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Protein–ligand binding
Proteins participate in various essential processes in vivo via interactions with other molecules.
Identifying the residues participating in these interactions not only provides biological insights for pro-
tein function studies but also has great significance for drug discoveries. Therefore, predicting protein–
ligand binding sites has long been under intense research in the fields of bioinformatics and computer
aided drug discovery. In this review, we first introduce the research background of predicting protein–li-
gand binding sites and then classify the methods into four categories, namely, 3D structure-based, tem-
plate similarity-based, traditional machine learning-based and deep learning-based methods. We
describe representative algorithms in each category and elaborate on machine learning and deep
learning-based prediction methods in more detail. Finally, we discuss the trends and challenges of the
current research such as molecular dynamics simulation based cryptic binding sites prediction, and high-
light prospective directions for the near future.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Background and significance of protein ligand binding site
research

Proteins are some of the most important elements for life. They
are not only critical cellular components, but they also participate
in various critical activities and processes in the life cycle of organ-
isms, which can achieve or help achieve important biological func-
tions. Proteins do not work independently in living organisms.
They need to bind to other biomolecules or ions (such as metal
ions, nucleic acids, inorganic or organic small molecules) to create
specific interactions to achieve corresponding functions [1]. These
molecules and ions are called ligands (Fig. 1). Particularly, inter-
molecular interactions between proteins and ligands, such as small
compounds, occur via amino acid residues at specific positions in
the protein, usually located in pocket-like regions. These specific
key amino acid residues are called ligand binding sites (LBSs). LBSs
have attracted much attention in the fields of molecular docking,
drug-target interactions, compound design, ligand affinity predic-
tion, and even molecular dynamics [2–6]. Thus, identification of
LBSs not only helps to explore the mechanism of intermolecular
interactions but also effectively explains the pathogenesis of dis-
eases, which provides insights for drug discovery and design [7].

Compared with highly accurate but time-consuming biological
experiments [8], the advantage of computational methods is that
LBS predictions can be performed based on sequence and structure
information without relying on annotating the biological function
of protein binding residues [9]. In addition, combining multiple
computational methods, or combining experimental methods with
computational methods can improve both accuracy and efficiency
of LBS prediction, provide valuable assistance for drug design and
drug discovery researches [10–13]. The emergence of Critical
Assessment of Protein Structure Prediction (CASP) [14], Continuous
Automated Model EvaluatiOn (CAMEO) projects [15], Critical
Assessment of Function Annotation (CAFA) [16], PDB database
[17,18], and BioLip database [19] etc. have promoted the develop-
ment of this field and provided some standard evaluation indica-
tors and relatively unified concepts and definitions. According to
the definition given in BioLip, if the distance between any one
of the atoms in the ligand molecule and at least one of the atoms
in the amino acid residue of the protein does not exceed the
sum of the radii of these two atoms plus 0.5 Å, the amino acid resi-
due is regarded as a ligand binding residue. Since the prediction of
ligand binding residues is a typical dichotomy problem from an
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Fig. 1. 3D schematic of a protein structure and its binding ligands generated from the PDB website. The protein shown above is the crystal structure of human
deoxyhaemoglobin at 1.74 Å resolution, published on PDB (Access Code: 4HHB). The amplified ligand is [HEM (PROTOPORPHYRIN IX CONTAINING FE)] 142: C with its bonds
(Hydrogen, Halogen, et al).
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algorithmic point of view, the evaluation index for the prediction
method in this field is very similar to the index for evaluating
the accuracy of the dichotomy algorithm. The common LBS predic-
tion indicators are sensitivity (Sen), accuracy (Acc), specificity (Spe),
precision (Pre), and Mattheu’s correlation coefficients (MCC) [20],
which are defined as below:

Sen ¼ TP
TPþFN ð1Þ
Acc ¼ TPþTN
TPþFNþTNþFP ð2Þ
Spe ¼ TN
TNþFP ð3Þ
Pre ¼ TP
TPþFP ð4Þ
MCC ¼ TP�TNð Þ� FP�FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ� TPþFNð Þ� TNþFPð Þ� TNþFNð Þ

p ð5Þ

where TP TruePositiveð Þ indicates the number of samples to which
the binding site is correctly predicted, TNðTrueNegativeÞ indicates
the number of samples in which the false binding site is correctly
predicted, FPðFalsePositiveÞ indicates the number of samples in
which the binding site was incorrectly predicted, and
FNðFalseNegativeÞ indicates the number of samples in which the
false binding site was incorrectly predicted [21–25].

