
nutrients

Article

A Novel UC Exclusion Diet and Antibiotics for Treatment of
Mild to Moderate Pediatric Ulcerative Colitis: A Prospective
Open-Label Pilot Study

Chen Sarbagili-Shabat 1,2, Lindsey Albenberg 3, Johan Van Limbergen 4,5 , Naomi Pressman 3, Anthony Otley 6,
Michal Yaakov 1, Eytan Wine 7 , Dror Weiner 1 and Arie Levine 1,2,*

����������
�������

Citation: Sarbagili-Shabat, C.;

Albenberg, L.; Van Limbergen, J.;

Pressman, N.; Otley, A.; Yaakov, M.;

Wine, E.; Weiner, D.; Levine, A. A

Novel UC Exclusion Diet and

Antibiotics for Treatment of Mild to

Moderate Pediatric Ulcerative Colitis:

A Prospective Open-Label Pilot Study.

Nutrients 2021, 13, 3736. https://

doi.org/10.3390/nu13113736

Academic Editors: Licia Pensabene

and Andrea Fabbri

Received: 13 September 2021

Accepted: 21 October 2021

Published: 23 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 PIBD Research Center, Paediatric Gastroenterology and Nutrition Unit, The E. Wolfson Medical Center,
Holon 5822012, Israel; ibd.chen@gmail.com (C.S.-S.); michal.yaakov@walla.co.il (M.Y.);
drorweiner@gmail.com (D.W.)

2 The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
3 Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia,

Philadelphia, PA 19104, USA; AlbenbergL@chop.edu (L.A.); PressmanN@chop.edu (N.P.)
4 Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, Amsterdam University

Medical Centers, Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands;
j.e.vanlimbergen@amsterdamumc.nl

5 Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and
Metabolism, Academic Medical Center, University of Amsterdam, 1105 BK Amsterdam, The Netherlands

6 Division of Gastroenterology and Nutrition, IWK Health Center, Halifax, NS B3K 6R8, Canada;
Anthony.otley@dal.ca

7 Departments of Pediatrics and Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
wine@ualberta.ca

* Correspondence: arie.levine.dr@gmail.com

Abstract: Background: As the microbiome plays an important role in instigating inflammation in
ulcerative colitis (UC), strategies targeting the microbiome may offer an alternative therapeutic
approach. The goal of the pilot trial was to evaluate the potential efficacy and feasibility of a novel
UC exclusion diet (UCED) for clinical remission, as well as the potential of sequential antibiotics
for diet-refractory patients to achieve remission without steroids. Methods: This was a prospective,
single-arm, multicenter, open-label pilot study in patients aged 8–19, with pediatric UC activity index
(PUCAI) scores >10 on stable maintenance therapy. Patients failing to enter remission (PUCAI < 10)
on the diet could receive a 14-day course of amoxycillin, metronidazole and doxycycline (AMD), and
were re-assessed on day 21. The primary endpoint was intention-to-treat (ITT) remission at week 6,
with UCED as the only intervention. Results: Twenty-four UCED treatment courses were given to
23 eligible children (mean age: 15.3 ± 2.9 years). The median PUCAI decreased from 35 (30–40) at
baseline to 12.5 (5–30) at week 6 (p = 0.001). Clinical remission with UCED alone was achieved in
9/24 (37.5%). The median fecal calprotectin declined from 818 (630.0–1880.0) µg/g at baseline to
592.0 (140.7–1555.0) µg/g at week 6 (p > 0.05). Eight patients received treatment with antibiotics
after failing on the diet; 4/8 (50.0%) subsequently entered remission 3 weeks later. Conclusion: The
UCED appears to be effective and feasible for the induction of remission in children with mild to
moderate UC. The sequential use of UCED followed by antibiotic therapy needs to be evaluated as a
microbiome-targeted, steroid-sparing strategy.

