury and Sabo, 2011), presumably reflecting
contact sites with potential postsynaptic targets (Wierenga et al.,
2008; Schuemann et al., 2013). The transient nature of boutons in
such locations suggest that presynaptic structures are immature
or incomplete and may serve a role in “testing” a new synap-
tic location (Wierenga et al., 2008; Dobie and Craig, 2011; Fu
et al., 2012; Schuemann et al., 2013). Transient boutons might
therefore reflect failed attempts or intermediate stages of building
new synapses, but they could also have a physiological func-
tion. Transient boutons, or orphan release sites, are likely capable
of neurotransmitter release (Krueger et al., 2003; Coggan et al.,
2005; Ratnayaka et al., 2011) and besides having a role in synapse
formation, ectopic release of neurotransmitter by transient bou-
tons could also serve to signal to nearby astrocytes or to regulate
ambient neurotransmitter levels.

Synapse assembly is a complicated process involving interac-
tions of multiple proteins. It does not necessarily need to be a linear

process, where one component necessarily recruits the next, but
some of the interactions could occur in parallel and the sequence of
protein recruitment may vary. Rapid self-assembly of presynaptic
components may be an important element during synaptogene-
sis. This would mean that the formation of a presynaptic terminal
merely needs an initial trigger to ascertain a specific axonal location
or postsynaptic partner, but then the new presynaptic terminal
“unfolds” automatically by spontaneous clustering of its compo-
nents. It is likely that multiple triggers can induce self-assembly.
Indeed, it was recently reported that synaptic material is actively
prevented from aggregating and assembling new synapses during
transport (Wu et al., 2013), supporting the self-assembly hypothe-
sis. Without prevention of aggregation, presynaptic terminals were
formed at locations where no postsynaptic targets were present
and no postsynaptic specializations were recruited. Furthermore,
the ectopic formation of presynaptic terminals on non-neuronal
cells can be induced when these cells express “synaptogenic” cell
adhesion molecules (Scheiffele et al., 2000; Graf et al., 2004; Taka-
hashi et al., 2012), indicating that a single trans-synaptic trigger
is enough to start the presynaptic cascade to assemble functional
release sites.

A dynamic control of the strength and number of presynap-
tic terminals in axons implies that control of transport, capture,
and release of synaptic material are essential processes regulating
the formation, maintenance, and strength of presynaptic termi-
nals. In a dynamic axon with competing presynaptic terminals,
a general change in synaptic strength is expected to also have
an effect on ongoing synapse formation within the same axon
and vice versa (Figure 1). For instance, enhancement of synaptic
strength by increasing vesicle capture or anchoring at presynaptic
terminals would also result in lower amounts of “free” vesicles in
the axonal shaft thereby reducing the chance that new synapses
are formed at nascent sites (Yamada et al., 2013). However, a
similar increase in synaptic strength could also be achieved by
increasing vesicle clustering (Wu et al., 2013), but such a mech-
anism would actually promote synapse formation (Figure 1).
This illustrates that presynaptic plasticity and synapse formation
should be considered mutually dependent processes when neigh-
boring presynaptic terminals are sharing synaptic proteins and
vesicles.

INHIBITORY AXONS
Most of the studies that were mentioned above were performed
in excitatory axons and it is not entirely clear to what extent the
results are also valid for inhibitory axons. Important observations
have been made in live imaging studies of inhibitory axons. Presy-
naptic terminals in inhibitory axons were shown to be dynamic
structures in vitro and in vivo. Inhibitory boutons can appear, dis-
appear, and reappear over the course of several minutes to hours
(Kuhlman and Huang, 2008; Marik et al., 2010; Keck et al., 2011; Fu
et al., 2012; Schuemann et al., 2013), and the same has been shown
for clusters of pre- or postsynaptic proteins at inhibitory synapses
(Dobie and Craig, 2011; Chen et al., 2012; Kuriu et al., 2012; van-
Versendaal et al., 2012). Bouton dynamics are comparable in vitro
and in vivo and likely reflect physiological processes. Interestingly,
these dynamic changes were shown to be affected by network activ-
ity and mediated, at least in part, by activation of GABA receptors
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FIGURE 1 | Intrinsic factors: axon-wide increase in synaptic strength

or release properties may also affect synapse formation. (A)