In the last twenty years, under the promotion of CASP and other
research goals, researchers have made great progress in the field of
LBS predictions. A series of different prediction methods based on
sequence information, structural templates, and three-dimensional
structures have been developed. These methods employ various
computational methods, including geometry or energy feature
searching, sequence or structure similarity comparison, as well as
machine learning related algorithms [26–31]. Recently, deep
learning-based methods have stood out from machine learning
methods and have drawnmuch attention in computational biology
[32–34]. Some state-of-the-art LBS prediction methods that
employ machine learning and deep learning algorithms show sig-
nificant advances over traditional methods [35,36]. In this paper,
we systematically introduce the background, principles, algo-
rithms and performance of popular LBS prediction methods by
clustering prediction methods into four groups according to their
working principles. Particularly, this paper highlights the most
recent progress in deep learning-based methods.
2. 3D structure-based LBS prediction methods

Most small ligand binding occurs in hollows or cavities on pro-
tein surfaces because high affinity can only be gained by suffi-
ciently large interfaces [37]. This feature has been observed in
spatial structures from many detailed studies of protein–ligand
complexes in PDB [38]. Therefore, attempting to locate LBSs by
searching for special geometry or energy features in protein struc-
tures has long been one of the most popular methods in this area.
This method generally has two different implementations. One is
to perform spatial geometric measurements on the protein struc-
ture to find hollows or cavities on the surface of the protein. The
second is to place some probes on the surface of the protein and
then to find the cavities by estimating the energy potentials
between the probe and the cavities. Table 1 lists some published
3D structure-based LBS prediction methods.

The basic idea of LBS prediction methods based on spatial
geometry measurements is to locate large or even the largest hol-
low or cavity on the protein structure by calculating and simulat-
ing some certain geometric measures from the protein structure
information. Researchers have come up with many different and
creative ways to accomplish this over the past few decades.

The pioneer works of spatial geometry measurement were pub-
lished in the 1990s [27,40]. The idea of these methods is to place a
sphere at the gap between any two protein atoms according to the
three-dimensional coordinate information in the protein database
to detect ligand binding residuals. In SURFNET [40], for example,
the size of the sphere is adjusted to be tangent to the surface of the
atom. If the sphere collides with other neighboring atoms,
the sphere volume is reduced to ensure that no conflicts occur.
The above process is repeated until all pairs of protein atoms have
been considered. Finally, a set of spheres filled with gaps between
protein atoms is found, thereby allowing the localization of large
hollows or cavities in the protein molecule, which are regarded
as possible ligand binding residues.

Later, in 1997, Manfred Hendlich et al. published LIGSITE [26],
which sets up some regular 3D meshes to cover the target protein.
Starting from each grid point, they scan a total of 7 directions,
including the x, y, and z axes and the 4 grid diagonals, and then
score the grid points. If both ends of the scan line in a certain direc-
tion are included in the protein area, the point may be in the
pocket, and the grid point is added by one point. After all grid
points have been scanned in all directions, the candidate ligand
binding residues are determined based on the final score of each



Table 1
Published 3D structure-based LBS prediction methods.

Method Type Feature Year

A computational procedure (with no
specific name) [39]

Probe Energy-based Contour surfaces at appropriate energy levels are calculated for each probe and displayed with
the protein structure

1985

POCKET [27] Spatial Geometry
Measurement

Place spheres between atoms and surfaces of pockets are modeled using marching cubes
algorithm

1992

SURFNET [40] Spatial Geometry
Measurement

Place spheres at the gap between any two protein atoms 1995

LIGSITE [26] Spatial Geometry
Measurement

Set up some regular 3D meshes to cover the target protein 1997

CAST [41] Spatial Geometry
Measurement

Calculate by using alpha shape and discrete flow theory 1998

CASTp [42,43] Spatial Geometry
Measurement

Use alpha shape and the pocket algorithm [44] developed in computational geometry 2003

