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The study was designed to explore the improvement e�ect of CSPCM

(compound small peptide of Chinese medicine) on intestinal immunity and

microflora through the treatment of di�erent doses of CSPCM. A total of 100

male Kunming mice were weighed and divided into five groups, namely, group

A (control group), group B (model group), group C (0.1 g/kg·bw CSPCM),

group D (0.2 g/kg·bw CSPCM), and group E (0.4 g/kg·bw CSPCM). The use

of CTX (cyclophosphamide) caused a series of negative e�ects: the secretion

of IL-2, IL-22, TNF-α, sIgA, length of the villi, and the area of Pey’s node were

significantly reduced (P < 0.05); the depth of crypt and the percent of CD3+

and CD4+ cells were significantly increased (P < 0.05); the cecal flora taxa

decreased; the abundance of Firmicutes and Lactobacillus increased; and the

abundance of Bacteroidetes, Deferribacteres, Proteobacteria, Mucispirillum,

Bacteroides, and Flexisprra decreased. The addition of CSPCM improved the

secretion of cytokines and the development of intestinal villi, crypts, and

Pey’s node. The number of CD3+ and CD4+ cells in groups C, D, and E was

significantly higher than that in group B (P < 0.05). Compared with group B,

the abundance of Firmicutes in groups C, D, and E was decreased, and the

Bacteroidetes, Deferribacteres, and Proteobacteria increased. The abundance

of Lactobacillus decreased, while that of Mucispirillum, Bacteroides, and

Flexisprra increased. It is concluded that cyclophosphamide is extremely

destructive to the intestinal area and has a great negative impact on the

development of the small intestine, the intestinal immune system, and the

intestinal flora. The CSPCM can improve the negative e�ects of CTX.
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Introduction

Due to the influence of food safety issues, environmental

pollution, social pressure, obesity, and antibiotics, human beings

are in a subhealthy state (Chakraborty, 2019). The subhealthy

state of the human body will lead to the disorder or weakening

of the human immune system. At this time, if you are

infected with a virus or bacteria, the human immune system

cannot accurately identify the pathogen and eliminate it. In

addition, the probability of human beings suffering from tumors

increases year by year and tends to be younger (Adolescent

Young Adult Cancer Collaborators, 2021; Saab, 2021). As an

important cancer treatment drug, cyclophosphamide has an

unquestionable effect, but the side effects of tumor treatment are

also very obvious, themost important of which is the destruction

of the immune system (Liu et al., 2021; Zhou et al., 2021).

Cyclophosphamide is absorbed by the body and is metabolized

in the liver to produce active metabolites to play a role. It

plays a role in tumor treatment by inhibiting the function

of the immune system (Gomez-Figueroa et al., 2021). After

cancer treatment, the treatment of the body no longer suppresses

immunity but reshapes the body’s immune system. As one of the

most important components of complementary and alternative

medicines, traditional Chinese medicines (TCM) have been

practiced in China and surrounding areas for thousands of years.

With rich experiences in fighting diseases and the growing trend

of acceptance of complementary and alternative medicines,

studies have shown that polysaccharides from Lycium barbarum

could regulate immune response depending on the modulation

of gut microbiota (Ding et al., 2019); ginseng-astragalus-

oxymatrine injection could ameliorate cyclophosphamide-

induced immunosuppression in mice (Li et al., 2021). Whether

it is used alone or in combination, traditional Chinese medicine

can effectively play a therapeutic or healthcare effect. The

prescription can increase the site of action and exert the

effect better.

In animals, the intestine is a special organ that

communicates with the outside world. The intestinal immune

system can not only accurately identify the survival of the

normal flora in the intestine but also ensure that the bacteria in

the intestine will not break through the barrier in the intestine

and enter other organs of the body (Dominguez-Bello et al.,

2019). The intestine is a complex ecosystem consisting of the

intestinal epithelium, immune cells, mucus layer, and microbial

communities (Jiao et al., 2020). The intestinal immune system

can balance the immune response to pathogens and intestinal

flora under normal conditions. Recent studies show that

the intestinal flora is an important factor in stimulating the

immune system (Kishida et al., 2018), as indicated by the

fact that germ-free mice have poorly developed lymphoid

tissues, spleens with few germinal centers, and poorly formed

T and B cell zones, hypoplastic Pey’s node, lower numbers of

lamina propria CD4+ cells and IgA-producing plasma cells

(Macpherson and Haris, 2004), and aberrant development

and maturation of isolated lymphoid follicles (Bouskra et al.,

2008). The intestinal microbiome has been considered a new

method for the treatment of various intestinal diseases. Chinese

herbal medicine interacts with intestinal microorganisms:

the toxic substances and substances that cannot be directly

absorbed in Chinese herbal medicine are metabolized and

decomposed by intestinal microorganisms. For example, the

intestinal flora degrades cinnabar into nontoxic mercuric

polysulfides (Zhou et al., 2011). Human intestinal bacteria

could convert aconitine to lipoaconitine (Feng et al., 2019).

