Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,4-Dichloro-N-(1,3-thiazol-2-yl)benzamide

Sohail Saeed, ${ }^{\text {a }}{ }^{\text {* Naghmana Rashid }}{ }^{\text {a }}$ and Wing-Tak Wong ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad, Pakistan, and ${ }^{\text {b }}$ Department of Chemistry, University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR, People's Republic of China
Correspondence e-mail: Sohail262001@yahoo.com

Received 5 October 2010; accepted 28 October 2010
Key indicators: single-crystal X-ray study; $T=304 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.029 ; w R$ factor $=0.080 ;$ data-to-parameter ratio $=13.4$.

In the molecular structure of the title compound, $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS}$, the dihedral angle between the benzene plane and the plane defined by the amide functionality is $8.6(1)^{\circ}$, while the thiazole ring plane is twisted with respect to the amide plane by $68.71(5)^{\circ}$. In the crystal, pairs of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bond interactions connect the molecules into inversion dimers. $\pi-\pi$ interactions are also observed between neighbouring thiazole and phenyl rings [centroid-centroid distance $=3.5905(13) \AA$ A and a weak C$\mathrm{H} \cdots \pi$ interaction also occurs.

Related literature

For the synthesis of related thiazole derivatives and their application, see: Raman et al. (2000); Yunus et al. $(2007,2008)$. For microwave-assisted synthesis of amides, see Wang et al. (2008).

Experimental

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=273.13$
Monoclinic, $P 2_{b} / c$
$a=14.054$ (3) A
$b=13.063$ (3) \AA
$c=6.2880$ (14) A
$\beta=101.578(3)^{\circ}$

Data collection

Bruker SMART 1000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.768, T_{\text {max }}=0.950$
5906 measured reflections
1993 independent reflections
1820 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.080$
independent and constrained
$S=1.06$
1993 reflections
149 parameters
refinement
$\Delta \rho_{\max }=0.25 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).
$C g 1$ is the centroid of the thiazole ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.79(2)$	$2.09(2)$	$2.880(2)$	$178(2)$
$\mathrm{C} 1-\mathrm{H} 1 \cdots C g 1^{\text {ii }}$	0.93	2.81	$3.501(2)$	132

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.
Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT and CrystalStructure (Rigaku/ MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELX97.

The authors are grateful to the Department of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad and the University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China for providing the laboratory and analytical facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2236).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Raman, P., Razavi, H. \& Kelly, J. W. (2000). Org. Lett. 2, 3289-3292.
Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, X.-J., Yang, Q., Liu, F. \& You, Q.-D. (2008). Synth. Commun. 38, 10281035.

Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. \& Helliwell, M. (2007). Acta Cryst. E63, o3690.
Yunus, U., Tahir, M. K., Bhatti, M. H. \& Wong, W.-Y. (2008). Acta Cryst. E64, o722.

supplementary materials

2,4-Dichloro- N -(1,3-thiazol-2-yl)benzamide

S. Saeed, N. Rashid and W.-T. Wong

Comment

Substituted and unsubstituted thiazole derivatives are of great importance in biological systems due to their vast range of biological activities such as anti-inflammatory, analgestic and antipyretic (Raman et al., 2000; Yunus et al., 2007, 2008). On the other hand, amide compounds have extensive applications in pharmaceutical industry (Wang et al., 2008).

The title compound, 2,4-dichloro- N-thiazol-2-yl-benzamide, $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS}$, crystallizes in the monoclinic space group $P 2{ }_{1} / c(\# 14)$. The molecule is not planar showing a dihedral angle of $8.6(1)^{\circ}$ of the amide group, $\mathrm{C} 3-\mathrm{C} 5 / \mathrm{N} 2 / \mathrm{O} 1$ with respect to the phenyl ring plane, $\mathrm{C} 5-\mathrm{C} 10 / \mathrm{Cl} 1 / \mathrm{Cl} 2$. The thiazolyl ring, $\mathrm{C} 1-\mathrm{C} 3 / \mathrm{N} 1 / \mathrm{S} 1$, is twisted $\left(68.71(5)^{\circ}\right)$ relative to the amide group. In additon, the phenyl ring plane makes a dihedral angle of $74.89(5)^{\circ}$ with the thiazole ring plane.

There are pair-wise inter-molecular $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{~N} 1 \mathrm{H}$-bond interactions linking the molecules into dimeric arrangements. There are also $\pi-\pi$ interactions between neighbouring thiazole, $\mathrm{S} 1 / \mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 3(C g 1)$, and phenyl rings, $\mathrm{C} 5-\mathrm{C} 10(C g 2)$, in the crystal lattice. The distance between ring centroids $C g 1$ and $C g 2$ is $3.5905 \AA$, and dihedral angle between them is determined to 0°.