Schematic drawing of an axon (gray) forming two mature and one
nascent bouton on crossing dendrites (brown). We hypothesize that
axon-dendrite crossings are marked at potential synaptic locations and
contain guidepost adhesion molecules (Shen and Bargmann, 2003; Shen
et al., 2004) and weak actin scaffold (Chia et al., 2012). (B) Increasing
anchoring of vesicles at presynaptic terminals could decrease the pool

of “free” vesicles, thereby reducing the probability of forming new
synapses (Yamada et al., 2013). (C) Increasing synaptic adhesion
increases the number of synapses (Scheiffele et al., 2000; Takahashi
et al., 2012; Kuzirian et al., 2013) and may also affect properties of
existing synapses (Varoqueaux et al., 2006; Wittenmayer et al., 2009).
(D) Overexpression of vesicle clustering factors induce changes in
release properties, but may also promote synapse formation (Wentzel
et al., 2013; Wu et al., 2013).

(Fu et al., 2012; Kuriu et al., 2012; Schuemann et al., 2013). This
could represent a mechanism by which the synaptic activity of
inhibitory synapses may regulate their own stability using GABA
as a feedback signal.

New inhibitory synapses can form rapidly by the appearance of
a bouton at locations where the inhibitory axon is in close contact
with a dendrite, without the involvement of dendritic protru-
sions (Wierenga et al., 2008; Dobie and Craig, 2011). This finding
indicates an important contrast with the formation of excitatory
synapses, in which new synapses are usually formed by the out-
growth of dendritic protrusions. It also emphasizes the important
role of crosstalk between neighboring boutons within inhibitory
axons for synapse formation. Nascent inhibitory synapses recruit
release machinery proteins and synaptic vesicles on the presynaptic
side and receptors and scaffolding molecules on the postsynaptic
side within a few hours (Wierenga et al., 2008; Dobie and Craig,
2011; Kuriu et al., 2012; Schuemann et al., 2013). Interestingly,

simultaneous translocations of pre- and postsynaptic proteins
over several micrometers were observed in cultures (Dobie and
Craig, 2011; Kuriu et al., 2012) and it will be interesting to see if
such movement of inhibitory synapses can also occur in slices or
in vivo. Together, these observations reveal the dynamic nature of
inhibitory axons and strongly suggest that the exchange of presy-
naptic material between existing and emerging boutons within
the axonal shaft plays an essential role in the activity-dependent
formation, maintenance and plasticity of inhibitory synapses.

In general, it is not clear if molecular differences exist between
excitatory and inhibitory axons, other than the neurotransmitter
that is produced and loaded into synaptic vesicles. For instance, the
extent or regulation of dynamic exchange between boutons could
be different in these two types of axons. The protein composition
of the release machinery at excitatory and inhibitory presynaptic
terminals is surprisingly similar, although small difference have
been reported (Gitler et al., 2004; Kerr et al., 2008; Kaeser et al.,
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2009; Grønborg et al., 2010; Zander et al., 2010; Boyken et al., 2013;
Bragina et al., 2013). It is currently not known if some of these dif-
ferences have consequences for plasticity or presynaptic dynamics
within axons. Furthermore, it is not known if there are differences
between axons of the various inhibitory cell types (Ascoli et al.,
2008; Klausberger and Somogyi, 2008). However, there is a clear
difference between excitatory and inhibitory axons in the expres-
sion of specific cell adhesion molecules at excitatory and inhibitory
synapses.

ROLE OF CELL-ADHESION MOLECULES IN SYNAPTIC PLASTICITY
The observation that inhibitory boutons appear at specific, prede-
fined locations along the axon (Sabo et al., 2006; Wierenga et al.,
2008; Schuemann et al., 2013), strongly suggests that something
is marking these locations prior to bouton formation (Shen and
Bargmann, 2003; Shen et al., 2004). Inhibitory axons are character-
ized by their tortuous and highly branched morphology and they
are in close contacts with many nearby dendrites. In fact, it was
shown that inhibitory axons have substantially larger overlap with
the dendritic trees of their potential target neurons than expected
from chance, whereas this is not the case for excitatory axons
(Stepanyants et al., 2004). This suggests that inhibitory axons
possibly search for or are attracted by dendrites during devel-
opment. Contacts between dendrites and inhibitory axons could
be maintained by guidepost cell-adhesion molecules, even without
inhibitory synapses present (Shen and Bargmann, 2003; Shen et al.,
2004). Their presence would mark the location of a postsynaptic
dendrite and therefore a potential spot for an inhibitory synapse.

