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Abstract: Vanishing white matter (VWM) disease is a genetic leukodystrophy leading to severe
neurological disease and early death. VWM is caused by bi-allelic mutations in any of the five genes
encoding the subunits of the eukaryotic translation factor 2B (EIF2B). Previous studies have attempted
to investigate the molecular mechanism of VWN by constructing models for each subunit of EIF2B
that causes VWM disease. The underlying molecular mechanisms of the way in which mutations
in EIF2B3 result in VWM are largely unknown. Based on our recent results, we generated an eif2b3
knockout (eif2b3~/~) zebrafish model and performed quantitative proteomic analysis between the
wild-type (WT) and eif2b3~/~ zebrafish, and identified 25 differentially expressed proteins. Four pro-
teins were significantly upregulated, and 21 proteins were significantly downregulated in eif2b3~/~
zebrafish compared to WT. Lon protease and the neutral amino acid transporter SLC1A4 were
significantly increased in eif2b3~/~ zebrafish, and crystallin proteins were significantly decreased.
The differential expression of proteins was confirmed by the evaluation of mRNA levels in eif2b3~/~
zebrafish, using whole-mount in situ hybridization analysis. This study identified proteins which can-
didates as key regulators of the progression of VWN disease, using quantitative proteomic analysis
in the first EIF2B3 animal model of VWN disease.

Keywords: Vanishing White Matter disease; EIF2B; comparative proteomics; SLC1A4

1. Introduction

Childhood Ataxia with Central Nervous System Hypomyelination, also called Van-
ishing White Matter (VWM) disease, is one of the most prevalent inherited childhood
leukoencephalopathies. Infantile VWM is a grave disease, and 50% of patients die within
two years of diagnosis. It is a fatal, stress-sensitive leukodystrophy that mainly affects
children, and for which there is currently no treatment [1]. VWM is characterized by ataxia,
spasticity, and variable optic atrophy [2]. Over the past 20 years, various phenotypes of the
disease have been identified, and it has been established that it can appear at all ages, not
just in childhood [2,3]. VWM is a neurological disease caused by mutations in the eukary-
otic translation initiation factor 2B (EIF2B) that produce bi-allelic pathogenic variants in
one of five genes: EIF2B1, EIF2B2, EIF2B3, EIF2B4, or EIF2B5 [4].

EIF2B is indispensable for the initiation of mRNA translation and regulation of pro-
tein synthesis under different conditions, including cell stress [1,5]. Protein synthesis, an
important component of which is protein synthesis and balancing of biological processes,
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is a key step in the expression of a cell’s genetic information. EIF2B controls the first major
stage of mRNA translation, initiation, which involves the recruitment of the ribosome to
the mRNA and the identification of the correct start codon to commence translation. The
molecular mechanisms controlling the pathological symptoms of VWM can be investigated
by identifying changes in protein expression caused by mutations in EIF2B. In some previ-
ous studies, proteomics approaches were used to investigate the molecular mechanisms
affecting VWM [6-8]. Although previous studies have identified mitochondrial dysfunction
due to altered proteasomal activity, and impaired balance between protein synthesis and
degradation, these results arise from limited investigations of effects at the cellular level,
that are not related to the pathogenesis of VWM.

To understand the pathology of VWM, experimental models have been generated.
In 2010, the first animal model was developed in mice, by introducing a point mutation
into the mouse Eif2b5 gene locus A [9]. However, mouse knockouts of the Eif2b genes were
lethal, precluding their use for further study of VWM pathogenicity. Recently, an in vitro
model was constructed by differentiating gray and white matter astrocytes obtained from
humans and mice into induced pluripotent stem (iPS) cells, as a model for differentiation,
after the transformation of patient-derived fibroblast into iPS cell was achieved [10,11].
However, the cell model cannot be applied to the phenotyping of individuals, due to the
mutation, and only limited molecular changes can be studied.