Keywords: ulcerative colitis; child; diet; antibiotics; remission; treatment

1. Introduction

Ulcerative colitis (UC) in children is a chronic inflammatory disorder of the colon,
associated with clinical symptoms including diarrhea and rectal bleeding, and has a neg-
ative impact on quality of life [1]. Epidemiologic studies have demonstrated an overall
increase in the prevalence and the incidence of UC in both developed and developing
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countries [2,3]. The sharp change in food consumption from a non-Western to a Western
diet has been suggested to contribute to this trend [3,4]. The pathogenesis of ulcerative
colitis (UC) is believed to be related to dysbiosis coupled with diminished host-barrier
function and unrepressed inflammation. The dysbiosis in UC is characterized by a re-
duction in short-chain-fatty-acid (SCFA)-producing taxa [5,6] and, in some studies, by
an increase in potential pathobionts, such as Escherichia or Ruminococcus gnavus [7], or
hydrogen-sulfide-reducing bacteria [6]. The manipulation of the microbiota has become
one of the most intriguing targets for intervention in inflammatory bowel diseases (IBDs).
Fecal microbiota transplantation (FMT), a straightforward therapy that manipulates the
microbiota, has been shown to be effective in the short term in about 30% of cases [8].
The success of FMT appears to depend upon the choice of donor and their microbiota
composition [9]. Recent data suggest that diet may alter intestinal microbiota, directly
affect the host epithelial and goblet cells, diminish antimicrobial peptides, and influence the
immune system’s responses [4,10–14]. However, while dietary interventions have proven
to be highly effective in inducing remission in Crohn’s disease, the role of diet in UC and
the potential for dietary therapies remain elusive [15–17]. A recent guideline from the
international organization for the study of inflammatory bowel disease (IOIBD), primarily
based on epidemiologic and animal models, suggested that patients with UC should reduce
exposure to red or processed meat; saturated, trans and dairy fat; and certain additives [18].
However, there are no prospective randomized controlled trials with dietary interventions
published to date that have demonstrated that a dietary intervention can induce remission
in active UC in children. Currently, the only non-biologic medication for UC, which does
not suppress the immune system, is 5-aminosalicylic acid (5ASA), which is considered to
be the first-line therapy in mild to moderate cases. However, medications such as steroids,
immunomodulators (IMM) and biologics have been increasingly used in the treatment of
pediatric UC.

The manipulation of the intestinal microbiome is an emerging new strategy for the
treatment of IBD, which may reduce the need for immunosuppression. Two strategies
that might alter the microbiome and could be used in conjunction are diet and antibi-
otics. Dietary components can modulate the composition and metabolome of the gut
microbiota, as well as affect the intestinal epithelium, goblet cells and innate immune
system [12]. Dietary factors present in Western diets may decrease the production of
mucins or cause more permeable mucous and antimicrobial peptides, as well as reshaping
the microbiota [13,19]. Turner et al. demonstrated that patients with severe UC have an
increased relative abundance of Gammaproteobacteria [7]. The presence of pathobionts may
make a disease amenable to antibiotic therapy. Antibiotic combinations have been used as
a microbiota-targeted therapy, including a triple combination of amoxicillin, tetracycline
and metronidazole, and have been shown to be effective in active adult UC patients [20,21].

We hypothesize that the UC disease course can be controlled either by using a novel
diet, developed especially for the induction of remission in UC; by an antibiotic strategy;
or by both. To test the feasibility and efficacy of the diet, we decided to examine these
strategies in a pilot trial in children with mild to moderate UC.

2. Materials and Methods
2.1. Study Population and Design

This was an open-label, prospective, single-arm, multicenter pilot study involving
the treatment of children with active mild to moderate UC using a novel diet with an
antibiotic rescue design for dietary failures. The study population targeted patients aged
8–19, with mild to moderate active disease, defined according to the Pediatric UC Activ-
ity Index (10 ≤ PUCAI ≤ 45), at diagnosis or despite maintenance therapy with 5ASA or
thiopurines, stable for at least 6 weeks. All the recruited patients meeting the inclusion and
exclusion criteria (see below) were introduced to a novel dietary intervention (Supplemen-
tary Table S1) termed the Ulcerative Colitis Exclusion Diet (UCED), for the first 6 weeks,
and those in remission at week 6 received a step-down diet for another 6 weeks. Patients
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with no improvement by week 3, who failed to achieve remission by week 6, or who
deteriorated between weeks 6 and 12 could decide to receive a 14-day course of amoxicillin
(50 mg/kg/day; max: 500 mg of TID), metronidazole (15 mg/kg/day; max: 250 mg of TID)
and doxycycline (4 mg/kg/day; max: 100 mg of BID) (AMD). Subjects with intolerance to
AMD were instructed to discontinue the metronidazole. The patients on AMD were seen
again 7 days after the cessation of antibiotics (Figure 1). The patients were instructed to
continue their pretreatment (5ASA or immunomodulators) without any dose change. The
primary outcome was the clinical remission rate (PUCAI < 10) at week 6 for the UCED
intervention. The study took place at 3 sites: the Wolfson Medical Center, Holon, Israel;
the Children’s Hospital of Philadelphia, PA, USA; and the IWK Health Center, Halifax,
NS, Canada. All the patients signed informed consent, and all the sites obtained ethical
approval (NCT 02345733).
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2.2. The Ulcerative Colitis Diet Intervention