Traditional Chinese medicine and its metabolites affect the

composition and metabolism of intestinal microbes. Astragalus

administration significantly increased gut microbiota richness

and diversity and significantly altered the abundance of several

bacterial taxa, inducing an increased abundance of Lactobacillus

and Bifidobacterium (Li et al., 2019). Red ginseng could

alleviate Escherichia coli-induced gut dysbiosis (Han et al.,

2020). The traditional theory of traditional Chinese medicine

emphasizes that “both over and under are diseases.” A healthy

animal body needs to achieve two balances in the intestinal

tract: the balance between the intestinal flora and the animal

body and the balance between various intestinal bacteria.

When either of these balances is disrupted, the animal’s body

becomes dysfunctional.

Traditional Chinese herbal medicine (CHM) has evolved

for thousands of years in China and still plays an important

role in animal health. Since Brantl et al. (1979) initially isolated

a novel opioid peptide from the bovine casein peptone in

1979, academic circles have been challenging the traditional

concepts of protein nutrition by discovering the existence of

bioactive peptides from plant and animal proteins (Liu et al.,

2018). As part of the active ingredients of CHM, peptides have

attracted the long-term enthusiasm of researchers (Cui et al.,

2021). Peptides are widely distributed in plants and animals and

have various pharmacological activities and potential medicinal

values (Ling et al., 2018; Liu et al., 2018). Soy peptide is

more easily absorbed than soy protein and is related to the

maintenance, reinforcement, or restoration of the intestinal

barrier function (Kimura andArai, 1988).Walnut peptide intake

augmented the antioxidant defense system and accelerated the

survival rate (Zhu et al., 2019). Mice were treated with CSPCM

containing 64.8% soy peptide, 25% wheat germ powder, 10%

astragalus hydrolysate, and 0.2% vitamin C. Peptides are amino

acids linked by amide bonds to compounds in the middle of

amino acids and proteins. Small peptides are compounds of 2–

3 amino acids linked together. Some di-/tripeptides permeate

through the intestinal membranes in their intact forms via

peptide transporter systems (Shen andMatsui, 2017). Compared

with free amino acids, small peptides have the advantages of

fast absorption, low energy consumption, and a high absorption

rate (Matthews, 1975). They have independent absorption

mechanisms in the animal body and do not interfere with each
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other (Webb Ke and Matthews, 1993). Making a traditional

Chinese medicine into a peptide can increase its absorption

rate while retaining its potency. In this study, mice were tested

with CSPCM (containing 64.8% soybean peptide, 25% wheat

germ powder, 10% astragalus hydrolysate, and 0.2% vitamin C)

to explore the effects of CSPCM on intestinal immunity and

intestinal microflora in human immunosuppressed state.

Materials and methods

Chemicals

The CSPCM was provided by HeBei TaiFeng Biotechnology

Co., Ltd. The manufacturing process of CSPCM used in this

experiment is as follows: confirming the ratio of material

to water → adding enzyme at high temperature →

rotating oriented enzyme → microfiltration → active

purification of traditional Chinese medicine → recombination

of active peptide → low-temperature concentration →

spray drying. The acid-soluble protein content was detected

after the preparation, and the acid-soluble protein was required

to account for more than 30% of the total protein. CTX was

purchased from Source Leaf Biotechnology Co., Ltd. (Shanghai,

China). Hematoxylin dyeing solution and eosin were purchased

from Beijing Boaotuo Technology Co., Ltd. (Beijing, China).

Anti-stripping glass slides and cover glass were purchased from

Shanghai Weibo Biotechnology Co., Ltd. (Shanghai, China).

Feather microtome blade R35 was purchased from Leica

Microsystems (Shanghai) Trading Co., Ltd. (Shanghai, China).