Recently a model for, EIF2B5 in VWM disease was reproduced by the truncation
of eif2b5 in zebrafish (Danio rerio), which produced impaired motor function, and led to
further activation of the cellular integrated stress response [12]. We established the first
eif2b3 mutant animal model for VWM disease that is useful for functional validation of
human gene variants, including a novel variant identified in a Korean VWM patient [13].
Following defects in the expression of myelin genes and glial cell differentiation, we
observed phenotypes resembling those of human patients in eif2b3 knockout (eif2b3 /")
zebrafish. Using the first EIF2B animal model, we used comparative quantitative proteomic
analysis between WT and ¢if2b3~/~ to understand the molecular mechanisms affecting
VWM. Since the zebrafish has high genetic similarity to humans, the experimental results
obtained in this study were applied to human data to identify the molecular mechanism
of VWM.

2. Results
2.1. Establishment of a Vanishing White Matter Disease Model by eif2b3 Knockout

In our previous study, an eif2b3~/~ model was generated in zebrafish based on the
identification of a new variant in Korean patients. The suitability of the model was verified
by confirming the phenotype, which was typical of that associated with VWM disease. The
characteristic defects in the nervous system of the eif2b3~/~ zebrafish were confirmed by
visualization of myelination using in transgenic zebrafish, Tg(mbp:mGFP) (Figure 1A). A
reduction of the expression of mbp was confirmed by whole-mount in situ hybridization
(WISH) (Figure 1B). We also investigated the altered differentiation of cell fates in glial
cell progenitors in eif2b3~/~ zebrafish corresponding to VWM pathogenesis. While the
expression of the mature glial cell marker olig2 was downregulated, the earlier neural cell
marker nestin was upregulated (Figure 1B).
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Figure 1. Zebrafish eif2b3 knockout model for VWM disease. (A) Visualization of myelination
using Tg (mbp:mGFEP) crossed with eif2b3~/~ zebrafish at 5 dpf. Myelination defects in eif2b3~/~
which recapitulate phenotypes of VWM disease. (B) Whole-mount in situ hybridization with myelin
development markers, mbp, olig2, and nestin in eif2b3~/~ zebrafish. mbp, myelin basic protein;
oilg2, oligodendrocyte transcription factor; nestin, early neural stem/progenitor cell marker. Arrow
indicates ectopic expression of nestin in the midbrain region. R, retina.

2.2. Comparative Proteome Analysis of eif2b3~/~ Compared to Wild-Type

Prior to comparative proteomic analysis, yolk was removed to prevent interfer-
ence in our analysis. Deyolked embryos were confirmed by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) gel staining after the removal of the yolk
proteins, which showed a specific protein band at a molecular weight of 80-100 kDa
(Figure S1) [14]. The protein expression between WT and ¢if2b3~/~ zebrafish larvae were
quantified using mass spectrometry-based proteomics (Figure 2A). Using the UniProt
zebrafish database, we identified a total of 1549 proteins with at least two peptides in the
combined WT and eif2b3~/~ larvae, among which 1351 proteins were quantified based on
comparative proteomic analysis (Figure 2B). The total identified protein list is presented
in Supplementary Table S1. Quantitative data were collected from triplicates of prepared
samples, the reproducibility of which was validated by scatter plots, with protein intensity
and Pearson correlation score showing values up to 0.9 (Figure 2C).