The UCED diet was designed to alter dietary components that may adversely affect
goblet cells, mucus permeability and microbiome composition, which were previously
linked to UC [10,11]. It may be described as a low-protein, high-fiber, low-fat diet that
also excludes additives. The following principles guiding food exclusion and addition in-
cluded decreased exposure to sulfated amino acids (SAAs) [22–24], total protein [12,25,26],
heme [27], animal fat [23,24], saturated and polyunsaturated fat [28], and food addi-
tives [29], with exposure to tryptophan [30,31] and natural sources of pectin and resistant
starch [13,27,32–34]. The term “exclusion diet” was used, as the main principle of the diet
is an exclusion of these foods’ components, but some other foods were added. The diet
was designed with mandatory, allowed and disallowed foods. The first-phase diet is rich
in fruit and vegetables, and includes mandatory foods, primarily fruits and vegetables.
There are allowed foods that can be consumed without limitation, such as rice and potatoes;
foods with prescribed amounts, such as chicken, eggs, yoghurt and pasta; and disallowed
foods, such as red meat and processed foods. The diet also reduces sugar and fructose
intake from sources other than fruits. The second phase at weeks 7–12 is more permissive,
with more options of fruits and vegetables, and additions to the prescribed amounts of
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grain products and certain pulses. The patients were instructed on the use of the diet and
were provided with recipes and a dietary support system. A UCED day sample menu is
presented in Supplementary Table S1.

2.3. Inclusion and Exclusion Criteria

The inclusion and exclusion criteria were defined based on our initial experience,
showing efficacy in cases of mild–moderate UC. Our goal was to target the appropriate
UC population for a pilot study that would benefit most from a novel induction dietary
therapy as an induction therapy and to test its feasibility and efficacy. The inclusion criteria
included informed consent; established diagnosis of UC; age between 8 and 19 years;
mild to moderate active disease defined as 10 ≤ PUCAI ≤ 45; and stable medication
(IMM/5ASA) use for the past 6 weeks or no medication. The exclusion criteria included
any proven current infection, such as a positive stool culture, a parasite, or positivity for
Clostridioides difficile toxin; antibiotic or steroid use in the past 2 weeks, with the exception of
patients stopping steroids at enrolment; current or past use of biologics; PUCAI > 45; acute
severe UC (PUCAI ≥ 65) in the previous 12 months; a current extraintestinal manifestation
of UC; and primary sclerosing cholangitis or liver disease, and pregnancy or an allergy to
one of the antibiotics excluded patients from entering the antibiotic arm but not the diet.

2.4. Data Collection and Dietary Assessment

The patients were seen at baseline and weeks 3, 6 and 12. At week 2, a phone call visit
was performed to assess the PUCAI and dietary compliance. At each visit, a PUCAI score
was recorded. A clinical response was defined as a decrease in PUCAI score of at least
10 points, and clinical remission was defined as PUCAI < 10. The patients were asked to
provide stool samples for fecal calprotectin (FC) at weeks 0, 3 and 6, which were analyzed
locally at each participating center. We performed 24 h recall via a dietitian at weeks 0,
3 and 6. The patients were asked to record the foods and beverages and the consumed
amounts in a food diary (FD) over a 3-day period (weekend and 2 weekdays) at week
3. A modified diet-adherence questionnaire [16] was completed on weeks 3 and 6. High
diet adherence was determined by finding high adherence on the questionnaire and by
the dietitian’s assessment based on direct questioning. Poor compliance was defined by
having low compliance in any assessment.