QSiteFinder [45] Probe Energy-based Use the interaction energy between the protein and a simple van der Waals probe 2005
LIGSITECSC [46] Spatial Geometry

Measurement
An extension and implementation of the LIGSITE algorithm by using the Connolly surface 2006

VISCANA [47] Probe Energy-based A total energy of the molecule is evaluated by summation of fragment energies and
interfragment interaction energies

2006

Fpocket [48] Spatial Geometry
Measurement

Voronoi tessellation and alpha spheres are used to detect pockets 2009

SITEHOUND [28,49] Probe Energy-based The carbon probe and phosphate probe used to detect interaction force between the probe and
the protein

2009

MSPocket [50] Spatial Geometry
Measurement

Identify surface pocket regions according to the normal vector directions at the vertices on the
surface

2010

FTSite [51] Probe Energy-based Use 16 different probes on these grids to detect free energy 2011
SiteComp [52] Probe Energy-based Discovery of subsites with different interaction properties and for fast calculations of residue

contribution to binding sites
2012

LISE [53] Spatial Geometry
Measurement

Compute a score by counting geometric motifs extracted from substructures of interaction
networks connecting protein and ligand atoms

2013

Patch-Surfer2. 0 [54] Spatial Geometry
Measurement

Represent and compare pockets at the level of small local surface patches that characterize
physicochemical properties of the local regions

2014

CurPocket [55] Spatial Geometry
Measurement

Compute the curvature distribution of protein surface and identify the clusters of concave
regions

2019

J. Zhao et al. / Computational and Structural Biotechnology Journal 18 (2020) 417–426 419
grid point. The main advantage of the LIGSITE method is its run-
ning speed, as its typical search time is between 5 and 20 s for pro-
teins with medium sizes, so it is suitable for detecting LBSs for a
large number of proteins.

The principle of the probe energy-based LBS prediction method
is to first place a specific probe molecule on the protein to be tested
and to measure the interaction energy signals between the probe
molecule and the surrounding residues, and then to find pockets
in the protein structure from the distribution of energy signal
intensities. The probe energy-based prediction method usually
employs different probe parameters or multiple probes at the same
time to achieve better performance.

SITEHOUND is a classical probe energy-based LBS prediction
method [49,28]. The method uses a box with a grid that covers
the entire target protein. A carbon probe and a phosphate probe
are released to the grid points and the interaction forces between
the molecules of each grid point probe and the protein are calcu-
lated. The grid points with higher interaction energies are
extracted and further clustered. After mapping the grid points on
to the residues, the potential LBSs are determined according to
the clustered residues. A dataset that contains 77 experimentally
determined protein structures with known protein–ligand com-
plexes was used to test SITEHOUND, and the result showed that
in 95% of the cases, the correct binding site was located in the
top three clusters.

In 2011, Chi-Ho Ngan et al. released another probe energy-
based LBS prediction method, FTSite [51].The basic idea for this
method is to place a dense grid around the protein, spread 16 dif-
ferent small molecule probes on this grids, and use the objective
free energy functions to determine the appropriate position. The
probes are clustered and ranked according to the average free
energy value. The overlapping sites clustered by different probes
are ranked by the interactions between the probe and the protein.
Amino acid residues that interact with the top cluster are regarded
as possible ligand binding residues. FTSite empoyed LIGSITECSC set
[46] and QSiteFinder set [45] to benchmark the method which
achieved the accuracy rates of 94% and 97%, respectively.

3D structure-based LBS prediction methods have been widely
used for years. However, these methods strongly depend on the
state of the given protein 3D structure, which means that LBSs
may not be discovered if the binding pocket does not exist in the
apo state but is induced by protein–ligand interaction in the holo
state. In many scenarios which lack the protein structures in holo
states, those methods may not be valid.
3. Template similarity-based LBS prediction methods

Protein 3D structures provide geometry and energy clues for
LBSs that allow us to make predictions using a single structure of
a protein. If considering that proteins are not an independent
molecule, but are evolved from others, structural or functional
information can be transferred between homologous or struc-
turally similar proteins. Hence, an LBS can be predicted using the
known proteins as templates to obtain similar characteristics in
the query protein. Template similarity-based LBS prediction meth-
ods mainly include two types: structure template-based methods
and sequence template-based methods. Table 2 lists some tem-
plate similarity-based LBS prediction methods that have been pub-
lished in the last twenty years.