2.3. Identification of Differentially Expressed Proteins in eif2b3~/~ Zebrafish

Among the proteins measured, were 25 differentially expressed proteins (DEPs)
(Figure 2B). To identify significant DEPs, we used a fold-change cut-off of 2 for upregulated
proteins and 0.5 for downregulated proteins, and p value of less than 0.05 in a volcano plot
using a one-way t-test (Figure 3A). Four proteins were significantly upregulated, and 21
proteins were significantly downregulated in ¢if2b3~/~ larvae compared to WT (Table 1).
Four proteins were increased in eif2b3~/~. Three were mitochondrial proteins: Lon protease,
2-oxoglutarate dehydrogenase E1 component, and 4-aminobutyrate aminotransferase, all
three of which were confirmed to be homologous with human proteins. Neutral amino
acid transporter SLC1A4, encoding ASCT1, was also significantly increased in the eif2b3~/~
model. In the functional annotation using Gene Ontology (GO) terms, three of the upregu-
lated proteins were associated with mitochondria in the GO cellular component (GO CC)
category (Figure 3B). According to previous studies, the functional change of mitochondria
in VWM disease observed in the eif2b mutant is known, so the three proteins observed in
this study may be related to the functional changes in mitochondria in VWM disease [15].
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Figure 2. Workflow for comparative proteome analysis in an eif2b3 knockout. (A) Flowchart illus-
trating the experimental procedure for quantification of regulated proteins in the eif2b3~/~ model.
(B) The table showing the number of proteins identified in WT and eibeS*/ ~ model, respectively.
(C) Highly correlated results of triplicate analyses.
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Figure 3. Functional annotation of differentially expressed proteins (DEP) in the WT and eif2b3 knockout. (A) Distribution
of the 1352 quantified proteins (upregulated, red filled circles; downregulated, blue filled circles) in eibeS*/ ~ compared
to the WT, according to one-sample t-tests and fold change (p < 0.05). (B) DAVID-generated GO enrichment and KEGG
pathway analysis of DEPs. The-log of Fisher’s exact test was used to represent the enrichment index. GOBP: Gene Ontology
Biological Process, CC: cellular component, MF: molecular function, KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Table 1. Differentially expressed proteins.
D. rerio Human Homology
Protein Level .
rotein Leve Protein IDs Protein Names Gene Names Ratio Protein IDs Protein Names Gene Names
(KO vs. WT)
Lon protease homolo; Lon protease
Up AOAQOR4IH79 pr . & lonp1 297 P36776 homolog, LONP1
mitochondrial . .
mitochondrial
Probable 2-oxoglutarate Probable
dehydrogenase E1 Z-oxoglutarate
up Q5PRA2 yeros dhtkd1 221 QI6HY7 dehydrogenase E1 DHTKD1
component DHKTD1,
X . component DHKTD1,
mitochondrial . .
mitochondrial
4-aminobutyrate 4-aminobutyrate
Up I3IRW7 . Y abat 2.09 P80404 aminotransferase, ABAT
aminotransferase . .
mitochondrial
Neutral amino acid 3 Neutral amino acid
Up D7RVS1 transporter SLC1A4 slcla4 2.73 P43007 transporter A SLC1A4
Down B6IDE1 Slow myosin heavy chain 2 smyhc2 0.37 P12883 Myosin-7 MYH7
Down FIR3Q3 Septin 6 sept6 0.46 Q14141 Septin-6 SEPTING
Down A7E2K7 Crystallin, gamma M2d12 crygm2d12 0.37 P07316 Gamma-crystallin B CRYGB
Down Q6DH12 Crystallin, gamma M2d13 crygm2d13 0.36 P07316 Gamma-crystallin B CRYGB
Down QIW6A9 Opsin-l, opnlswl 0.20 P03999 Short-wave-sensitive OPN1SW
short-wave-sensitive 1 opsin 1
Down Q15184 Crystallin gamma EM2-5 crygm2d5 0.25 P07316 Gamma-crystallin B CRYGB
Down Q6DGX6 Crystallin gamma EM2-8 crygm2ds8 0.20 P07316 Gamma-crystallin B CRYGB
Down Q45FX9 BetaA2-2-crystallin cryba2b 0.47 P53672 Beta-crystallin A2 CRYBA2
Down AOAOR4IYV7 Citrulline-aspartate ligase N/A 0.19 P00966 Argininosuccinate ASS1
synthase
Down Q52]16 Beta Al-2-crystallin cryballl 0.46 P05813 Beta-crystallin A3 CRYBAI1
Down Q6DGY4 Crystallin, beta Alb crybalb 0.44 P05813 Beta-crystallin A3 CRYBA1
Down U3JAVS Aspartate cad 0.46 P27708 CAD protein CAD
carbamoyltransferase
Down Q5XTNO Crygmx protein crygmx 0.37 P07316 Gamma-crystallin B CRYGB
Down B0S6M3 Crystallin, gamma M2d1 crygm2d1 0.25 P07316 Gamma-crystallin B CRYGB
Down Q52]17 Beta A4-crystallin cryba4 0.45 P53673 Beta-crystallin A4 CRYBA4
Down ABE4S8 Crystallin, gamma M2d10 crygm2d10 0.25 P07316 Gamma-crystallin B CRYGB
Down Q6DGY7 Gamma-crystallin N-B crygnb 0.47 Q8WXF5 Gamma-crystallin N CRYGN
Down Q6IQU2 Beta A2-crystallin cryba2a 0.43 P53672 Beta-crystallin A2 CRYBA2
Down BOV191 Crystallin, gamma M2d18 crygm2d18 0.23 P07316 Gamma-crystallin B CRYGB
Down E7F8M1 Crystallin, beta B1,-like 1 crybblll 0.44 P53674 Beta-crystallin B1 CRYBB1
Down QI0WT1 Beta Bl-crystallin crybbl 0.43 P53674 Beta-crystallin B1 CRYBBI1
N/A; not available.