2.5. Statistical Analysis

Continuous variables were evaluated for distribution normality and are reported as
medians (interquartile ranges, IQRs) or means (standard deviations, SDs) as appropriate.
Nominal variables are summarized as frequencies and are presented as n (%). The primary
end point of the proportion of patients in remission at week 6 was analyzed according to the
intention-to-treat (ITT) paradigm. A pairwise comparison of the PUCAI at week 0 versus
week 6/week 12 was analyzed using the Wilcoxon signed rank test and used according
to the last-observation-carried-forward (LOCF) approach. A pairwise comparison of the
FC at week 0 versus week 6 was analyzed using the Wilcoxon signed rank test and was
performed only for subjects with parameters at both time points. The food macronutrient
and micronutrient daily intake was based on the food records at baseline before starting
the diet and during the UCED phase 1 at week 6 or week 3, and was compared using the
t-test for paired samples or the Wilcoxon signed-rank test as appropriate. Only patients
with both week 0 and week 3/6 diet records were entered into the nutritional analysis.
All the statistical analyses were performed using the SPSS version 27 statistical analysis
software (IBM, Endicott, NY, USA). All the tests were two sided and were considered to be
significant at p values < 0.05.
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3. Results
3.1. Study Population

Thirty-two patients were screened between November 2014 and November 2020; eight
patients were excluded (Supplementary Figure S1). Twenty-four UCED treatment courses
were given to 23 eligible, consenting patients and were included in the final analysis.
Significant delays in enrollment were encountered, as some of the collaborators left their
institutions during the trial and there was significant delay in the ethical approval in other
institutions. One patient received a second course of the UCED after a relapse two years
later. The mean age of the included patients was 15.3 ± 2.9 years, with a mean disease
duration of 1.4 ± 1.4 years. Demographic data are presented in Table 1. The majority had a
moderate disease severity and had failed 5ASA, one patient was newly diagnosed with
treatment-naïve UC, and one was coming off a course of steroids and flared.

Table 1. Characteristics of the study patients at baseline.

Characteristic Total (n = 24)

Female gender, n (%) 12 (50.0)
Age (years), mean (SD) 15.3 (2.9)
Disease duration (years), median (IQR) 1.0 (0.4–1.9)
Family history of IBD, n (%) 5 (20.8)
Fecal calprotectin, µg/g, (n = 18), median (IQR) 818.5 (630–1880)
CRP, mg/dL, median (IQR) 0.5 (0.3–0.5)
PUCAI
Mean (SD) 34.0 (10.0)
Median (IQR) 35 (30–40)
Disease severity, PUCAI, n (%)
Mild (10–30) 7 (29.2)
Range of mild disease 15–30
Moderate (35–45) 17 (70.8)
Range of moderate disease 35–45
Severe 0 (0)
Disease location, n (%)
Pancolitis 4 (16.7)
Extensive 1 (4.2)
Left sided 14 (58.3)
Proctitis 5 (20.8)
Current treatment, n (%)
5-ASA (oral or oral and topical) 20 (83.3)
None 3 (12.5)
Immunomodulators 2 (8.3)
Steroids * 1 (4.2)
Height (cm), mean (SD) 161.7 (13.0)
Weight (kg), median (IQR) 58.4 (43.8–64.9)
Weight z-score, mean (SD) 0.04 (1.3)

SD, standard deviation; IQR, interquartile range; IBD, inflammatory bowel disease; CRP, C-reactive protein;
PUCAI, pediatric ulcerative colitis activity index; 5-ASA, 5-aminosalicylic acid. * Steroids were stopped at
inclusion.