The basic idea of the structure template-based LBS prediction
method is to search for the most similar proteins in databases that
have been labeled with LBSs using a structure alignment algorithm
and then to transfer the known LBS from the most similar proteins
onto the query protein. This method takes advantage of the
increasingly accumulated protein structure databases. It could be
highly reliable if proteins are of significant structural similarity.



Table 2
Published template similarity-based LBS prediction methods.

Method Type Feature Year

ConSurf [56] Sequence Template-based Phylogenetic relationships among the sequences and the similarity between the
amino acids are taken into account

2003

A Sequence template-based approach with
no specific name [57]

Sequence Template-based An information-theoretic approach for estimating sequence conservation based
on Jensen–Shannon divergence

2007

FINDSITE [58] Structure Template-based PROSPECTOR 3 threading algorithm and TMalign tool are used 2008
A two-stage template-based LBS prediction

method [59]
Structure Template-based Construct protein’s 3D model and use structural clustering of ligand-containing

templates on the predicted 3D model
2009

3DLigandSite [29] Structure Template-based MAMMOTH is used 2010
FunFOLD [60] Structure Template-based Use an automatic approach for cluster identification and residue selection 2011
COFACTOR [61] Structure and Sequence

Template-based
Use global-to-local sequence and structural comparison algorithm 2012

webPDBinder [62] Structure Template-based Search a protein structure against a library of known binding sites and a
collection of control nonbinding pockets.

2013

S-SITE [31] Sequence Template-based Needleman–Wunsch algorithms are used 2013
TM-SITE [31] Structure and Sequence

Template-based
Mix Structure Template-based and Sequence Template-based method 2013
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In 2008, a popular template-based ligand binding site predic-
tion method, FINDSITE, was published [58]. For a given target pro-
tein sequence, FINDSITE uses the PROSPECTOR 3 threading
algorithm [63,64] to identify a structural template that binds to
the ligand from the PDB database and overlays the template with
the target protein using TMalign [65]. Then, the LBSs that bound
to the structural template are clustered and ranked as predictions.
FINDSITE achieved a 67.3% success rate with 75.5% ranking accu-
racy on protein models that have a less than 35% sequence identity
to the closest template structure. Although the prediction accuracy
is comparable to some 3D structure-based LBS prediction methods,
it can make some very unique LBS discoveries.

Later, in 2010, Mark N. Wass et al. developed the 3DLigandSite
prediction method [29]. 3DLigandSite first used MAMMOTH [66] to
score the similarity between a target protein and structural tem-
plates, and the 25 template proteins with the highest similarity
to the target protein structure and their corresponding ligand
information were selected as templates. Similar to FINDSITE, these
templates are overlaid with the target protein, and these overlaid
ligands are clustered using the Single linkage clustering algorithm.
The cluster with the most template ligands was chosen as the basis
for the prediction of the LBS. The performance of 3DLigandSite has
been tested on CASP8 [67] targets with a set of 617 proteins from
the FINDSITE test set and achieved an MCC of 0.64, a coverage of
71%, and an accuracy of 60%.

Up to now (December 21, 2019), 158787 protein structures
have been published in the PDB [38]. However, for a large number
of proteins, it is still impossible to detect their LBS using the above
methods. Meanwhile, with the continuous development of
sequencing technology, a huge number of protein sequences are
published every year. Therefore, sequence template-based LBS pre-
diction methods have received extensive attention. The basic idea
of sequence template-based LBS prediction methods is similar to
the structure template-based LBS prediction methods, that is, the
alignment tool is used to align the sequence of the protein to be
tested with the sequence of the known protein, and then, the
template is selected according to the similarity. Finally, the
ligand-binding residues of the protein to be tested are presumed
by referring the known ligand-binding residues on the aligned
regions.