The direct effect of the eif2b3 mutant which is related to VWM disease pathology can
be predicted through the analysis of proteins decreased in DEP. To acquire an in-depth
understanding of the biological effect of eif2b3~/~, we used GO terms, Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways, and Interpro enrichment analyses (Figure 3B).
The downregulated proteins in eif2b3~/~ were largely divided into two groups: those of
visual and those of metabolic relevance. In the eye, downregulated proteins were involved
in the structure of the lens and visual perception, according to GO molecular function (GO
MF) and visual perception in the GO biological process (GO BP) categories. In Interpro,
16 downregulated proteins in eif2b3~/~ were annotated as Beta/gamma crystallin and
Gamma-crystallin-related, which corresponds to 76.2% of the downregulated proteins.
Most of the downregulated proteins were crystallin-related proteins.

Other proteins in the downregulated group in if2b3~/~ were associated with metabolism.
The downregulated proteins were annotated as participating in the arginine biosynthetic
process and the urea cycle in the GO BP category, and alanine, aspartate and glutamate
metabolism in the KEGG pathways (Figure 3B). Citrulline-aspartate ligase and aspartate
carbamoyl transferase were included among 21 downregulated proteins.
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2.4. Validation of Differentially Expressed Proteins Using Whole-Mount In Situ Hybridization

In order to confirm the alteration of protein expression identified by comparative
proteome analysis in eif2b3~/~ compared to WT zebrafish, the mRNA expression of genes
related to DEPs was performed using whole-mount in situ hybridization (WISH) analysis.
The gene related to four significantly upregulated proteins is shown in Figure 4A. The
mRNAs of lonp1, slcla4 and abat were increased in eif2b3~/~. However, the expression
of dhtkd1 was not significantly changed in the eif2b3 mutant (Figure S2A). The mRNA
expression of the DEPs increased by at least 1.5-fold in quantified proteins, and four DEPs
increased by two-fold compared with WT zebrafish (Table S1). The mRNA expression of
psat1 and xbp1 was upregulated in eif2b3~/~. The mRNA expression of the unfolded protein
response pathway genes xbp1, atf4, and atf6 were upregulated in eif2b3 7/~ zebrafish, as early
as 2 dpf, preceding those of sic1a4, lonp1, and psat1, especially in the midbrain-hindbrain
boundary (MHB) (Figures S2B,C and S3). The mRNA expression of downregulated proteins
was also confirmed. The mRNA expression of ass1, cad and sept6 were downregulated
in eif2b37/~ zebrafish, especially in the MHB region where lonp1 and slcla4 genes are
up-regulated (Figure 4B). The MHB is a secondary organizer region that develops at the
junction of the midbrain and hindbrain. Although the lens size was reduced, the mRNA
expression of crybbl was not significantly changed in the eif2b3 mutant (Figure S4).