3.2. Response to UCED Exclusively by Week 6

Clinical responses to UCED were achieved in 17/24 (70.8%) patients by week 6, and
9/24 (37.5%) had ITT clinical remissions at week 6 with the UCED (Figure 2). One patient
entered into a second remission after receiving another course of UCED, two years after
the initial response. For the 23 patients, 8/23 (34.8%) had ITT clinical remissions at week
6 with the UCED. Withdrawals in remission were imputed as non-remission in the ITT
analysis. The median PUCAI decreased from 35 (30–40) at baseline to 12.5 (5–30) at week
6, and the mean PUCAI decreased from 34.0 ± 10 to 17.3 ± 16.9 (p = 0.001) according to
the ITT analysis including all the patients in a LOCF analysis (Figure 3). There were no
differences in the baseline median PUCAI score, baseline FC levels and disease extent
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between patients who entered remission at week 6 versus treatment failures. The FC
level did not vary between the recruited centers. Six patients withdrew by week 3: two
noncompliant patients (one response and one remission) and four patients who required
additional therapy (Supplementary Figure S1). FC results were available for 18 patients.
The median FC remained unchanged from week 0 to week 3 ((818 (630.0–1880.0) µg/g and
968.0 (272.0–1798.4) µg/g, respectively (p = 0.76)) and declined from week 3 to week 6 of
the diet ((968.0 (272.0–1880.0) µg/g to 592.0 (140.7–1555.0) µg/g, respectively (p = 0.41)),
corresponding to a 49% reduction from week 3 to week 6; the decline between week 0 and
week 6 was not significant (p = 0.11). Among five patients who achieved remission at week
6 with baseline and week 6 FC, the median FC level decreased from 630 (IQR, 332–1586)
µg/g at week 0 to 230 (75–1298) µg/g at week 6 (p = 0.14).
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Among the patients who were in clinical remission at week 6, seven were slow
responders and achieved clinical remission only at week 6; the other two patients achieved
remission at week 2 and week 3. Two patients achieved remission at week 2 and 3,
respectively, but developed recurrence of mild symptoms by week 6 and were considered
failures by ITT. One patient developed a Shigella infection during the trial that led to
symptoms despite a marked reduction in FC from 1167 to 111 at week 6. Among the
patients whose PUCAIs increased from baseline to week 6, it was interesting to see that
two of the three patients had proctitis with moderate disease of about 1-year duration and
a family history of IBD.

3.3. Sustained Remission with UCED at Week 12

Six out of nine patients (66%) maintained remission through week 12 without addi-
tional therapy; thus, clinical remission was observed in 6/24 (25%) at week 12 based on
ITT analysis. One patient withdrew despite remission and stopped the diet; two patients
experienced relapses between weeks 7 and 12: one patient developed mild intermittent
bleeding without other symptoms (PUCAI: 10), and one patient developed a mild relapse.
The median PUCAI decreased from 35 (30–40) at baseline to 15 (5–30) at week 12 (p = 0.002)
according to ITT analysis including all the patients in a LOCF analysis.

3.4. Response to ADM after UCED Failure

Eight patients received treatment with antibiotics after failing the diet; 4/8 (50.0%)
subsequently entered remission (Figure 2). Thus, in total, 13/24 (54.2%) patients obtained
remission; of those, nine patients were on the diet alone, and four, on a sequential diet and
antibiotic therapy as induction therapy.

3.5. Tolerance and Adherence

Three patients stopped the diet (two stopped despite good responses at week 3—a
PUCAI of 0 and PUCAI of 10); thus, intolerance occurred in 3/24 (12.5%). The adherence
to the diet was available for 22/24 (91.7%) patients at week 3; 19 (86.4%) patients had high
compliance, 2 had fair compliance (9.1%) and 1 (4.5%) had poor compliance. Data for
adherence at week 6 were available for 15 patients among the 16 patients who reached this
week; all were highly compliant.

3.6. Nutritional Outcomes

As the diet was designed to decrease animal saturated fat, total protein, SAAs and
heme while providing fiber, we analyzed dietary intake before and after UCED. The
analysis of dietary intake showed a clinically relevant decrease in total energy per day, as
at baseline, the mean daily energy intake was 42.3 ± 25.2 kcal/kg/day, versus 32.7 ± 14.2
at week 6 (p = 0.06). In addition to energy intake reduction, the median weight decreased
from 62 (57–65) to 59 kg (52–63) after 6 weeks of the diet (p = 0.02), with a mean weight loss
of 0.4 ± 0.3 kg per week. Treatment with UCED was accompanied by a significant decrease
in total protein, SAAs, saturated fat and iron, while there was a significant increase in total
fiber consumption per day (Figure 4).
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Figure 4. Dietary intake of macronutrients and micronutrient targets for UCED at baseline and after
diet treatment: total protein (g/kg, n = 20), saturated fat (g, n = 19), monounsaturated fat (g, n = 19),
fiber (g, n = 20), cysteine (g, n = 15), methionine (g, n = 15), and iron (mg, n = 19).