Cell adhesion molecules are transmembrane proteins, which
play a role in recognition of synaptic partners during the initial
contact and provide specificity of synaptic connections (Meijers
et al., 2007; Wojtowicz et al., 2007). In addition, cell adhesion
molecules have been shown to play a role in the process of synap-
tic maturation following the initial contact, in the recruitment of
synaptic proteins as well as in maintaining proper synaptic func-
tion throughout the lifetime of the synapse (Dalva et al., 2007;
Krueger et al., 2012; Thalhammer and Cingolani, 2013). Cell adhe-
sion molecules can also play an active role in the process of synapse
disassembly (O’Connor et al., 2009). In conclusion, cell adhesion
molecules are an essential part of synapses and synaptic plasticity
most likely involves regulation of cell-adhesion molecules. Here we
discuss how synaptic adhesion could be regulated in an activity-
dependent manner (Figure 2) and we summarize current knowl-
edge of cell adhesion molecules that are specific for inhibitory
synapses.

Activity-dependent regulation of protein expression levels
Cell adhesion molecules often serve as recognition or identity
signals to specify neuronal connectivity, and they can either pro-
mote or prevent synapse formation (Dalva et al., 2007; Bukalo
and Dityatev, 2012). Neurons presumably express a combination
of cell adhesion molecules and the specific combination (both
the variety as well as relative levels) likely regulate the speci-
ficity and number of their synaptic contacts (Sassoè-Pognetto
et al., 2011). Different cell adhesion molecules can cooperate
to promote synapse formation, but the opposite is also possi-
ble: cis-interactions between different cell adhesion molecules

within a neuron can preclude trans-interactions with cell adhesion
molecules on neighboring neurons and thereby inhibit or prevent
synapse formation (Taniguchi et al., 2007; Lee et al., 2013). Most
importantly, the combination of cell adhesion molecules that a
neuron expresses might not be static (Figure 2A). Indeed, for a
number of cell adhesion molecules, activity-dependent changes in
expression level have been observed (Pinkstaff et al., 1998; Cin-
golani et al., 2008; Pregno et al., 2013). Changes in expression level
may be regulated by the activity level of the neuron itself or by
extracellular signals from the environment, such as secreted fac-
tors from neighboring cells. For instance, TNFα, a glia-derived
factor, which is secreted in an activity-dependent manner, reg-
ulates expression levels of β3 integrin and N-cadherin (Kubota
et al., 2009; Thalhammer and Cingolani, 2013). In theory, local
protein synthesis in the axon could also contribute to changes in
expression level of cell adhesion proteins (Taylor et al., 2009, 2013;
Zivraj et al., 2010), but direct experimental evidence is currently
lacking.

Activity-dependent regulation of splicing
For many adhesion molecules different splice forms have been
identified. Different splice variants often have different affini-
ties for their binding partners and thereby differentially affect
synapse formation or plasticity (Missler and Südhof, 1998;
Hattori et al., 2008; Aoto et al., 2013). For instance, alter-
native splicing of neuroligins and neurexins affects specificity
for excitatory or inhibitory synapses (Chih et al., 2006; Graf
et al., 2006). Therefore, alternative splicing might be a way to
enlarge the available set of adhesion molecules within a neuron
and to enhance the range of molecular specificity of synaptic
connections.

Activity-dependent regulation of cell surface distribution
To have their effect specifically at synapses, cell adhesion molecules
should be enriched at synaptic membranes. There is experimental
evidence that the distribution of cell adhesion molecules over the
cellular surface can be regulated (Tai et al., 2007; Fu and Huang,
2010). For instance, while neurexin1α shows a diffuse pattern
along the axonal membrane in inhibitory axons, neurexin1β is
specifically enriched in the membrane at presynaptic terminals.
Anchoring of neurexin1β at presynaptic boutons is regulated by
presynaptic GABA release and subsequent GABAB receptor acti-
vation (Fu and Huang, 2010). Further investigation is needed to
understand how such local changes are regulated by protein modi-
fications or localized endo- or exocytosis and how they affect local
synapse formation (Figure 2B).