In 2013, Yang Zhang’s team published a ligand binding site
prediction method called S-SITE [31], which employs the Needle-
man–Wunsch algorithm [68] to align the query protein to each
of the proteins in the BioLip [19] database and screens similar
sequences from the query protein according to the alignment
result. The residues of the query protein are aligned with the
template protein residues which were annotated as binding resi-
dues. Consensus voting is used to score the alignment results of
the templates. Residues that received more than 25% of the votes
were considered an LBS. S-SITE achieved both an MCC and Pre of
0.45 on the test datasets.

Hybrid methods have been proposed to further improve LBS
predictions. A representative algorithm, TM-SITE [31], mixes the
structure template-based and the sequence information-based
prediction methods. The TMalign algorithm is first used to align
the protein to be tested with the known template proteins. The
evolutionary information of the sequence and the spatial distance
information of the structure are combined to form a comprehen-
sive scoring function to score the similarity of each template pro-
tein, and the qualified template proteins are screened from the
BioLip database according to the scoring results. Finally, the
ligand-binding residues of the protein being tested are predicted
based on these eligible templates. TM-SITE achieved an MCC of
0.51 and Pre of 0.59 on the test datasets.
4. Traditional machine learning-based LBS prediction methods

The continuous development of computer technology has pro-
moted the application of artificial intelligence-related theories
and algorithms to other fields. In the study of protein LBS predic-
tions, 3D structure-based and template similarity-based prediction
methods have shown complementary advantages to LBS predic-
tions. How to integrate that information and further improve the
prediction accuracy is one of the urgent questions of this area.
Many researchers try to use machine learning algorithms not only
for carrying out LBS predictions but also for the binding affinity
research, which has caused significant breakthroughs. Table 3 lists
some traditional machine learning-based LBS prediction methods
and a few related binding affinity research methods published in
recent years. However, to focus the topic, we only detail a few rep-
resentative LBS prediction methods listed above. Binding affinity
related methods are elaborated on in the discussion.

As mentioned earlier, predicting protein ligand binding sites is a
typical dichotomous problem from a mathematical point of view,
and there is a state of sample imbalance. Among the many classic
machine learning algorithms that can implement the dichotomy,
the naive Bayesian algorithm needs to calculate the prior probabil-
ity and does not apply to data with a correlation between samples.
Although the logistic regression is simple to implement, its accu-
racy is poor because it tends to under-fit characteristics. Besides,
although the KNN algorithm is fast and has low training costs,



Table 3
Traditional machine learning-based LBS prediction and binding affinity research
methods.

Method Machine Learning Algorithm Year

Knowledge-based QSAR approach
[69]

Kernel-Partial Least Squares (K-
PLS) [70]

2004

Multi-RELIEF [71] RELIEF algorithm [72] 2007
SFCscore [73] multiple linear regression

partial least squares analysis
2008

ATPint [74] Support Vector Machine 2009
ConCavity [75] K-Means algorithm 2009
MetaPocket [76] hierarchical clustering

algorithm [77]
2009

RF-Score [4] The Random Forest algorithm 2010
MetaDBSite [78] Support Vector Machine 2011
NsitePred [79] Support Vector Machine 2011
NNSCORE [80,81] Artificial Neural Network

(shallow neural network [82])
2011

L1pred [30] L1-Logreg Regression classifier 2012
TargetS [83] Support Vector Machine 2013
eFindSite [84] Support Vector Machine 2013
VitaPred [85] Support Vector Machine 2013
COACH [31] Support Vector Machine 2013
LigandRFs [86] The Random Forest algorithm 2014
OSML [87] Support Vector Machine 2015
LigandDSES [88] The Random Forest algorithm 2015
PRANK [89] The Random Forest algorithm 2015
A method for protein-ligand

binding affinity prediction [90]
Gradient Boosting Regressor
[91]

2018

SAnDReS [92] Regression Analysis 2016
P2Rank [93] The Random Forest algorithm 2018
COACH-D [94] Support Vector Machine 2018
Taba [95] Regression Analysis 2019
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the classification effect is poor under the sample imbalance situa-
tion. Therefore, a support vector machine (SVM) stands out from
many traditional machine learning algorithms by virtue of its high
classification accuracy, strong generalization ability, and excellent
classification ability for high-dimensional small sample data. It has
become the most popular machine learning method in the field of
LBS predictions. As demonstrated in Fig. 2, SVM is a supervised
learning algorithm that classifies data by solving hyperplanes that
can binarily classify data in space. In the past few years, SVM-based
Fig. 2. A simple schematic of SVM A hyperplane divides the points into two
categories.
prediction methods have been published. Three representative
methods are introduced below.