3.7. Safety

During the UCED treatment, eight patients had adverse events. Three patients had
worsening of disease at week 3, two patients developed constipation, one patient lost
weight during the first six weeks, and one patient developed a fever unrelated to the disease.
Among the patients who received AMD, three patients had worsening of the disease,
one patient had metronidazole intolerance with diarrhea, and one patient developed
pneumonia one week after stopping the antibiotics.

4. Discussion

In this pilot study, we evaluated two therapies targeting the microbiome sequentially.
The first intervention was a novel diet targeting the intestinal epithelium, goblet cells and
innate immune system, in addition to the microbiota composition. The second intervention,
used only in dietary-failure patients, was an established antibiotic protocol [20,21] studied
in adults but never prospectively evaluated in children. The main purpose of this study
was, first, to evaluate the feasibility of this specific dietary intervention, in order to improve
the design and adherence, prior to starting an interventional randomized controlled trial. In
light of this study’s outcomes, we will test the superiority of the UCED when administered
together with a 5ASA regimen, compared to 5ASA alone, in pediatric patients with mild–
moderate UC in a randomized control trial.

We demonstrated clinical responses in 70% of the patients with UCED at week 6 and
clinical remission in 37.5% of the patients at week 6 by ITT analysis. This was accompanied
by a decline in FC, primarily after week 3, which did not show statistical significance, likely
due to the small sample size. The FC at week 6 was available for 5/9 patients in remission
before any change in therapy; there was a decrease in the median FC among these patients
from 630 (IQR, 332–1586) µg/g at week 0 to 230 (75–1298) µg/g at week 6 (p = 0.14).

Furthermore, 50% of those who failed to obtain remission with the diet entered
remission after adding a 14-day course of AMD. Thus, over 50% of the patients obtained
remission without immune suppression; of those, nine patients did so on diet alone and
four, on a sequential diet and antibiotic therapy as induction therapy. We chose this
sequential design in order to gain insight into the independent effect of each treatment and
to provide pilot data in order to proceed to randomized controlled trials in the future based
on the outcomes.

The UCED diet was designed to minimize the impact of dietary components that may
adversely affect goblet cells, mucus permeability and microbiome composition, which were
previously linked to UC. The UCED was designed to decrease protein, SAAs and saturated
fatty acids while providing fiber as a substrate for SCFA and to prevent fiber deprivation,



Nutrients 2021, 13, 3736 9 of 13

which may deplete the mucus layer. We were able to demonstrate that the intake of these
components was, in fact, reduced among our patients, while the fiber intake significantly
increased (Figure 4). Van der Post et al. have established that a permeable mucus layer
may be an early event in UC [10,11]. Microbial SCFA production is essential for providing
fuel for epithelial cells and affects the regulation of the immune system by inducing the
regulation of T-regulatory cells [35]. A high-fat diet and maltodextrin have been shown to
negatively affect goblet cells [24,36–38]. Epithelial damage is also a hallmark of UC, and a
high-fat diet and high-protein diet may negatively affect epithelial cells [37,39]. Permeable
mucus has been associated with Proteobacteria expansion [40], and a high-fat diet has been
shown to be associated with Proteobacteria and Enterobacteriaceae expansion [39,40].

Another factor that may affect the mucus layer is fiber deprivation [34]; certain
fibers such as pectins might induce more viscous mucus and have an anti-inflammatory
effect [13,41]. Finally, high levels of hydrogen sulfide may have a toxic effect on epithelial
cells and can cause a breakdown of the mucin network [22]. Substrates for hydrogen-sulfide
production are predominantly derived from SAAs [42], while fruits and vegetables are
sources of short-chain fatty acids, which regulate the production of protein metabolites and
maintain tight junctions [43,44]. We used these principles to design this diet, and the results
of this pilot study have led us to launch a randomized control trial (NIH NCT03980405).
At this juncture, we cannot be certain which components that were included or excluded
were responsible for the clinical effect or what the effect upon the microbiome was.