Activity-dependent regulation of protein cleavage
Synaptic adhesion molecules execute their function by binding to a
trans-synaptic partner at their extracellular domain. In some cases,
the extracellular domain can be cleaved, with strong effects on
local synaptic adhesion. For instance, activity-dependent cleavage
of agrin was shown to mediate the formation of dendritic filopo-
dia (Frischknecht et al., 2008; Matsumoto-Miyai et al., 2009) and
cleavage of neuroligin-1 was shown to regulate synaptic strength
of individual excitatory synapses in an activity-dependent man-
ner (Peixoto et al., 2012; Suzuki et al., 2012). Many other adhesion
molecules have known cleavage sites and it will be interesting to
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FIGURE 2 | Extrinsic factors: possible activity-dependent changes in cell

adhesion molecules. Neural activity may induce a number of changes in
adhesion molecules. (A) The expression level of cell adhesion molecules
(Cingolani et al., 2008), or their splice variants (Chih et al., 2006; Graf et al.,
2006), can be regulated in an activity-dependent manner, potentially affecting
synapse formation, and synapse specificity. (B) Activity-dependent redistri-
bution of adhesion molecules over the axonal membrane can facilitate

synapse formation (Fu and Huang, 2010). (C) Activity-dependent cleavage of
synaptic adhesion molecules could induce synapse disassembly or plasticity
(Matsumoto-Miyai et al., 2009; O’Connor et al., 2009; Peixoto et al., 2012;
Suzuki et al., 2012). (D) Activity-dependent changes in binding properties of
adhesion molecules (Kim et al., 2011a,b) could affect synaptic properties. In
addition, the intracellular signaling pathways (not depicted) may also be
regulated in an activity-dependent manner, affecting all of these processes.

see whether this mechanism for activity-dependent regulation is
also present at inhibitory synapses (Figure 2C).

Activity-dependent regulation of binding
For some cell adhesion molecules activity can regulate the binding
properties of the proteins. For instance, interactions between cad-
herins are affected by extracellular calcium concentrations (Kim
et al., 2011b) and integrins can switch between an active or inac-
tive configuration by extra- or intracellular factors (Hynes, 2002).
In this way, synaptic adhesion can be modulated in an activity-
dependent manner without a change in synaptic composition
(Figure 2D).

Activity-dependent regulation of interacting proteins
Upon binding to other cell adhesion molecules, cell adhesion
molecules cluster at the cell membrane and signal through inter-
actions with many intracellular proteins, whose levels may be
regulated in an activity-dependent manner. Ultimately, signaling
through synaptic adhesion molecules in the presynaptic terminal
result in direct or indirect alterations of the actin cytoskeleton and

vesicle recycling, affecting the number, function, and/or stability
of synapses (Zhang et al., 2001; Tabuchi et al., 2002; Swiercz et al.,
2008; Sun and Bamji, 2011; Takahashi and Craig, 2013). It will be
crucial to identify the precise molecular pathways that are involved
to fully understand how activity-dependent changes at inhibitory
synapses occur.

CELL ADHESION MOLECULES AT INHIBITORY SYNAPSES
The list of known synaptic adhesion molecules is rapidly grow-
ing, but our knowledge on the precise function of most of
these proteins remains incomplete. Interestingly, several synap-
tic cell-adhesion molecules have been reported to be specifically
involved in inhibitory, and not excitatory, synapses. These
include sema4D (Paradis et al., 2007; Kuzirian et al., 2013),
slitrk3 (Takahashi et al., 2012), and neuroligin-2 (Varoqueaux
et al., 2004; Patrizi et al., 2008; Poulopoulos et al., 2009), and
it is to be expected that new discoveries will be made in
the near future. Here we briefly summarize what is known
on the role of various cell adhesion molecules at inhibitory
synapses.
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NEUROLIGIN-2
Postsynaptic neuroligins and their presynaptic partners neurexins
are transmembrane cell adhesion molecules that have been estab-
lished as important synaptic regulators (Südhof, 2008; Siddiqui
and Craig, 2011; Krueger et al., 2012). When expressed in non-
neuronal cells, neurexins as well as neuroligins can induce the
formation of synapses in co-cultured neurons (Graf et al., 2004;
Kang et al., 2008). This suggests that neurexins and neuroligins
function in the initial assembly of synaptic connections. However,
knock out studies showed that they are not strictly required for
synaptogenesis, but they play a crucial role in the proper assembly
and functional maturation of synapses (Varoqueaux et al., 2006).
Neuroligin-2 localizes specifically to the postsynaptic membrane
of inhibitory synapses (Varoqueaux et al., 2004; Chubykin et al.,
2007) and has been shown to be a regulator of inhibitory synapse
formation and function (Varoqueaux et al., 2006; Chubykin et al.,
2007; Poulopoulos et al., 2009). Interestingly, a recent report
suggested that the preferential localization of neuroligin-2 at
inhibitory synapses can be contributed to the low abundance of
β-neurexin1 in inhibitory axons (Futai et al., 2013), suggesting
that the presynaptic axon determines specificity of cell adhe-
sion molecules at inhibitory synapses. Mice lacking neuroligin-2
show impairments in inhibitory synaptic transmission and exhibit
anxiety-like behavior and increased excitability (Blundell et al.,
2009; Gibson et al., 2009; Jedlicka et al., 2011). Interestingly,
although neuroligin-2 is present at all inhibitory synapses, only
perisomatic synapses were affected in the absence of neuroligin-
2 (Gibson et al., 2009). Recently, two adhesion molecules were
found to show specific interactions with neuroligin-2 at inhibitory
synapses. MDGA1 inhibits the interaction between neuroligin-2
and neurexins and therefore specifically suppresses the inhibitory
synaptogenic activity of neuroligin-2 (Lee et al., 2013; Pettem
et al., 2013). IgSF9 specifically localizes at inhibitory synapses on
inhibitory neurons, where it binds to neuroligin-2 via the scaffold-
ing protein S-SCAM (Woo et al., 2013). These findings raises the
possibility that neuroligin-2 serves different functions at different
inhibitory synapses, depending on its interactions with other cell
adhesion molecules.