There is no residual solvent accessible void volume in the unit cell.

Experimental

A mixture of 2,4-dichlorobenzoyl chloride $(0.01 \mathrm{~mol})$ and 2-aminothiazole $(0.01 \mathrm{~mol})$ was refluxed in acetone $(50 \mathrm{ml})$ for 1.5 h . After cooling to room temperature, the mixture was poured into acidified cold water. The resulting solid was filtered and washed with cold acetone (yield: 72\%). Single crystals of the title compound suitable for single-crystal X-ray analysis were obtained by recrystallization of the light yellow solid from ethyl acetate.

Refinement

The structure was solved by direct methods (SHELXS97) and expanded using Fourier techniques. All non-H atoms were refined anisotropically. C-bound H atoms are all placed geometrically $\mathrm{C}-\mathrm{H}=0.93 \AA$ for phenyl H -atoms. They were refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (Carrier). N-bound H atoms were located from difference Fourier map and are refined isotropically.

Highest peak is 0.25 at $(0.9753,0.3236,0.26385)$ [$0.97 \AA$ from C12] Deepest hole is -0.24 at $(0.2315,0.6265,0.1208)$ [0.79Å from Cl1]

supplementary materials

Figures

Fig. 1. ORTEP plot of the compound with thermal ellipsoids at the 50% probability level and showing the atom numbering scheme.

Fig. 2. Packing diagram.

2,4-Dichloro- N -(1,3-thiazol-2-yl)benzamide

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=273.13$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=14.054$ (3) \AA
$b=13.063$ (3) \AA
$c=6.2880(14) \AA$
$\beta=101.578(3)^{\circ}$
$V=1130.8(4) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1000 CCD
diffractometer
Radiation source: fine-focus sealed tube
graphite
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.768, T_{\text {max }}=0.950$
5906 measured reflections
$F(000)=552$
$D_{\mathrm{x}}=1.604 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 487 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6065 reflections
$\theta=2.2-25.0^{\circ}$
$\mu=0.74 \mathrm{~mm}^{-1}$
$T=304 \mathrm{~K}$
Block, colourless
$0.38 \times 0.27 \times 0.07 \mathrm{~mm}$

1993 independent reflections
1820 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-16 \rightarrow 15$
$k=-15 \rightarrow 13$
$l=-6 \rightarrow 7$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.080$
$S=1.06$
1993 reflections
149 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0375 P)^{2}+0.4293 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.25$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.24$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C11	$0.24941(4)$	$0.64173(4)$	$0.24448(11)$	$0.0739(2)$
C12	$0.02120(5)$	$0.61769(6)$	$0.82771(11)$	$0.0849(2)$
S1	$0.41434(3)$	$0.32850(4)$	$0.00755(7)$	$0.04892(15)$
O1	$0.25039(10)$	$0.34891(11)$	$0.1798(2)$	$0.0592(4)$
N1	$0.53725(10)$	$0.42950(11)$	$0.2878(2)$	$0.0452(3)$
N2	$0.38052(10)$	$0.43647(12)$	$0.3593(3)$	$0.0441(3)$
C1	$0.53294(15)$	$0.33469(15)$	$-0.0224(3)$	$0.0536(5)$
H1	0.5568	0.3037	-0.1343	0.064^{*}
C2	$0.58651(14)$	$0.39011(15)$	$0.1371(3)$	$0.0500(4)$
H2	0.6525	0.4013	0.1457	0.060^{*}
C3	$0.44612(12)$	$0.40332(12)$	$0.2379(3)$	$0.0399(4)$
C4	$0.28500(12)$	$0.41126(13)$	$0.3182(3)$	$0.0436(4)$
C5	$0.22451(12)$	$0.46497(13)$	$0.4549(3)$	$0.0435(4)$
C6	$0.20114(12)$	$0.56805(14)$	$0.4270(3)$	$0.0471(4)$
C7	$0.13838(13)$	$0.61528(15)$	$0.5405(3)$	$0.0549(5)$
H7	0.1220	0.6839	0.5175	0.066^{*}
C8	$0.10102(13)$	$0.55811(18)$	$0.6880(3)$	$0.0571(5)$

