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Summary Immunohistochemical, cytochemical and ultrastructural data showing vivid angiogenesis and numerous mast cells (MCs) in the
bone marrow of 24 patients with active multiple myeloma (MM) compared with 34 patients with non-active MM and 22 patients with
monoclonal gammopathy of undetermined significance (MGUS) led us to hypothesize that angiogenesis parallels progression of MM , and
that MCs participate in its induction via angiogenic factors in their secretory granules.
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Table 1 Patient clinical and immunological data

Total no.  80

Multiple myeloma  58

Active  24
Average age (median, range)  64 years (66.5, 42–87)
Men/women  15/9
M-component IgG/IgA/IgD /κ or λ 16/6/1/1
Diagnosis  10

Stage I/II/III; A/Ba 1/2/7; 6/4
Relapseb 8
Progression  6

Non-active  34
Average age (median, range)  66 years (68, 45–80)
Men/women  20/14
M-component IgG/IgA / κ or λ 22/8/4
Response  20
Plateauc 14

Monoclonal gammopathy of
undetermined significance  22

Average age (median, range)  62 years (63.8, 45–86)
Men/women  12/10
M-component IgG/IgA/IgM  18/2/2

aAccording to Durie and Salmon. bRelapse defined as M-component increase
>50% from the lowest value, or clinical and bone marrow relapse when the
M-component did not reflect tumour load and disease activit y. cPlateau
phase defined as post-treatment M-component decrease >50%, and lasting
for at least 6 months without treatment.
Angiogenesis is obligatory in the enhancement of progression
(growth, invasion and metastasis) of solid tumours (Folkman, 1995).
New vessels promote growth by conveying oxygen and nutrients and
removing catabolites, whereas endothelial cells secrete growth factors
for tumour cells (Hamada et al, 1992; Folkman, 1995). Endothelial
cells also secrete a variety of matrix-degrading proteinases which
facilitate invasion (Mignatti and Rifkin, 1993). Lastly, an expanding
endothelial surface increases opportunities for tumour cells to enter
the circulation and metastasize (Aznavoorian et al, 1993).

Tumour cells may not be the only source of angiogenic factors
within a tumour. Host inflammatory cells, including fibroblasts,
macrophages and mast cells (MCs), which are recruited and acti-
vated by tumour cells via paracrine mechanisms act synergically
with these cells by secreting the same or other factors (Polverini,
1996). MCs play a decisive role in the synergism (Norrby and
Whooley, 1993). Also, experimentally induced tumours display
MC accumulation close to the tumour cells before the onset of
angiogenesis (Kessler et al, 1976), and those induced in MC-
deficient mice display both reduced angiogenesis and ability to
metastasize (Starkey et al, 1988; Dethlefsen et al, 1994).

Knowledge on these relations in haematological tumours is
circumstantial. Angiogenesis is correlated with tumour growth (S-
phase fraction) in monoclonal gammopathies (Vacca et al, 1994),
and with progression stages in B-cell non-HodgkinÕs lymphomas
(Ribatti et al, 1998) and in mycosis fungoides (Vacca et al, 1997).

This paper presents the results of an investigation on angiogenesis
and MC counts in the bone marrow of patients with monoclonal
gammopathy of undetermined significance (MGUS) and multiple
myeloma (MM) grouped according to a pathway of progression.
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MATERIALS AND METHODS

Patients

A total of 80 Caucasian patients who fulfilled the South West
Oncology Group diagnostic criteria for MM and MGUS (Durie,
1991) were studied (Table 1). Myeloma patients were defined
as active or non-active, according to clinical performance and
451



452 D Ribatti et al

Table 2 Microvessel area and mast cell counts in the bone marrow of
patients

MGUS Non-active MM Active MM
(n = 22) (n = 34) (n = 24)

Microvessel area (µm2) 1.1 ± 0.5 1.2 ± 0.6 5.7 ± 3*
(0.9; 0.2–2.5) (1.3; 0.2–2.2) (5.2; 1.2–12.8)

Number of mast cells 1.3 ± 1* 1.6 ± 1.2 4.8 ± 2*
(1; 0–3) (1.5; 0–4) (5; 1–8)