SLITRK3
Leucine-rich repeat (LRR) proteins have received considerable
research attention recently. The members of the subfamily of
Slitrk (Slit and Trk-like) proteins are involved in synapse forma-
tion and has been linked to several neurological disorders (Aruga
and Mikoshiba, 2003; Takahashi and Craig, 2013). Slitrk3 has been
shown to be present at the postsynaptic side of inhibitory synapses
and it can induce the formation of inhibitory synapses through
its interaction with the presynaptic tyrosine phosphatase receptor
PTPδ (Takahashi et al., 2012; Yim et al., 2013). Here, the speci-
ficity for inhibitory synapses is dictated by the postsynaptic slitrk3,
as it was shown that presynaptic PTPδ can interfere with other
synaptic organizing molecules to promote formation of excitatory
synapses (Yoshida et al., 2011, 2012). The slitrk3 knock out mouse
has no gross defect in brain morphology, but shows decreased
expression of inhibitory markers (Takahashi et al., 2012). Accord-
ingly, these mice have an increased susceptibility for seizures and
sometimes display spontaneous seizures. Interestingly, not all

inhibitory synapses were equally affected by the loss of slitrk3.
In the hippocampal CA1 region, specifically inhibitory synapses in
the middle of the pyramidal layer were lost (Takahashi et al., 2012).
It will be interesting to examine whether specificity of inhibitory
synapses correlates with different subsets of pre- or postsynaptic
neurons types or function.

Members of the closely related subfamily of leucine-rich trans-
membrane proteins (LRRTMs) have also been implicated in
excitatory synapse formation and plasticity (Linhoff et al., 2009;
Ko et al., 2011; de Wit et al., 2013; Siddiqui et al., 2013), but so
far no LRRTM that is specific for inhibitory synapses has been
identified.

SEMAPHORIN-4D
Semaphorins are well-known as (repulsive) axon guidance
molecules acting through rearrangements of the cytoskeleton in
the growth cone. They play an important role in the early devel-
opment of the brain (Pasterkamp, 2012). Some semaphorins are
also expressed later in development and have been implicated
in the formation and plasticity of neuronal connections (Sahay
et al., 2005; Morita et al., 2006; Paradis et al., 2007; O’Connor
et al., 2009; Ding et al., 2012; Mizumoto and Shen, 2013). Knock-
ing down the membrane-bound semaphorin Sema4D was shown
to specifically reduce the number of inhibitory synapses, while
excitatory synapses were not affected (Paradis et al., 2007). Fur-
thermore, application of soluble Sema4D was able to increase the
density of GABAergic synapses within 30 min in rat hippocam-
pal neurons (Kuzirian et al., 2013). These new inhibitory synapses
became functional within 2 h and could restore normal levels of
activity in an in vitro model for epilepsy (Kuzirian et al., 2013).
The effect of sema4D on inhibitory synapses depends on the plex-
inB1 receptor (Kuzirian et al., 2013). It was earlier shown that
activation of plexinB1 by sema4D can induce opposing responses
on the cytoskeleton, depending on different interacting proteins
(Basile et al., 2004; Swiercz et al., 2008; Tasaka et al., 2012), but the
intracellular pathway used for inhibitory synapse formation is not
known. Sema4D is a membrane-bound protein, but the protein
can also be cleaved (Basile et al., 2007; Zhu et al., 2007). It was
recently shown that extracellular cleavage of sema4D occurs in
neurons, but does not interfere with its synaptogenic properties at
inhibitory synapses (Raissi et al., 2013).