IL-10, IL-17, IL-2, IL-22, TNF-α, and sIgA Elisa kits were

purchased from Shanghai Enzyme-Linked Biotechnology Co.,

Ltd. (Shanghai, China). FITC anti-mouse CD3+ antibody, APC

anti-mouse CD4+ antibody, PE anti-mouse CD8+ antibody,

True-NuclearTM Transcription Factor Buffer Set, True Nuclear

TM 4X Fix Concentrate, True Nuclear TM 10X Per, and True

Nuclear TM Fix Diluent were purchased from BioLegend, Inc

(California, USA). DNeasy PowerSoil Kit was purchased from

QIAGEN, Inc. (Hilden, Germany). Agencourt AMPure Beads

was purchased from Beckman Coulter Co., Ltd. (Indianapolis,

USA). PicoGreen dsDNA Assay Kit was purchased from

Invitrogen Co., Ltd. (Carlsbad, USA).

Animals and experimental design

Male-specific pathogen-free (SPF) Kunming mice weighing

20.0 ± 2.0 g (6–8 weeks) were purchased from Spfanimals

(Beijing) Laboratory Animal Science and Technology Co., Ltd.

(Beijing, China). All mice were provided specific pathogen-free

food and water ad libitum and acclimated for 1 week. All animal

studies were approved by the Ethics Committee of Animal

Experiments of Heibei Agricultural University.

After 1 week of adaptation, 100 male Kunming mice were

divided into 5 groups, namely, group A (control group), group

B (model group), group C (0.1 g/kg·bw CSPCM), group D (0.2

g/kg·bw CSPCM), and group E (0.4 g/kg·bw CSPCM). From day

1 to day 3, all groups except A were intraperitoneally injected

with 0.08 g/kg·bw CTX, and the A group was intraperitoneally

injected with normal saline. From the fourth day of the

experiment, the A group and B group were given oral normal

saline intragastrally, and the C, D, and E groups were given 0.1,

0.2, and 0.4 g/kg·bw CSPCM for 14 days, respectively. After 14

days of gavage, the middle section of the small intestine was

dissected longitudinally, rinsed with normal saline, and then

stored in a refrigerator at −80◦C for use. Mesenteric lymph

nodes were collected for flow cytometry. Cecal contents were

taken and placed in cryopreservation tubes, preserved in dry

ice, and transported to Paiseno Biotechnology Co., Ltd., for 16S

rRNA high-throughput sequencing.

Cytokines in small intestinal tissue and
morphological observation of small
intestine

A 10% tissue homogenate was prepared from the cleaned

midsection of the small intestine, and an ELISA kit was used

for detection. Sections of the small intestine were taken, and the

contents were gently rinsed with normal saline and soaked in a

3% formaldehyde solution. The sections of the small intestine

and Pey’s node were prepared by paraffin section and observed

with a light microscope after HE staining. The length of villi,

crypt depth, and Pey’s node area of the small intestine were

measured using the Image J software.

Flow cytometry

After grinding the mesenteric lymph nodes to extract

the cells and washing with PBS, the cell concentration was

adjusted to 100 cells/L. The corresponding antibodies were

added according to the instructions and incubated at 4◦C in

the dark for 30min. A volume of 500 µl of PBS containing 1%

paraformaldehyde was added and the solution was tested using

the machine.

High-throughput sequencing of cecal
flora 16S rRNA

This experiment used 16S rRNA V3V4 high-

throughput sequencing, and the sequencing primer

sequence was F:ACTCCTACGGGAGGCAGCA

R:GGACTACHVGGGTWTCTAAT. 16S rRNA sequencing
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TABLE 1 E�ects of CSPCM on the levels of cytokines in small intestinal tissue.

Group A B C D E

IL-10 (pg/ml) 382.0± 9.1 380.93± 6.45 384.32± 33.81 391.79± 21.86 435.77± 18.23*#

IL-17 (pg/ml) 36.17± 2.36 34.44± 0.72 35.21± 2.82 37.73± 2.39# 38.7± 1.32#

IL-2 (pg/ml) 301.17± 4.55# 243.4± 11.45* 304.71± 3.62# 309.64± 9.29# 323.97± 11.56*#

IL-22 (pg/ml) 28.25± 1.15# 26.78± 1.19* 28.91± 1.47# 29.05± 0.57# 31.7± 0.82*#

TNF-α (pg/ml) 501.79± 24.1# 467.73± 14* 522.78± 27.81# 551.33± 29.01*# 620.48± 28.03*#

sIgA (µg/ml) 32.43± 1.65# 30.13± 1.39* 31.34± 1.34# 35.56± 2.68# 37.73± 1.27*#

*Significant difference with group A (P < 0.05).
#Significant difference with group B (P < 0.05), same as in Table 2.

platform was Illumina MiSeq platform (Shanghai Personal

Biotechnology Co., Ltd.). Preliminary screening of the

original off-machine data was performed for high-throughput

sequencing based on sequence quality; retesting and

supplementary testing of problem samples were also performed.