(A)

eif2b3+

abat

eif2b3+

cad sept6

Figure 4. Visualization of differently expressed proteins in WT and eif2b3 knockout zebrafish. (A) Whole-
mount in situ hybridization of WT and eif2b3~/~ probed for lonp1, sicla4, and abat upregulated
genes. (B) Whole-mount in situ hybridization of WT and eif2b3~/~ probed for ass1, cad, and sept6
downregulated genes. * The asterisk and arrow indicate the midbrain-hindbrain boundary (MHB).

3. Discussion

VWM disease is an autosomal recessive genetic leukodystrophy associated with
mutation in one of the five subunits of EIF2B as EIF2B1-5 in humans [16]. In previous
studies, a relationship with VWM was reported, due to the mutation of each subunit.
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EIF2B2 mutations were found to cause complex instability by interfering with holocomplex
formation, and EIF2B5 mutations are responsible for a decrease in the functional units
present in the cells of VWM disease patients [17,18]. In order to understand the pathological
mechanisms of each mutation, an animal model reproducing the phenotype by induced
mutations was developed. Models due to point mutations of Eif2b4 and Eif2b5 in mice
were reported, which expressed the characteristic phenotype of VWM disease [9,19,20].

Previous studies have undertaken proteomic profiling of the VWM disease model,
based on the Eif2b5 mutant model [6-8]. In astrocytes of WT and Eif2b5" mice, 80 proteins
were changed, 50% of which were related to secretory pathways [6]. Protein profiling of
embryonic fibroblasts (MEFs) isolated from Eif2b5R132H/RI32H mijce revealed unbalanced
stoichiometry of proteins involved in oxidative phosphorylation and the components of
the mitochondrial translation machinery [7]. Changes in brain proteins in Eif2b58132H/R132H
mice showed that dysregulation of mitochondrial functions, altered proteasomal activity,
and impaired balance between protein synthesis and degradation play a role in VWM
pathology [8]. These results show that the disease characteristics of VWM disease are
closely related to changes in proteins in the Eif2b mutant model.

In the present study, we identified four significanlty increased proteins DEPs in
eif2b3~/~ larvae: the neutral amino acid transporter SLC1A4 (slcla4), Lon protease (lonp1),
4-aminobutyrate aminotransferase (abat), and probable 2-oxoglutarate dehydrogenase E1
component DHKTD1 (dhtkd1) based on comparative proteomics analysis. The DHKTD1
was increased in the proteome results, however, it was not changed at the mRNA level.
Understanding the effect of upregulation of proteins in the eif2b3 mutant will lead to
increased understanding of the pathology of VWM disease.

The increase of the neutral amino acid transporter SLC1A4 (the alanine, serine, cys-
teine, and threonine transport, ASCT1) in eif2b3~/~ larvae was also validated using WISH
(Figure 4A). The neutral amino acid transporter SLC1A4 is a major d-serine uptake system
in astrocytes, and contributes significantly to the uptake of /-serine in primary neurons [21].
SLC1A4 appears to be regulated to meet metabolic demands by differentiating and mature
neurons through the transport of glial- and blood-borne small neutral amino acids [22]. The
mis-regulation as SCL1A4 mutation in the brain can change the levels of neutral amino acids
like I-serine, d-serine, l-alanine, [-threonine, and glycine, which can affect brain functions in
ways such as decreased volume of different brain regions, altered gene expression, and
motor and learning deficits [23]. [-Serine plays an essential role in neuronal development
and function. [-Serine biosynthesis is largely confined to astrocytes, and it is shuttled to
the neuronal cells by SLC1A4. SLC1A4 was revealed as physiological regulator of d-serine
metabolism, a coagonist of NMDA receptors [23].