OTHER CELL ADHESION MOLECULES
There are many other cell adhesion molecule proteins and with
continued research on inhibitory synapses, it is expected that more
of them will be found to play a role at inhibitory synapses. Here we
just mention a few that have been reported at inhibitory synapses.

Neural cell adhesion molecule (NCAM) has been reported
to be important for the maturation of perisomatic inhibitory
synapses in the cortex (Pillai-Nair et al., 2005; Brennaman and
Maness, 2008; Chattopadhyaya et al., 2013). NCAM acts through
activation of Fyn kinases and possibly recruits other adhesion
molecules (Chattopadhyaya et al., 2013). Interestingly, it was
recently reported that also members of the ephrin family, eph-
rinA5 and EphA3, can affect inhibitory synapses and they require
NCAM for their action (Brennaman et al., 2013). In vivo, NCAM is
polysialylated (NCAM-PSA) in an experience-dependent manner
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and developmental downregulation of NCAM-PSA was shown to
coordinate maturation of perisomatic inhibitory synapses in the
visual cortex (Di Cristo et al., 2007).

Several components of the dystrophin-associated glycoprotein
complex (DGC), such as dystroglycan, dystrophin, and dystro-
brevin, are also specifically located at a subset of inhibitory
synapses (Knuesel et al., 1999; Brünig et al., 2002; Lévi et al., 2002;
Grady et al., 2006), but the function of this complex at inhibitory
synapses is not well understood. The DGC could be linked to
postsynaptic neuroligin-2 via the scaffolding protein S-SCAM
(Sumita et al., 2007) and to presynaptic neurexins (Sugita, 2001).
Interestingly, a synaptic guanine exchange factor SynArfGEF has
been identified that specifically co-localizes at inhibitory synapses,
which could be involved in the downstream signaling pathway of
the DGC (Fukaya et al., 2011), but its exact function remains to
determined.

Integrins are receptors for extracellular matrix proteins, sol-
uble factors, and counter-receptors on adjacent cells and they
have an intracellular link to actin filaments via adaptor proteins
(Hynes, 2002; Harburger and Calderwood, 2009). Integrins have
been implicated in activity-dependent synaptic changes (Chavis
and Westbrook, 2001; Chan et al., 2003) and in homeostatic scal-
ing of excitatory synapses (Cingolani et al., 2008). At glycinergic
inhibitory synapses in the spinal cord, postsynaptic β1 and β3 inte-
grins have been reported to regulate glycine receptor stabilization
at the postsynaptic membrane, with the two integrins acting in
opposing directions (Charrier et al., 2010).

Finally, the cell adhesion molecule neurofascin has been shown
to regulate the formation of a specific subset of inhibitory synapses
on the axon initial segment of principal neurons (Ango et al., 2004;
Burkarth et al., 2007; Kriebel et al., 2011).

ROLE OF SECRETED FACTORS AND RETROGRADE
MESSENGERS AT INHIBITORY SYNAPSES
Above we have described how cell adhesion molecules may provide
signals to inhibitory axons from direct cell–cell contacts. However,
inhibitory synapses may also be affected by signals from more
distal origin. Nearby dendrites or surrounding cells can secrete
trophic (or anti-trophic) factors, which may affect inhibitory
synapse function and/or formation. Indeed, retrograde signals
from the postsynaptic dendrite, such as endocannabinoids, nitric
oxide (NO) or brain-derived neurotrophic factor (BDNF), or glu-
tamate spillover from nearby excitatory synapses are known to
regulate synaptic release at inhibitory synapses during many forms
of short-term and long-term plasticity (Heifets and Castillo, 2009;
Regehr et al., 2009; Castillo et al., 2011). Here we discuss secreted
factors that have been linked to the formation of inhibitory
synapses and that might play a role in activity-dependent regu-
lation of the number of presynaptic terminals made by inhibitory
axons.