Through depriming, splicing, quality filtering, deduplication,

de-chimerism, and clustering, the original sequence was divided

into the library and the sample according to the index and

barcode information, and the barcode sequence was removed.

After obtaining the OTU representative sequence, statistics on

its length distribution were performed to check whether the

length of these sequences is equivalent to the length range of

the sequenced target fragments, whether there are sequences

of abnormal length, etc. At the level of species taxonomic

composition, through various unsupervised and supervised

sorting, clustering, and modeling methods, combined with

corresponding statistical testing methods, we can further

measure the differences in species abundance composition

between different samples (groups), and try to find symbol

species. The sequencing depth was 95% of the minimum sample

sequence size. In this experiment, the minimum sequence

number was 36,652, and the sequencing depth was 81,962.

Statistical analysis

All of the experimental data are presented as mean ±

standard deviation (SD). The results were analyzed using the

IBM SPSS Statistics 19 software (IBM Inc., Chicago, IL, USA)

for single-factor analysis. A value of P < 0.05 was regarded to be

statistically significantly different.

Results

E�ects of CSPCM on the levels of
cytokines in small intestinal tissue

As shown in Table 1, compared with group A, IL-2, IL-22,

TNF-α, and sIgA in group B significantly decreased (P < 0.05);

IL-10, IL-2, IL-22, TNF-α, and sIgA in group E significantly

increased (P < 0.05); TNF-α in group D significantly increased

(P < 0.05). Compared with group B, IL-2, IL-22, TNF-α, and

sIgA in group C significantly increased (P < 0.05); IL-17, IL-

2, IL-22, TNF-α, and sIgA in group D significantly increased (P

< 0.05); IL-10, IL-17, IL-2, IL-22, TNF-α, and sIgA in group E

significantly increased (P < 0.05).

E�ects of CSPCM on the morphological
features of the small intestine

As shown in Figure 1, duodenal villi were leaf-like. Duodenal

villi in groups A, C, D, and E were arranged neatly and closely,

while in group B they were sparse and shorter. Compared

with group A, villus length of the duodenum in group B was

significantly decreased (P < 0.05), crypt depth of the duodenum

in groups B, C, and D was significantly increased (P < 0.05),

and villus length of the duodenum in groups C, D, and E

was significantly increased (P < 0.05). Compared with group

B, villus length of the duodenum in groups A, C, D, and E

was significantly increased (P < 0.05), and villus length and

crypt depth of the duodenum in groups A, C, D, and E was

significantly decreased (P < 0.05).

As shown in Figure 2, jejunum villi were mainly finger-like.

Morphological observation of the jejunum showed that the villi

length in group B was shorter than that in group A. The ileum

villi in groups C, D, and E were short, conical, and loosely

arranged. Compared with group A, the villus length of jejunum

in group B was significantly decreased (P < 0.05), villus length

of jejunum in groups C, D, and E was significantly increased (P

< 0.05), and crypt depth of jejunum in group B was significantly

increased (P < 0.05). Compared with group B, villus length of

jejunum in groups A, C, D, and E was significantly increased (P

< 0.05), and crypt depth of jejunum in groups A, C, D, and E

was significantly decreased (P < 0.05).

As shown in Figure 3, ileum villi were short, conical, and

arranged loosely. The ileum villi in groups C, D, and E were

arranged neatly and closely, while the villi in group B were
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FIGURE 1

E�ects of CSPCM on the morphological features of the duodenum. (a) Morphological observation of duodenum in group A. (b) Morphological

observation of duodenum in group B. (c) Morphological observation of duodenum in group C. (d) Morphological observation of duodenum in

group D. (e) Morphological observation of duodenum in group E. (f) E�ect of CSPCM on duodenal villus length and crypt depth. *Significant

di�erence with group A (P < 0.05). #Significant di�erence with group B (P < 0.05).

sparse and shorter. Compared with group A, villus length of

ileum in group B was significantly decreased (P < 0.05), villus

length of ileum in group E was significantly increased (P< 0.05),

and crypt depth of ileum in group B was significantly increased

(P < 0.05). Compared with group B, villus length of ileum in

groups A, C, D, and E was significantly increased (P < 0.05), and

crypt depth of ileum in groups A, C, D, and E was significantly

decreased (P < 0.05).