Recently, recessive mutations in SLC1A4 gene have been associated with hypomyeli-
nation, developmental delay, and microcephaly [24]. SLC1A4 mutations were identified in
two affected siblings with severe intellectual disability (ID), microcephaly and spasticity,
from an Ashkenazi Jewish consanguineous family [25]. Additional SLC1A4 deficiency
was described in patients with neurodevelopmental disorders, presenting with thin cor-
pus callosum, in addition to the phenotypes of developmental delay, microcephaly, and
seizures [26-28]. Glutamate excitotoxicity is associated with neurodegenerative disorders,
including demyelination. As one of the toxic demyelination models, cuprizone induces
demyelination and axonal damage. Slc1a4 was upregulated in cuprizone-induced demyeli-
nation, especially in the corpus callosum in a region-specific manner [29]. These results
suggest that the failure of proper SLC1A4 expression may be in part the consequence
of astroglial dysfunction, glutamate signaling, demyelination, axonal damage, and thin
corpus callosum, related to demyelinating neurological diseases.

Lon protease is a mitochondrial matrix protease, crucial for the maintenance of mito-
chondrial homeostasis, and Lon dysregulation is involved in cancer and in the cerebral,
ocular, dental, auricular and skeletal syndrome [30]. In the VWM disease model, Eif2b
mutant, functional abnormalities of mitochondria can be characterized, comprising the
abnormal mitochondrial content phenotype of the mutant cells [7,15,31]. The increase in
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Lon protease was verified in the zebrafish model through the WISH method (Figure 4A).
The increased Lon protease in ¢if2b3~/~ may be an important factor in the malfunction
of mitochondria in VWM disease. Similarly, abnormal upregulation compared to WT in
eif2b3~/~ may be associated with pathological symptoms in the brain in VWM disease. In
this study, new clues that can interpret the mechanism of pathology of VWM, by identifying
the proteins changed in the mutant model, and their relevance needs to be clarified through
further studies.

When a specific gene is reduced in the mutant model, its protein is likely to be a
one whose expression is directly affected. In our study, crystallin proteins accounted for
most of the reduced proteins which are annotated to structural constituents of the eye
lens and visual perception categories in DAVID analysis with Opsin-1 (Figure 3B and
Table 1). Although it was reported that x-crystalline B chains were significantly increased
in astrocytes derived from VWM disease models in previous studies, the type of crystalline
(B and vy, not «), were significantly decreased in eif2b3~/~ [11,32]. y-crystallin is particularly
rich in the core region of the lens of the human eye [33]. From a genome-wide polysome-
profiling strategy, it was found that a cohort of lens-associated crystallin isoform mRNAs
is under the control of a specific mechanism of translation [34]. The optic atrophy, followed
by blindness, in one of representative phenotypes in VWM disease patients, are possibly
due to a significant decrease in 3- and y-crystalline, which plays an important role in the
visual system.

Among the downregulated proteins, citrulline-aspartate ligase was reduced in mutant
larvae as confirmed by WISH (Figure 4B). Citrulline-aspartate ligase in zebrafish has homol-
ogy with the arginosuccinate synthase (ASS1) protein in humans (Table 1). Arginosuccinate
synthase 1 is one of the enzymes of the urea cycle, and it catalyzes the formation of
arginosuccinate from aspartate, citrulline and ATP and together with arginosuccinate lyase,
and it is responsible for the biosynthesis of arginine in most body tissues. When arginosuc-
cinate synthase 1 is deficient, the urea cycle does not work, causing hyperammonemia,
in which the concentration of ammonia increases in blood. Ammonia is a neurotoxin in-
volved in the pathogenesis of neurological conditions associated with hyperammonemia,
including hepatic encephalopathy and brain edema [35,36]. Patients with neonatal-onset
hyperammonemia should have early therapy to avoid severe brain damage [37]. Further
studies should be conducted into the effect of the eif2b3~/~ on the reduction of arginosucci-
nate synthase 1, but arginosuccinate synthase 1 may be suggested as a mechanism for the
phenotype in the brain of VWM.