BRAIN-DERIVED NEUROTROPHIC FACTOR
Brain-derived neurotrophic factor (BDNF) is a secreted neu-
rotrophin that has been shown in many different preparations
to promote the formation and maturation of inhibitory synapses
by presynaptic modifications (Vicario-Abejón et al., 1998; Huang
et al., 1999; Marty et al., 2000; Yamada et al., 2002; Gottmann et al.,

2009). Only excitatory neurons produce BDNF (Gottmann et al.,
2009; Park and Poo, 2013) and BDNF is released from principal
neurons in an activity-dependent manner (Kolarow et al., 2007;
Kuczewski et al., 2008; Matsuda et al., 2009), which makes BDNF
an attractive candidate molecule to regulate activity-dependent
inhibitory synapse formation (Liu et al., 2007). Interestingly, the
availability of postsynaptic BDNF signaling in individual neu-
rons was shown to affect the number and strength of inhibitory
synapses specifically onto the affected neurons (Ohba et al., 2005;
Kohara et al., 2007; Peng et al., 2010). These cell-autonomous
effects indicate the potential for BDNF in mediating changes in
inhibitory synapses with high synaptic specificity. In excitatory
axons, BDNF was shown to reduce the anchoring of synap-
tic vesicles at presynaptic terminals and thereby increase the
exchange of vesicles between boutons (Bamji et al., 2006). It is
currently not known if BDNF has a similar effect in inhibitory
axons.

NEUREGULIN1
Neuregulin1 is a neurotrophic factor, which exists in various
membrane-bound and diffusible isoforms. Mutations (both loss-
of-functions and gain-of-function) in neuregulin1 have been
linked to schizophrenia (Mei and Xiong, 2008). The main receptor
for neuregulin1, ErbB4, is specifically expressed in interneu-
rons (Vullhorst et al., 2009; Fazzari et al., 2010) and is located
at postsynaptic densities of excitatory synapses in interneuron
dendrites as well as at inhibitory axon terminals. An important
role for neuregulin1 is the regulation of excitatory input onto
interneurons through postsynaptic ErbB4 (Fazzari et al., 2010;
Wen et al., 2010; Ting et al., 2011). Presynaptic ErbB4 can enhance
GABA release from inhibitory synapses (Woo et al., 2007; Faz-
zari et al., 2010) and may affect the number of synapses made
by inhibitory axons (delPino et al., 2013). In addition to ErbB4,
neuregulin1 isoforms can also activate other receptors result-
ing in downregulation of postsynaptic GABAA receptors (Yin
et al., 2013). This suggests that neuregulin1 has multiple actions
on inhibitory synapses depending on the isoform and activated
receptors.

FGF7
Fibroblast growth factors (FGFs) are secreted signaling glycopro-
teins, which exert their effect by binding to FGF receptor tyrosine
kinases (FGFR). In the brain, FGF signaling is important for sev-
eral developmental processes, including patterning of different
brain structures and neurogenesis (Dono, 2003; Reuss and von
Bohlen und Halbach, 2003). In addition, FGFs have been impli-
cated as target-derived presynaptic organizers (Umemori et al.,
2004). FGF7 is of particular interest, as it localizes specifically
to inhibitory synapses in the hippocampal CA3 region, where it
is secreted from the postsynaptic membrane and organizes presy-
naptic release properties (Terauchi et al., 2010). FGF receptors have
been shown to directly interact with adenosine A2A receptors (Fla-
jolet et al., 2008), which are important for GABA release (Cunha
and Ribeiro, 2000) as well as for GABA uptake from the synaptic
cleft (Cristóvão-Ferreira et al., 2009). In this way, FGFR and A2A
receptors may act together to regulate GABAergic transmission in
the hippocampus.
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FACTORS FROM GLIA CELLS
Studies with neuronal and astrocyte co-cultures and astrocyte-
conditioned medium have shown that astrocyte-released factors
are crucial for synapse formation and plasticity (Elmariah et al.,
2005; Christopherson et al., 2005a; Hughes et al., 2010; Crawford
et al., 2012). For instance, thrombospondins, oligomeric proteins
of the extracellular matrix produced by astrocytes (Christopherson
et al., 2005b; Eroglu et al., 2009) are involved in the formation of
glutamatergic synapses and the pro-inflammatory cytokine TNFα,
coming from glia, (Stellwagen and Malenka, 2006) plays a role in
homeostatic plasticity of these synapses. In addition, a different
and so far unidentified, protein is secreted by astrocytes, which
has been found to increase the density of inhibitory synapses in
cultured neurons (Elmariah et al., 2005; Hughes et al., 2010).