Results are expressed as means ± 1 standard deviation (median; range) in
250× microscopic fields (125 µm2). The cellular area in MGUS, non-active
and active MM was 42.1 ± 8.8 µm2, 46.6 ± 11.2 µm2 and 52.4 ± 9.6 µm2.
*P < 0.01 compared with non-active MM and MGUS
M-component level (Durie, 1991). Active patients were those: (a)
at diagnosis, with symptomatic disease and an increase in the M-
component level in the 3 months before analysis; (b) at relapse;
(c) with unresponsive and rapidly progressive disease (leukaemic
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Figure 1 Adjacent sections of bone marrow biopsies stained with factor VIII for m
patients with: (A) and (B) active MM (relapse); (C) and (D) non-active MM (plateau
cells (some are arrowheaded) in the active MM patient. Bar = 10 µm
progression), characterized by severe bone pain, hypercalcaemia
and pancytopenia. Non-active patients were those in: (a) post-
treatment complete/objective response; (b) the off-treatment
plateau phase. MGUS, non-active-MM and active MM constitute
a progression pathway because: (i) the clinical evolution from one
step to the next is typical; (ii) the plasma cell S-phase fraction and
tumour mass rise significantly in the transition from one step to the
next (Durie, 1991).

The study was approved by the local ethics committee and all
patients gave their informed consent.

Measurement of bone marrow angiogenesis

All blood vessels were displayed in 6-µm sections of 4%
paraformaldehyde-fixed paraffin-embedded biopsies by staining
endothelial cells with the anti-factor VIII murine monoclonal anti-
body M616 (IgG1; Dako, Glostrup, Denmark) and a three-layer
biotinÐavidinÐperoxidase system described previously (Vacca et al,
1994). The very few megakaryocytes also stained by factor VIII
© Cancer Research Campaign 1999
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icrovessels (A, C, E) and with toluidine blue for mast cells (B, D, F) from
); and (E) and (F) MGUS. Note the higher density of microvessels and mast
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Figure 2 Mast cell counts in comparison with the microvessel area in the
bone marrow of patients with (A) active and (B) non-active MM and (C) with
MGUS. Significance of the regression analysis was calculated by the
Pearson’s (r) test

Figure 3 Ultrastructural findings of bone marrow biopsies from patients with
active MM. In (A), a mast cell with typical electron-dense round granules and
in (B), at higher magnification, a cytoplasmic granule with a semilunar
aspect (arrow), among other typical round granules, is recognizable. Bar,
(A), 0.08 µm; (B) 0.02 µm
were easily distinguishable by their morphology. Angiogenesis was
measured as microvessel area without knowledge of final diagnosis.
Briefly, six to eight 250× fields covering the whole of each of two
sections per biopsy were examined with a superimposed 484-point
square reticulum (125 µm2) to identify microvessels (capillaries and
small venules) as endothelial cells either single or clustered in nests
or tubes, and clearly separated from one another, and either without
or with a lumen (not exceeding 10 µm). A planimetric point count
method (Elias and Hyde, 1983) with slight modifications for the
© Cancer Research Campaign 1999
computed image analysis (Leica Quantimet 500, Wetzlar, Germany)
was applied to measure the microvessel area within the cellular area
(reticulum area minus connective tissue, fat, bone lamellae, necrosis
and haemorrhage areas) (Vacca et al, 1994). Values are expressed as
means ± 1 standard deviation (s.d.) per group of patients.

MC counts

MCs were highlighted in two sections adjacent to that stained for
microvessels with 0.5% aqueous solution of toluidine blue (Merk,
Darmstadt, Germany). Cells were counted in six to eight 250×
fields inside the reticulum and calculated as means ± 1 s.d. for each
group of patients.

Electron microscopy

Small pieces (approximately 1 mm3) of tissue were fixed in 3%
glutaraldehyde in 0.1 M phosphate-buffered saline (PBS) for 3 h,
British Journal of Cancer (1999) 79(3/4), 451–455
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washed in the same buffer for 12 h, post-fixed in 1% osmium
tetroxide, dehydrated in graded ethanols and embedded in Epon
812. Ultrathin sections were cut with a diamond knife on a LKB V
ultratome, stained with uranyl acetate followed by lead citrate, and
examined in a 9A Zeiss electron microscope.

Statistics

The significance of changes in the microvessel area and MC counts
in the groups was determined with the parametric (FisherÕs test) and
non-parametric (KruskalÐWallis test) analysis of variance, followed
by Duncan (t), Bonferroni (t), and Wilcoxon tests to compare groups
two by two. Correlations between microvessel area and MC counts
in the groups were assessed with the PearsonÕs (r) coefficient and
simple regression analysis. Data were computed with the Statistical
Analysis Software (SAS, SAS Institute, Cary, NC, USA).