E�ects of CSPCM on the morphological
features of Pey’s node

As shown in Figure 4, the Pey’s node area of group B was

significantly lower than that of group A (P < 0.05). The Pey’s

node area in groups C, D, and E was significantly higher than

that in groups A and B (P < 0.05).

E�ects of CSPCM on the percent of
CD3+, CD4+, CD8+, and CD4+/CD8+

value in mesenteric lymph nodes

As shown in Table 2, the percentage of CD3+ cells in groups

A, C, D, and E was significantly higher than that in group B(P

< 0.05). The percentage of CD4+ cells in groups A, C, D, and

E was significantly higher than that in group B (P < 0.05).

CD4+/CD8+ in groups A and E was significantly higher than

that in group B(P < 0.05).

Analysis of the e�ect of CSPCM on
intestinal flora

Length distribution of intestinal flora sequence

As shown in Figure 5, the number of sequences with a length

of 50 is 143, the number of sequences with a length of 192 is 15,

the number of sequences with a length of 217 is 3, the number of

sequences with a length of 271 is 2, the number of sequences with

a length of 273 is 2, and the number of sequences with a length

of 278 is 4. The number of sequences with a length of 284 is 6,

the number of sequences with a length of 293 is 2, the number of

sequences with a length of 318 is 5, the number of sequences with

a length of 337 is 10, and the number of sequences with a length

of 338 is 12. The number of sequences with a length of 341 is 2,

the number of sequences with a length of 343 is 3, the number

of sequences with a length of 344 is 2, the number of sequences

with a length of 353 is 3, the number of sequences with a length

of 369 is 2, and the number of sequences with a length of 385

is 4. The number is 4, the number of sequences with a length of

386 is 2, the number of sequences with a length of 392 is 2, the

number of sequences with a length of 393 is 9, the number of

sequences with a length of 403 is 2, and the number of sequences

with a length of 404 is 8,691. The number of sequences with a
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FIGURE 2

E�ects of CSPCM on the morphological features of jejunum. (a) Morphological observation of jejunum in group A. (b) Morphological

observation of jejunum in group B. (c) Morphological observation of jejunum in group C. (d) Morphological observation of jejunum in group D.

(e) Morphological observation of jejunum in group E. (f) E�ect of CSPCM on jejunum villus length and crypt depth. *Significant di�erence with

group A (P < 0.05). #Significant di�erence with group B (P < 0.05).

FIGURE 3

E�ects of CSPCM on the morphological features of the ileum. (a) Morphological observation of ileum in group A. (b) Morphological observation

of ileum in group B. (c) Morphological observation of ileum in group C. (d) Morphological observation of ileum in group D. (e) Morphological

observation of ileum in group E. (f) E�ect of CSPCM on ileum villus length and crypt depth. *Significant di�erence with group A (P < 0.05).
#Significant di�erence with group B (P < 0.05).
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FIGURE 4

E�ects of CSPCM on the morphological features and area analysis of PPS. (a) Morphological observation of duodenum in group A. (b)

Morphological observation of PPS in group B. (c) Morphological observation of PPS in group C. (d) Morphological observation of PPS in group D.

(e) Morphological observation of PPS in group E. (f) E�ects of CSPCM on area analysis of PPS. *Significant di�erence with group A (P < 0.05).
#Significant di�erence with group B (P < 0.05).

TABLE 2 E�ects of CSPCM on CD4+ cells, CD8+ cells, and CD4+/CD8+ in mesenteric lymph nodes.