GABA
A special secreted factor is the inhibitory neurotransmitter GABA
itself. It is well-established that synapse formation does not
depend on neurotransmitter release (Verhage, 2000; Harms and
Craig, 2005; Schubert et al., 2013). However, the development
and maturation of inhibitory synapses are influenced by their
neurotransmitter GABA (Li et al., 2005; Huang and Scheiffele,
2008; Huang, 2009; Lau and Murthy, 2012). It was shown that
individual axons of parvalbumin-positive basket cells are sen-
sitive to their own GABA release (Chattopadhyaya et al., 2007;
Wu et al., 2012) and that the amount of GABA release per
vesicle can be regulated by activity (Hartman et al., 2006; Lau
and Murthy, 2012). Inhibitory boutons are less dynamic in
axons in which GABA release is impaired (Wu et al., 2012) or
when GABA receptors are blocked (Schuemann et al., 2013),
strongly suggesting that GABA is used as an important activity
sensor for regulating activity-dependent presynaptic changes at
inhibitory synapses. Both GABAA and GABAB receptors have been

implicated in mediating this regulation (Fu et al., 2012; Schue-
mann et al., 2013), but the precise molecular mechanisms remain
unknown.

OTHER FACTORS
In addition to cell adhesion molecules and secreted factors, there
are many other factors that may affect activity-dependent plasticity
of inhibitory axons. For instance, it is well-established that extra-
cellular matrix molecules can play a role in the development and
maturation of synapses in the central nervous system and specific
interactions between cell adhesion molecules and the extracel-
lular matrix have been revealed (Di Cristo et al., 2007; de Wit
et al., 2013; Siddiqui et al., 2013). There are a few studies in which
the absence or overexpression of extracellular matrix proteins
affected inhibitory synapses specifically (Saghatelyan et al., 2001;
Nikonenko et al., 2003; Brenneke et al., 2004; Pavlov et al., 2006;
Su et al., 2010), but the underlying mechanisms remain largely
unknown.

And finally, while it is clear that presynaptic components
are continuously shared and exchanged between inhibitory bou-
tons along the axons, it is not clear how exactly these proteins
are dispersed along the axonal shaft. Presumably sharing occurs
through passive diffusion of presynaptic proteins through the
axonal shaft, but intracellular transport of synaptic cargo could
also play a role. Axons contain extensive microtubule and actin
networks and there are various motor proteins that deliver and
ship transport vesicles, potentially affecting the amount of pro-
teins available for exchange and synapse formation at boutons.
For instance, it was shown that intra-axonal movement of mito-
chondria is enhanced when activity is blocked (Goldstein et al.,
2008; Cai and Sheng, 2009; Obashi and Okabe, 2013), but it
is not clear if this is due to enhanced motor protein activ-
ity or decreased anchoring at synapses. Further research on

FIGURE 3 | Outstanding research questions. Schematic overview of open research questions on activity-dependent adaptations in inhibitory axons.
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the possible activity-dependent regulation of intracellular trans-
port of synaptic cargo (Guillaud et al., 2008; Maas et al., 2009;
MacAskill et al., 2009) will be needed to address this issue in the
future.

CONCLUSION
Research on activity-dependent adaptations in inhibitory axons
continues to generate novel insight in the cellular processes of
synapse formation and plasticity. Many open questions remain to
be answered in the future and we listed a few of these in a small
scheme (Figure 3). In this review we have painted a picture of
the inhibitory axon as a dynamic structure that can quickly adjust
to a changing environment, by responding to local signals from
postsynaptic cells via adhesion molecules and to global signals
from the local neuronal network. A highly dynamic inhibitory
system might serve to quickly respond to changes to allow circuit
rearrangements by excitatory connections. For a healthy brain
changes at inhibitory and excitatory synapses need to be well-
coordinated at all times as subtle defects in this coordination can
cause defects in circuitry and may underlie psychiatric disorders.
This means that the interplay between plasticity of excitatory and
inhibitory synapses is an important factor for the stability of neu-
ronal circuits. The precise response of the inhibitory axon will
be determined by the combination of internal and external fac-
tors, such as the availability of synaptic proteins within the axon,
or the combination of the extracellular factors and cell adhe-
sion molecules that are present at the membrane. It will be an
important challenge for future research to unravel the precise
molecular and cellular mechanisms and to further uncover path-
ways that affect synapse formation and plasticity of inhibitory
synapses.
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