There are a few clinical studies that have suggested a link between diet and UC, but
the data are conflicting. A prospective interventional crossover study in 18 UC adult
patients showed that a low-fat, high-fiber diet decreased markers of inflammation and
reduced intestinal dysbiosis [45]. A large prospective UC cohort followed from remission
suggested that relapse was associated with the intake of the saturated fatty acid myristic
acid, found primarily in grain-fed beef and dairy [28,46]. The benefit of plant-based diets
(PBD) in UC patients was demonstrated by Chiba M. et al. to contribute to preventing
relapse at one-year follow-up in UC patients; therapy incorporating a PBD was shown to
induce remission in about one-third of patients with mild UC [47]. However, a large Swiss
prospective cohort study showed that vegetarians had no advantage over omnivores with
regard to disease activity, hospitalizations, complications or surgery with UC [48].

Most of the patients in our study tolerated the diet well, and only 12% discontinued
the diet. Interestingly, two of these patients were in remission at week 3 and had a mild
increase in symptoms by week six; one patient who had responded very well to the diet
developed a Shigella infection during the trial that led to symptoms, despite a marked
reduction in FC from 1167 to 111 at week 6; these four patients were considered failures in
the ITT analysis.

We observed that the majority of the patients responded to the diet only between
weeks 3 and 6; this is supported by the FC data, which did not show a decline between
baseline and week 3 but showed a 49% decline between weeks 3 and 6. This differs from
the response to exclusive enteral nutrition or the Crohn’s disease exclusion diet, in which
the response was rapid and the majority of patients achieved remission during the first 3
weeks of dietary therapy [49]. Despite the decline, the median FC remained high at week 6;
larger studies are required to detect the impact of diet on gut healing, including performing
colonoscopies.

Antibiotics may be a double-edged sword in IBD. Antibiotics may increase dysbiosis
and increase the translocation of bacteria [50] but, on the other hand, may be effective in
refractory patients [7,20,21], and there is an interaction between diet and antibiotics with
regard to inflammation in rodent models (a high-fat diet may increase antibiotic-induced
dysbiosis) [39]. To date, the utility of the antibiotic combination we used in the trial has
been demonstrated prospectively only for severe or steroid-dependent adult UC [7,20,21].
Here, we demonstrate, in a small cohort of diet-refractory patients, that antibiotic therapy
may have benefit in achieving remission, and a prospective randomized controlled trial is
currently underway to evaluate this further.
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There are several limitations of this study. This was a pilot trial used to generate data
and conducted as a proof of concept, to allow progress to larger trials if the data were
positive. Thus, the sample size was limited. We only investigated children with mild to
moderate disease; based on previous clinical experience, this group is the most likely to
benefit from the combination of diet and antibiotics, and this combination might be used to
avoid steroids and immunosuppressive therapy in the future. We were also hampered by
the fact that not all the patients provided FC samples as requested. In addition, we saw a
weight reduction after 6 weeks of the diet, which might indicate that the diet is not suitable
for severe cases of UC with malnutrition. Another weakness of the study is that we did
not perform colonoscopy in order to evaluate mucosal healing. However, recently, we
have published a randomized controlled trial in adult patients with active refractory UC,
showing that the UCED alone appeared to achieve mucosal healing versus single-donor
fecal transplantation with or without diet, as mucosal healing (Mayo 0) was achieved only
in the group that received the UCED (3/15, 20%) vs. 0/36 of the patients who received fecal
transplantation (p = 0.022) [51]. However, we emphasize that, without a placebo group,
caution needs to be taken in interpreting our results, as some of the response could be
mediated by placebo effects. The strengths of this pilot trial were the prospective nature
and use of defined criteria for inclusion and remission, as well as it being the first report of
this novel diet.

In conclusion, the results of this pilot trial suggest that both diet and antibiotics
may have a role for the induction of remission in mild to moderate UC in children. This
needs to be explored further with a larger sample size. Randomized controlled trials are
now underway with both therapies to provide more evidence for these therapies, which
could facilitate the use of microbiome-targeted therapies in conjunction with other medical
therapy or instead of immune suppression in the future.
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Abbreviations

UC Ulcerative Colitis
UCED Ulcerative Colitis Exclusion Diet
PUCAI Pediatric UC Activity Index
ITT Intention to Treat
IBD Inflammatory Bowel Disease
5ASA 5-Aminosalicylic Acid
IMM Immune Modulator
FC Fecal Calprotectin
LOCF Last Observation Carried Forward
IQR Interquartile Range
AMD Amoxycillin, Metronidazole and Doxycycline
SAAs Sulfated Amino Acids
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