Group A B C D E

CD3+ (%) 98.64± 1.34# 13.26± 2.56* 99.6± 0.25# 99.77± 0.1# 99.48± 0.11#

CD4+ (%) 68.86± 4.7# 36.65± 8.63* 64.39± 6.86# 57.69± 9.39# 58.19± 9.45#

CD8+ (%) 18.18± 1.77 17.85± 2.84 21.29± 6.05 17.18± 1.4 14.71± 2.67

CD4+/CD8+ 3.79± 1# 2.08± 2.49* 3.26± 0.81 3.35± 1.67 3.97± 0.24#

length of 405 is 175,621, the number of sequences with a length

of 406 is 75,755, the number of sequences with a length of 407 is

27,954, the number of sequences with a length of 408 is 75,828,

the number of sequences with a length of 409 is 6,258, and the

number of sequences with a length of 410 is 445. The number of

sequences with a length of 411 is 2,018, the number of sequences

with a length of 412 is 2,841, the number of sequences with a

length of 413 is 86, the number of sequences with a length of 414

is 40, the number of sequences with a length of 415 is 116, and

the number of sequences with a length of 416 is 73. The number

of sequences of length 418 is 12, the number of sequences of

length 419 is 36, the number of sequences of length 420 is 2,061,

the number of sequences of length 421 is 9,717, and the number

of sequences of length 423 is 14,288. The number of sequences

with a length of 424 is 103,357, the number of sequences with a

length of 425 is 317,111, the number of sequences with a length

of 426 is 15,984, the number of sequences with a length of 427 is

3,724, the number of sequences with a length of 428 is 195, and

the length of 429 is 197,40. The number of sequences of length

is 197,40, the number of sequences of length 430 is 789,995,

the number of sequences of length 431 is 8,390, the number of

sequences of length 432 is 209, and the number of sequences of

length 433 is 9.

The e�ect of CSPCM on species di�erences
and marker analysis in mice samples

In Figures 6A,B, Alphaproteobacteria (at class level),

Enterococcaceae (at the family level), Enterococcus (at genus

level), Rhizobiales (at order level), Bradyrhizobiaceae (at the

family level), Leuconostocaceae (at the family level), and

Weissella (at genus level) in group D were significantly higher

than that in other groups. Alteromonadales (at order level),

Shewanellaceae (at the family level), and Shewanella (at

Frontiers inMicrobiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2022.959726
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Cui et al. 10.3389/fmicb.2022.959726

FIGURE 5

Overall sample sequence length distribution. Note: The abscissa is the length of the sequence, and the ordinate is the number of sequences.

genus level) in group E were significantly higher than that in

other groups.

As shown in Figures 6C,D, Helicobacter, Adlercreutzia,

Alistipes, Odoribacter, Prevotella, Allobaculum, Desulfovibrio,

and Streptococcus were abundant in group A; Coprobacillus

and Lactobacillus were abundant in group B; Bacteroides

and Parabacteroides were abundant in group C; Lactobacillus,

Oscillospira, Roseburia, and Streptococcus were abundant

in group D; and Mucispirillum, Anaeroplasma, Flexispira,

Dehalobacterium, Ruminococcus, AF12, and Helicobacter were

abundant in group E.

Analysis of CSPCM on intestinal flora
composition in mice

Compared with group A, the number of taxa in group B

decreased by 1.66, 4.67, 9.34, and 9.46% at class, order, family,

and genus levels, respectively. After treatment with different

doses of CSPCM, the number of taxa in group C increased

by 0.507, 1.5, and 1.17% at class, order, and family levels,

respectively, compared with group B. Compared with group B,

the number of taxa in group D increased by 0.85, 7.53, 10.34,

and 9.83% at class, order, family, and genus levels, respectively.

Compared with group B, the number of taxa in group E

increased by 1, 4.5, 7.67, and 7.17% at class, order, family, and

genus levels, respectively (Figures 7A,B).

At the phylum level, Firmicutes, Bacteroidetes,

Deferribacteres, and Proteobacteria were the most abundant

bacteria. Compared with group A, the abundance of Firmicutes

in group B increased, while the abundance of Bacteroidetes,

Deferribacteres, and Proteobacteria decreased. Compared with

groups B, C, D, and E, the abundance of Firmicutes decreased,

while the abundance of Bacteroidetes, Deferribacteres, and

Proteobacteria increased (Figure 7C).

At the genus level, Lactobacillus,Mucispirillum, Bacteroides,

and Flexisprra were found to have high genus-level abundance.

Compared with group A, the abundance of Lactobacillus in

group B increased, while the abundance of Mucispirillum,

Bacteroides, and Flexisprra decreased. Compared with groups B,

C, D, and E, the abundance of Lactobacillus decreased, while

the abundance of Mucispirillum, Bacteroides, and Flexisprra

increased (Figure 7D).