In 2011, Jingna Si et al. developed the MetaDBSite server [78],
relying on sequence information to predict protein-DNA binding
residues. MetaDBSite uses SVM to integrate the results of the six
predictive tools: DISIS [96], DNABindR [97], BindN [98], BindN-rf
[99], DP-Bind [100] and DBS-PRED [101]. The final output is supe-
rior to any single prediction method. The prediction results
returned by DISIS, DNABindR, BindN, and BindN-rf are the main
input parameters of SVM, while DP-Bind and DBS-PRED provide
smaller score effects as auxiliary parameters. MetaDBSite achieved
ACC, Spe, Sen of 0.77 and MCC of 0.32 on a test set, which is better
than any of the single methods it combined.

In 2011, Ke Chen et al. published the NsitePred algorithm [79],
which predicted the five most common nucleotide residues in the
PDB database. The main steps of the NsitePred algorithm are to
first extract the secondary structure, relative solvent accessibility
and dihedral angles, determine the PSSM profile and other infor-
mation from a given protein sequence to be tested, and use sliding
window technology to process the information to generate an
eigenvector describing the residue. These eigenvectors are used
as inputs to the SVM to obtain a classification model. The model
is used to predict the protein, and the SVM-based prediction
results are combined with the BLAST [102] results as the final out-
put. In the benchmarks, NsitePred showed better performance over
ATPint [74] and GTPbinder [103].

In 2013, Yang Zhang’s team published the SVM-based predic-
tion method COACH [31]. It combines the structure template-
based and sequence information-based prediction methods S-
SITE and TM_SITE with the prediction results of the three methods
of the new COFACTOR [104], FINDSITE [58], and ConCavity [75] as
eigenvectors to the SVM for training and to form a classification
model, and finally uses this classification model to output the pre-
diction results. The benchmark results show that COACH outper-
forms other classical prediction algorithms (MCC ¼ 0:54 and
Pre ¼ 0:59), making it the most popular protein LBS prediction
method over the past few years.

5. Deep learning-based LBS prediction methods

In 2006, deep learning led the third wave of artificial intelli-
gence [105], which far surpassed traditional machine learning in
text classification, speech recognition, semantic modeling, image
recognition, image segmentation and computer vision [106–109].
In some areas, it has even surpassed the human brain [110] and
has become the most popular research branch in the field of
machine learning. Therefore, an increasing number of researchers
have seen the possibility of using deep learning techniques to solve
complex problems in the fields of bioinformatics and medical
research, such as small-compound-drug discovery, activity predic-
tion, chemical structure design, bioimaging, and medical imaging-
based diagnosis [35,90,111–114].

Deep learning is a complex machine learning technique that
simulates the learning mechanism of the human brain by building
and simulating the neural networks in the human brain and uses
this mechanism to interpret data. Deep learning is mainly imple-
mented in three ways: convolutional neural networks (CNNs),
deep belief networks (DBNs) and self-encoding neural networks.
Among them, CNN is the most popular approach used in fields
other than computer science since it is relatively simple to use
and generalize. CNN is a kind of feedforward neural network. Sim-
ilar to traditional artificial neural networks (ANNs) [115], CNN is
also composed of multiple neurons and each of them does a part
of the calculation base on a part of the input and give a part of
the output, as below:



Table 4
Deep learning-based LBS prediction and binding affinity research methods.