Using WISH analysis, we found a specific brain region in which both upregulation
(Ionp1 and sic1a4) and downregulation (ass1 and cad) of genes occurs. The MHB, also called
the isthmic organizer, is a secondary organizer region that develops at the junction of the
midbrain and hindbrain [38]. The MHB expresses signaling molecules that regulate the
differentiation and patterning of the adjacent neuroepithelium. This organization allows
for the development of the midbrain and hindbrain, as well as the specification of neuronal
subtypes in these regions. Further studies focusing on the differential expression of these
genes in MHB and their possible role in the pathogenesis of VWM disease, will be needed.

In conclusion, this study proposed candidate proteins as key regulators of the progres-
sion of VWN disease. We used quantitative proteomic analysis in the first EIF2B3 animal
model of VWN disease. Abnormalities of myelin gene expression and glial cell differentia-
tion were observed in the eif2b3 knockout zebrafish, and the DEPs were profiled by com-
parative quantitative proteomic analysis. Proteins related to the etiological phenomenon
of VWM were identified, and the expression patterns were verified, thereby providing
information on the molecular mechanisms underlying the symptoms of VWN disease.

4. Materials and Methods
4.1. Zebrafish Husbandry

Animal experiments were conducted according to approved guidelines and regula-
tions of the Institutional Animal Care and Use Committee at the Animal Ethics Committee
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of Chungnam National University (Approval number: 202012A-CNU-170). Adult fish were
reared under standard conditions with a 14 h/10 h light/dark cycle. We obtained embryos
by natural mating, and zebrafish were reared in egg water at 28.5 °C. WT zebrafish were
obtained from the Zebrafish Center for Disease Modeling.

4.2. Maintenance of eif2b3 Knockout Zebrafish

To understand the in vivo role of EIF2B3, we established a zebrafish knockout model
utilizing the CRISPR/Cas9 system, as described previously [39]. PCR primers for geno-
typing of eif2b3 ~/= zebrafish were forward primer, 5-TGTTCGGGATGGAGCTACAG-3’,
and reverse primer, 5" -TTTGTTGCCCACAGGAAGCA-3’. PCR products (20 puL) were
re-annealed in a thermal cycler under the following conditions: 95 °C for 2 min, 95-85 °C
at2°C/s, 85-25°Cat 0.1 °C/s, then kept at 4 °C.

4.3. Protein Sample Preparation

The deyolked zebrafish embryos from each group were lysed with ice-cold radioim-
munoprecipitation assay buffers (Thermo Fisher Scientific, Waltham, MA, USA) containing
protease inhibitors (Thermo Fisher Scientific) using a homogenizer. Sonication was applied
directly to all samples for 2 min (output 30%, 5 sec on and off intervals) on ice and cen-
trifuged at 4 °C at 16,000 g for 10 min [14]. The soluble fractions were moved into new
sample tubes, and the protein concentration measured using BCA kits (Thermo Fisher Sci-
entific). We placed 100 pg of the protein samples (triplicates) from each group (15 embryos)
to new sample tubes and added 5 mM of dithiothreitol (Sigma-Aldrich, St. Louis, MO,
USA) and incubated at 56 °C for 30 min, followed by treatment with 15 mM iodoacetamide
(Sigma-Aldrich) in the dark for 30 min. Then, ice-cold acetone was added slowly to the
samples for protein precipitation and kept for 18 hr in a —20 °C freezer. The samples were
centrifuged at 4 °C at 16,000 x g for 10 min and supernatants were removed. The protein
pellets were dissolved in 50 mM tetraethylammonium bromide (Sigma-Aldrich) and the
protein concentration measured again. The pH was adjusted to 8 and trypsin (1:50) was
directly added to the sample and left to digest for 18 hr at 37 °C. Finally, 1% trifluoroacetic
acid (Sigma-Aldrich) added to complete the trypsin digestion. The peptides were dried in
speed vac dryer at low temperature and directly dissolved in 50 mM tetraethylammonium
bromide for 2-plex tandem mass tag (TMT) labeling (Thermo Fisher Scientific). After check-
ing the peptide concentration using a Pierce™ Quantitative Colorimetric Peptide Assay
Kit (Thermo Fisher Scientific), equal amounts of peptides from WT and eif2b3~/~ group
were labeled (1 = 3) and placed in one sample tube. The pooled peptide samples were
fractionated using a Pierce™ High-pH Reversed-Phase Peptide Fractionation Kit (Thermo
Fisher Scientific).