Discussion

The small intestine is the main organ of chemical digestion

and absorption and the main absorption site of the protein,
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FIGURE 6

The e�ect of CSPCM on species di�erences and marker analysis in mice samples. (A,B) LEfSe analysis of intestinal flora. (C) Heat map of

intestinal flora. (D) PCOA analysis of intestinal flora.

amino acids, starch, maltose, and glucose (Shi et al., 2017). The

enhancement of the digestive function of the small intestine

will contribute to the full absorption of nutrients. The small

intestine is an important location for nutrient absorption, and

increasing the length of villi in the small intestine can increase

the contact area between the small intestine and intestinal

contents, thus increasing the deposition of nutrients, which

is of great significance for improving the health of animals

(Wilson et al., 2018). Crypt depth reflects the colonization rate

and maturity of crypt cells. The shallower the crypt, the better

the maturity of cells, the better the secretion function, and the

regeneration ability of villous epithelial cells, which is more

conducive to maintaining intestinal absorption function. The

longer the villi, the more contact with nutrients, and the more

efficient the deposition of nutrients. The results show that the

application of cyclophosphamide had a significant effect on

the development of the small intestine, and the villi in each

section of the small intestine of mice became sparse, and the villi

length was significantly reduced. Meanwhile, cyclophosphamide

inhibited the development and maturation of small intestinal

crypts. It also indicates that the immunosuppressive model

was successfully created. The therapeutic effect of CSPCM is

obvious. In terms of morphology, CSPCM not only improves

the thinning and shortening of villi in each section of the

small intestine but also promotes the maturation of crypts. In

terms of function, the use of CSPCM not only increased the

contact area between the villi and the contents of the small

intestine but also increased the secretory function of the crypt, so

that the cyclophosphamide-treated mice returned to the normal

intestinal absorption function.

The balance and stability of the immune system depend

on the coordination of various immune organs, immune

tissues, immune cells, and molecules and finally play a normal

immune function. Pey’s node is the immune induction site

of the intestinal mucosal immune system, which is rich in

thymogenic T cells, B cells, and DC immune cells, and the

size and number of which can reflect the local immune status

of intestinal mucosa. Lymphocytes in Pey’s node are the main

components of its external morphology, that is, the number

of lymphocytes is closely related to its size. The cytotoxic

effect of cyclophosphamide can induce the early apoptosis

of parsonite node lymphocytes, thereby reducing the number
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FIGURE 7

Analysis of CSPCM on intestinal flora composition in mice. (A,B) The e�ect of CSPCM on taxonomic composition in mice samples. (C) E�ect of

CSPCM on intestinal flora composition at the phylum level. (D) E�ect of CSPCM on intestinal flora composition at the genus level.

of lymphocytes, and eventually leading to the atrophy and

disappearance of Pey’s node. In this experiment, CTX induced

apoptosis, which resulted in the loosening of lymphocytes in

Pey’s node, while CSPCM could significantly ameliorate this

situation, indicating that CSPCM can maintain the number

and activation level of lymphocytes in animals and protect the

normal morphology of Pey’s node.

When the number and types of normal flora in the

intestinal tract change, the lymphocytes in mesenteric lymph

nodes can be rapidly activated and produce the corresponding

cytokines to regulate the occurrence of immune responses.

CD3+ lymphocytes are mainly divided into two types according

to different antigens on the cell surface, namely, CD4+ cells and

CD8+ cells. The results of this test show that CD3+, CD4+, and

CD8+ cells were reduced by 97.3, 32.21, and 0.33%, respectively,

compared with the normal group. In addition, it also caused a

decrease in the ratio of CD4+/CD8+. CD3+ is a specific marker

molecule on the surface of all T cells. Its level represents the

level of the cellular immune response. The significant decrease

in the proportion of CD3+ and CD4+ in group B indicates that

cyclophosphamide greatly inhibits the body’s cellular immunity.

Since CD4+ is a specific marker molecule on the surface

of all helper lymphocytes (Th), this type of cell is activated

by reacting with the polypeptide antigen presented by the

MHCC-II molecular complex. CD4+ cells can secrete a variety

of cytokines to promote the differentiation and proliferation

of T and B cells. Therefore, cyclophosphamide also inhibits

the secretion of cytokines IL-2, IL-22, and TNF-α, which

ultimately leads to the disorder of the body’s immune level.

After CSPCM treatment, the proportion of CD3+, CD4+,

and CD8+ cells in the mesenteric lymph nodes returned to

normal levels, and subsequently, the levels of cytokines in

the intestinal tract also increased and returned to normal

levels. The mechanism of CSPCM’s action lies in the enzymatic

hydrolysate of astragalus in its ingredients. Astragalus is one

of the best herbal medicines to replenish “qi.” The “qi” in

traditional Chinese medicine theory can be approximately

equal to the immunity in modern medicine. The study by

Du has shown that Astragalus membranaceus can promote

the maturation of dendritic cells in mice and inhibit Treg

frequency to enhance immune response (Du et al., 2012). Li’s

study has shown that ginseng-astragalus-oxymatrine injection

ameliorates cyclophosphamide-induced immunosuppression in

mice (Li et al., 2021). Brush’s study has shown that Astragalus

membranaceus can activate immune cells in human subject.