Method Main Goal Network
Type

Year

A deep learning framework
for modeling structural
features of RNA-binding
protein targets [118]

Binding references
modeling of RNA-
binding proteins

DBN 2015

DeepBind [119] Sequence specificities
prediction of DNA- and
RNA-binding proteins

CNN 2015

DeepDTA [3] Drug-target interaction
identification

CNN 2018

KDEEP [120] Protein-ligand binding
affinity prediction

CNN 2018

DEEPSite [36] LBS Prediction CNN 2017
DeepCSeqSite [121] LBS Prediction CNN 2019
DeepConv-DTI [122] Drug-target interaction

identification
CNN 2019

DeepDrug3D [35] Binding pockets
characterization and
classification

CNN 2019

Onionnet [123] Protein-ligand binding
affinity prediction

CNN 2019

Fig. 4. A simple demonstration of deep belief network DBNs are constructed by
combining multiple RBMs. Training of DBNs is performed layer by layer. The hidden
layer is first inferred from the data vector, and this hidden layer is used as the input
data vector of the next layer.
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f
P

wixi þ bð Þ ð6Þ

where x is the input, w is a set of weights, and b is the bias. f ðxÞ is
the activation function, which makes the neural network approxi-
mate the nonlinear function so that the network can be used in a
nonlinear model. As described in Fig. 3, CNNs are mainly composed
of three layers: the convolution layer, the pooling layer and the fully
connected layer. The convolutional layer is used to extract different
local features of the input; it consists of several convolutional units,
and the parameters of each convolutional unit are optimized by
backpropagation [116]. The pooling layer cuts the high dimensional
local features obtained by convolutional layers into several regions
and calculates the maximum value or the average value of them so
that new low dimensional features can be generated. Finally, the
fully connected layer combines all the local features into global fea-
tures and calculates the score for each final class.

DBN is a highly scalable deep neural network, it consists of mul-
tiple layers of Restricted Boltzmann Machine (RBM) [117], which is
used to learn a probability distribution of the inputs. The DBN
training process can be divided into twomain steps: First, unsuper-
vised training is performed for each layer of RBM independently.
Then, a supervised classifier is set after the last layer of RBM to
receive the output features of RBMs and generate classification
results. The structure of DBNS is shown in Fig. 4.

In the past two years, some protein LBS prediction methods
using deep learning techniques have been reported. Developing
new deep learning-based prediction method has become a new
hotspot in LBS prediction. Table 4 lists some deep learning-based
LBS prediction methods and related studies. Some representative
LBS prediction methods or LBS highly related methods are intro-
duced below.

In 2017, J Jiménez et al. developed the DEEPSite algorithm [36]
for predicting binding sites for protein ligands. The basic idea of the
algorithm is to treat the protein structure as a three-dimensional
image and discretize it into a mesh with certain size voxels. A ser-
ies of atomic attributes, such as hydrophobicity and hydrogen
bond acceptors or donors, are used as features to calculate the
occupancy of each attribute on each voxel. Finally, subgrids of a
certain size are sampled, and the features of the subgrid are used
as inputs to the convolutional neural network. The probability of
the site being labeled a binding site is output. DEEPSite was com-
pared with Fpocket and Concavity on the same test dataset, and the
result indicated that DEEPSits outperforms other methods.

In 2019, Yifeng Cui et al. developed the DeepCSeqSite algorithm
[121], which used the seven characteristics of the position-specific
score matrix, relative solvent accessibility, secondary structure, the
dihedral angle, conservation scores, residue type and position
embeddings to construct the eigenspace. Each residue in the amino
Fig. 3. A simple model of a convolutional neural network Hidden Layers are used to generate the classification result (multiple convolutional layers and pooling layers can be
set in a CNN).
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acid sequence is embedded in the eigenspace such that the amino
acid sequence is converted to a feature map, and then the map is
used as an input to the convolutional neural network. The output
of the network is the predicted result of protein ligand binding
residues. Instead of using any template, including the three-
dimensional structure, DeepCSeqSite directly predicts the binding
sites of protein ligands. Its performance on test datasets is signifi-
cantly better than COACH, the most accurate SVM-based predic-
tion method mentioned above.

Recently, Ingoo Lee et al. reported the DeepConv-DTI prediction
model [122] to identify interactions between drugs and targets.
The idea of the model is to input the entire protein sequence into
a convolutional neural network, convolve the various amino acid
subsequences of the protein to capture how the protein matches
the local residue pattern participating in the DTI, and use that as
the input to the higher layer network to build the model and
extract features. The new features will connect the model to the
drug signature and predict the likelihood of DTI through a higher
fully connected layer in the network. By further optimizing the
model, it achieves better predictions of performance. Through the
model, new features will be linked to drug characteristics and pre-
dict the likelihood of DTI through a higher fully connected layer in
the network. Finally, the model is further optimized to achieve bet-
ter predictive performance. As a result, the local features detected
by DeepConv-DTI show better performance than other protein
descriptors, such as CTD and SW scores according to the authors.