RESULTS

Table 2 shows the microvessel area normalized to the total cellular
area and the MC counts on bone marrow adjacent sections of
patients with active MM, non-active MM and MGUS. The area
was significantly larger in patients with active MM than in those
with non-active MM and with MGUS, between which variations
were negligible. In parallel, the MC counts were significantly
higher in active MM than in the other groups. The differences in
microvessels and MC are also shown in Figure 1. The within-
group comparison showed that both parameters were always
significantly correlated (Figure 2). At the ultrastructural level,
typical MCs with cytoplasmic matrix filled by numerous electron
dense secretory granules (Figure 3A), and MCs with semilunar
aspect of granules (Figure 3B) were recognizable. The latter imply
slow, chronic release of mediators in response to a moderate,
progressive, degranulatory stimulus (Kops et al, 1984; Ribatti
et al, 1988).

DISCUSSION

In the current study, we showed that bone marrow angiogenesis
(evaluated as microvessel area) and MC counts were highly corre-
lated in patients with non-active and active MM and in those with
MGUS, and that both parameters increased simultaneously in
active MM. As the progression from in situ to invasive and
metastatic solid tumours is accompained and facilitated by the
switch from the prevascular to the vascular phase (Hanahan and
Folkman, 1996), our findings suggest that the active MM represent
the Ôvascular phaseÕ of plasma cell tumours, whereas the non-
active MM and MGUS represent the Ôprevascular phaseÕ. Bone
marrow angiogenesis may, therefore, favour the progression from
MGUS or non-active MM to active MM. As in solid tumours,
where angiogenesis could be stimulated either directly or indi-
rectly, after the tumour cells have recruited inflammatory cells
stimulating them to secrete their own angiogenic factors (Hanahan
and Folkman, 1996), the switch in MGUS and non-active MM
may be induced by tumour plasma cells via secretion of angio-
genic factors, namely interleukin 1 (IL-1) (Cozzolino et al, 1989),
IL-6 (Schwab et al, 1991), tumour necrosis factor alpha (TNF-α)
(Lichtenstein et al, 1989), macrophage colony-stimulating factor
(M-CSF) (Nakamura et al, 1989), transforming growth factor beta
(TGF-β) (Klein, 1995), and by inflammatory cells, including MCs,
via secretion of their angiogenic factors.
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MCs are strikingly associated with angiogenesis, as found in
chronic inflammatory diseases, namely rheumatoid arthritis and
psoriasis, and in tumours, namely haemangiomas, carcinomas and
lymphomas (Meininger and Zetter, 1992; Norrby and Woolley,
1993; Qu et al, 1995; Ribatti et al, 1998). In tumours, MCs are
recruited and activated via several factors secreted by tumour
cells: the c-kit receptor, or stem cells factor (Poole and Zetter,
1983; Norrby and Wooley, 1993), as well as the basic fibroblast
growth factor (FGF-2), vascular endothelial growth factor (VEGF-
A) and platelet-derived endothelial cell growth factor (Gruber et
al, 1995). MCs contain, in secretory granules, heparin that in vitro
stimulates endothelial cell proliferation and migration (Thorton
et al, 1983; Alessandri et al, 1984), whereas in vivo it has been
shown to have variable effects on angiogenesis; it may, thus, stim-
ulate (Ribatti et al, 1987; Norrby, 1993), inhibit (Jakobson and
Hahnenberger, 1991; Norrby, 1993; Wilks et al, 1991) or have no
effect (Castellot et al, 1982; Taylor and Folkman, 1982).
Histamine and tryptase, other MC-derived factors, also stimulate
angiogenesis (Sorbo et al, 1994; Blair et al, 1997). In addition,
MCs produce a variety of multifunctional cytokines and growth
factors, such as IL-6 and IL-8 (Motro et al, 1990; Norrby, 1996),
TNF-α (Beil et al, 1994), granulocyteÐmacrophage colony-stimu-
lating factor (GM-CSF) (Bussolino et al, 1991), TGF-β (Roberts et
al, 1986), FGF-2 (Qu et al, 1995) and VEGF-A (Grutzkan et al,
1996), which may contribute to angiogenesis in active MM.

As concerns the ultrastructural features of MCs, the semilunar,
or partial degranulating, aspect of their secretory granules, unlike
IgE-mediated massive degranulation which occurs during the
immediate hypersensitivity reactions, is typical of a slow degranu-
lation, taking place in delayed hypersensitivity reactions and in
chronic inflammatory processes (Kops et al, 1984; Ribatti et al,
1988). In tumours, such as MM, the semilunar aspect of MC secre-
tory granules might correspond to a slow but progressive release
of angiogenic factors, in consequence of a chronic and progressive
stimulation of MC degranulation.

Tentatively, our data suggest that an increasing number of MCs
may be recruited and activated by more malignant plasma cells in
active MM, and that angiogenesis in this disease phase may be
mediated, at least in part, by angiogenic factors contained in their
secretory granules.
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