C9	$0.12440(15)$	$0.45612(18)$	$0.7240(4)$	$0.0637(5)$
H9	0.0997	0.4191	0.8271	0.076^{*}
C10	$0.18494(14)$	$0.40987(16)$	$0.6047(3)$	$0.0561(5)$
H10	0.1994	0.3407	0.6252	0.067^{*}
H2N	$0.4017(14)$	$0.4739(16)$	$0.456(3)$	$0.048(5)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0751(4)$	$0.0560(3)$	$0.1005(5)$	$0.0071(3)$	$0.0411(3)$	$0.0226(3)$
Cl2	$0.0658(4)$	$0.1064(5)$	$0.0910(5)$	$0.0030(3)$	$0.0361(3)$	$-0.0242(4)$
S1	$0.0525(3)$	$0.0473(3)$	$0.0460(3)$	$-0.00460(19)$	$0.0078(2)$	$-0.01145(19)$
O1	$0.0506(8)$	$0.0593(8)$	$0.0655(9)$	$-0.0091(6)$	$0.0061(6)$	$-0.0187(7)$
N1	$0.0420(8)$	$0.0449(8)$	$0.0487(8)$	$-0.0020(6)$	$0.0095(6)$	$-0.0084(6)$
N2	$0.0398(8)$	$0.0430(8)$	$0.0485(8)$	$-0.0022(6)$	$0.0064(6)$	$-0.0130(7)$
C1	$0.0596(11)$	$0.0544(11)$	$0.0499(10)$	$-0.0013(9)$	$0.0186(9)$	$-0.0099(8)$
C2	$0.0471(10)$	$0.0517(11)$	$0.0540(10)$	$-0.0015(8)$	$0.0168(8)$	$-0.0067(8)$
C3	$0.0446(9)$	$0.0331(8)$	$0.0411(9)$	$0.0008(7)$	$0.0065(7)$	$-0.0029(7)$
C4	$0.0424(9)$	$0.0385(9)$	$0.0479(9)$	$-0.0003(7)$	$0.0042(7)$	$-0.0012(7)$
C5	$0.0344(8)$	$0.0457(9)$	$0.0482(9)$	$-0.0023(7)$	$0.0035(7)$	$-0.0020(7)$
C6	$0.0399(9)$	$0.0460(10)$	$0.0555(10)$	$-0.0028(7)$	$0.0098(8)$	$-0.0009(8)$
C7	$0.0451(10)$	$0.0489(11)$	$0.0705(13)$	$0.0011(8)$	$0.0108(9)$	$-0.0080(9)$
C8	$0.0402(9)$	$0.0740(14)$	$0.0580(11)$	$-0.0009(9)$	$0.0123(8)$	$-0.0108(10)$
C9	$0.0597(12)$	$0.0747(15)$	$0.0614(12)$	$-0.0019(11)$	$0.0234(10)$	$0.0083(11)$
C10	$0.0534(11)$	$0.0518(11)$	$0.0635(12)$	$0.0001(9)$	$0.0123(9)$	$0.0086(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 11-\mathrm{C} 6$	$1.7370(19)$
$\mathrm{C} 12-\mathrm{C} 8$	$1.741(2)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.716(2)$
$\mathrm{S} 1-\mathrm{C} 3$	$1.7299(16)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.219(2)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.302(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.381(2)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.356(2)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.379(2)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$0.79(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.339(3)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 3$	$88.40(9)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	$109.94(15)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 3$	$124.36(15)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$120.1(14)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$115.5(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$110.84(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	124.6
$\mathrm{~S} 1-\mathrm{C} 1-\mathrm{H} 1$	124.6

$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.499(2)$
$\mathrm{C} 5-\mathrm{C} 10$	$1.387(3)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.389(3)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.386(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.374(3)$
$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{C} 8-\mathrm{C} 9$	$1.380(3)$
$\mathrm{C} 9-\mathrm{C} 10$	$1.381(3)$
$\mathrm{C} 9-\mathrm{H} 9$	0.9300
$\mathrm{C} 10-\mathrm{H} 10$	0.9300
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 4$	$119.82(16)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$121.89(16)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$121.70(17)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{Cl} 1$	$117.84(15)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{Cl} 1$	$120.46(14)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$118.32(19)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	120.8
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	120.8

sup-4

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$115.56(17)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$121.65(19)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	122.2	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 2$	$118.02(17)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2$	122.2	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 2$	$120.32(17)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 2$	$121.23(15)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$119.04(19)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{S} 1$	$115.25(13)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$	120.5
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{S} 1$	$123.49(13)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$	120.5
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{N} 2$	$122.43(17)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$121.08(19)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$122.07(15)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10$	119.5
$\mathrm{~N} 2-\mathrm{C} 4-\mathrm{C} 5$	$115.51(15)$	$\mathrm{C} 5-\mathrm{C} 10-\mathrm{H} 10$	119.5
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6$	$118.16(17)$		

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$
Cg 1 is the centroid of the thiazole ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~N} \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.79(2)$	$2.09(2)$	$2.880(2)$	$178(2)$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{Cg}^{\mathrm{ii}}$	0.93	2.81	$3.501(2)$	132

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x,-y+1 / 2, z-1 / 2$.
supplementary materials

Fig. 1

Fig. 2