In 2019, Limeng Pu et al. presented DeepDrug3D [35], a new
deep learning-based binding pockets characterization and classifi-
cation algorithm, which can classify nucleotide- and heme-binding
sites by learning the patterns of specific molecular interactions
between ligands and their protein targets. First, the ligand–protein
complexes are converted into 3D pocket grids, and the physico-
chemical properties of binding pockets are considered and charac-
terized. These 3D pocket grids are then voxelized into a 3D image
with 14 channels. These voxels are used as inputs for a designed
convolutional neural network to get the classification result.
DeepDrug3D was tested on the PDB dataset of nucleotide- and
heme-binding sites and achieved an accuracy of 95%, which is
much better than volume- and shape-based approaches.
6. Discussion

From the long history of LBS prediction methods, we have seen
that the research focus of LBS predictions has shifted from analyz-
ing simple 3D structure features and sequence/structure similari-
ties to the integration of multiple features. Machine learning
algorithms [21,22,24,124–130] have played a critical role in this
process. Particularly, the application of deep learning algorithms
has begun to show great value in LBS predictions. Furthermore,
information about binding affinity and crystal structures can be
used as inputs to machine learning or deep learning algorithms
to help complete the LBS prediction, which makes LBS predictions
more closely integrated with areas such as affinity prediction and
molecular docking [23,131].

With the continuous publication of more excellent machine
learning and deep learning-based LBS prediction methods, other
biological studies using these methods, such as protein structure
and function prediction, protein–protein interaction site
prediction, and drug design, have also made new breakthroughs
[132–137]. For instance, in 2015, COACH was used in drug design
studies targeting MARK4 regulatory enzymes related to cancer,
type 2 diabetes and many other diseases [138]. In 2019, DeepDTA
was used to research protein kinases to help develop a predictive
model which can estimate kinase-ligand pKi values [139].
New solutions often bring new challenges and problems while
solving problems. Although deep learning-based LBS prediction
methods have been used and applied in the past 2 years, there
are still some problems and deficiencies to this type of solution.
A key problem is that deep learning algorithms often require
extremely high training costs (expensive computing resources,
huge training sets, etc.) compared with traditional machine learn-
ing algorithms [140,141].

Studies have also been inconclusive about whether deep learn-
ing approaches are always superior to traditional machine learning
algorithms in all cases. In fact, traditional machine learning algo-
rithms and even some 3D structure-based binding affinity predic-
tion methods are constantly being optimized. For instance, some
methods can predict binding affinity based on the known crystal
structure of a specific ligand or a protein can accurately identify
the key LBS [131,142–144]. Additionally, the performance of deep
learning algorithms is similar to traditional machine learning algo-
rithms in some cases with low dimensional or small amounts of
data. Thus, how to take advantage of deep learning to obtain the
best solution for LBS predictions in the near future is still an open
question.

In addition, researchers also think that the series of LBS predic-
tion methods mentioned in the article cannot completely solve the
problem of LBS detection since there exist some cryptic sites that
are not evident in the unbound protein but form upon ligand bind-
ing [145]. Conformational change is critical to reveal these cryptic
sites. Thus, detecting cryptic binding sites has received lots of
attention in the past few years, and molecular dynamics simula-
tions have become one of the most popular methods for conforma-
tional sampling in this field [2,5,146–148]. For instance, Bowman
and Geissler built Markov state models from molecular dynamics
(MD) simulations that can identify prospective cryptic sites
[149], and a series of studies have been carried out by Gorfe’s team
to find hidden binding sites in Ras proteins using probe-based
molecular dynamics simulations [150–153]. We believe that in
the future, the advanced machine learning or deep learning
approaches together with protein conformational sampling tech-
nique is also likely to become a new development direction in
the field of LBS prediction.
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