In addition, Echinacea purpurea, Astragalus membranaceus,
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and Glycyrrhiza glabra had an additive effect on the immune

function when used in combination (Brush et al., 2006). The

immune regulation effect of traditional Chinese medicine is to

strengthen the body’s resistance to consolidate the constitution,

through the balance and stability of the immune system, to

enhance the body’s resistance to disease and reduce the purpose

of pathogenic factors to the body damage.

In this study, LEfSe analysis, taxonomic analysis, and

taxonomic composition analysis were used to evaluate the

changes in the intestinal flora. Chinese medicine is metabolized

by intestinal flora in the intestine, and the substances

produced by the metabolism of intestinal flora affect the

growth of intestinal flora. The results of intestinal flora

composition analysis showed that cyclophosphamide changed

the composition of intestinal flora, which was consistent with

the existing research results (Kong et al., 2020; Xiang et al., 2021).

After CSPCM treatment, the intestinal flora of mice tended to be

normal. The statistical results of taxon number analysis showed

that 100 g/kg bw CSPCM had no significant improvement

on taxa number. The 0.2 g/kg·bw CSPCM and 0.4 g/kg·bw

CSPCM significantly improved the taxon number at the level of

class, order, family, and genus of cecum flora. The taxonomic

composition analysis results were consistent with the statistical

results of the taxonomic analysis. Cyclophosphamide changed

the composition of cecal flora, increasing the proportion of

Fimicutes and Bacteroidetes at the phylum level, increasing the

proportion of Lactobacillus, and reducing the proportion of

Mucispirllum at the genus level. The 0.1 g/kg·bw CSPCM did

not prevent CTX from playing a destructive role in the intestine.

The 0.2 g/kg·bw CSPCM and 0.4 g/kg·bw CSPCM played a

certain role in the recovery of cecum intestinal flora. The 0.2

g/kg·bw CSPCM showed an excellent therapeutic effect, and the

intestinal flora at phylum and genus levels returned to a normal

state. LefSe analysis also showed that both 0.2 g/kg·bw CSPCM

and 0.4 g/kg·bw CSPCM promoted the growth of specific

bacterial communities in the cecum. As can be seen from the

heat map results, the bacterial community of group B changed

significantly, Helicobacter, Adlercreutzia, Alistipes, Odoribacter,

Prevotella, Allobaculum, Desulfovibrio, and Streptococcus have

a high abundance in the cecum of normal mice and a low

abundance in group B. Coprobacillus and Lactobacillus had

higher abundance in group B. The diversity of intestinal flora

in group C was improved, the diversity and richness of cecal

flora in groups D and E were significantly increased, and the

intestinal flora in group E was more abundant, but the intestinal

flora in group D was most similar to that in the control

group. These results indicate that 0.2 g/kg·bw CSPCM had a

better remodeling effect on cecal intestinal flora damaged by

cyclophosphamide. The 0.4 g/kg·bw CSPCM supplementation

also had a good effect on the remodeling of intestinal flora

in immunosuppressed mice, which could increase its diversity

and richness, but there were differences with the blank control

mice in this experiment. It can be seen that 0.4 g/kg·bw

CSPCM can promote the reconstruction of intestinal flora,

but it will form a new intestinal flora compared with normal

mice, and the role of this new intestinal flora remains to be

further explored.

Conclusion

CTX is extremely destructive to the intestinal area and has a

great negative impact on the development of the small intestine,

the intestinal immune system, and intestinal flora. CSPCM could

ameliorate a series of negative effects on the intestinal region

caused by CTX: restoring intestinal normal levels of IL-10,

IL-17, IL-2, TNF-α, and sIgA; Increased numbers of CD3+,

CD4+, and CD8+ cells in mesenteric lymph nodes. The villus

length increased, crypt depth decreased, and the Pey’s node area

increased in all segments of the small intestine. At the phylum

level, the intestinal flora was restored to normal by increasing the

abundance of Bacteroidetes, Deferribacteres, and Proteobacteria

and decreasing the abundance of Firmicutes. At the genus level,

the gut microbiota was normalized by increasing the abundance

of Mucispirillum, Bacteroides, and Flexispira and decreasing the

abundance of Lactobacillus.
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