4.4. Comparative Proteome Analysis

The fractionated samples were dissolved in 10 pL of 2% in 0.1% formic acid solution, and
500 ng of each fraction was loaded onto a nano-LC 1D plus system (Eksigent, Framingham,
MA, USA) consisting of an in-house Cjg resin (5 pm Proteo 100 A; Phenomenex Inc.,
Torrance, CA, USA) and a capillary column (ID 75 um, OD 150 pum; Molex, Lisle, IL,
USA). Elution was conducted using a gradient liquid chromatography method (5-25%
acetonitrile for 90 min) and analyzed with an LTQ-Orbitrap Velos mass spectrometer
(Thermo Fisher Scientific) in positive ion mode at the Mass Spectrometry Convergence
Research Center. The m/z data collection range was set at m/z 300-1800, and higher-energy
collisional dissociation collision mode was used for fragmentation. The mass spectrometry
proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE
partner repository with the dataset identifier PXD023933.

4.5. Bioinformatics

All mass spectra data were input to MaxQuant 1.5.1.0 to obtain bioinformatics in-
formation, and the zebrafish proteome database (updated 25 October 2018) was down-
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loaded from UniProt (https:/ /www.uniprot.org/proteomes/UP000000437, accessed on
4 March 2021). All MS/MS spectra obtained were analyzed using MaxQuant software
(https:/ /www.maxquant.org/, accessed on 4 March 2021), allowing a maximum false-
discovery rate of 1% for the protein and peptides. GO, InterPro, and KEGG pathways
were analyzed using DAVID Functional Annotation Bioinformatics Microarray Analysis
(https://david.ncifcrf.gov/, accessed on 4 March 2021). Perseus 1.6.0.7 was used for clus-
tering protein groups depending on the protein regulation patterns. The STRING analytical
tool (https://string-db.org/, accessed on 4 March 2021) was used to search specific protein
networks according to regulation differences resulting from mutation of eif2b3.

4.6. Whole-Mount In Situ Hybridization

Whole-mount in situ hybridization (WISH) was performed essentially as described
previously [13]. WISH was performed using probes for mbp, 0lig2, nestin, lonp1, slc1a4, abat,
ass1, cad, sept6, dhtkd1, psat1, xbp1, atf4, atf6, and crybb (Table S2). Briefly, staged embryos
were fixed overnight in 4% PFA, then dehydrated in a methanol gradient. Embryos were
then rehydrated in phosphate buffered saline containing 0.1% Tween-20 (PBST). Embryos
were permeabilized by proteinase K digestion and then hybridized with digoxin-labeled
probes overnight at 70 °C. The next day, embryos were washed in a preheated mixture
of 50% saline sodium citrate containing 0.1% Tween-20 and 50% hybridization solution
at 70 °C. Embryos were washed again at room temperature and incubated in staining
solution in the dark until sufficient staining appeared. Embryos were mounted in glycerol
and visualized using a Nikon AZ100 microscope (Nikon). Images were captured using a
Nikon DIGITAL SIGHT DS-Fill digital camera (Nikon) and processed with NIS-Elements
F 3.0 (Nikon).

Supplementary Materials: Supplementary Materials can be found at https:/ /www.mdpi.com /1422
-0067/22/5/2707/s1. Figure S1: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis after
yolk protein remove, Figure S2: Whole-mount in situ hybridization of WT and eif2b3~/~ probed for
dhtkd1, past1, and xbp1, Figure S3: Whole-mount in situ hybridization of WT and eif2b3*/ ~ probed for
atf4 and atf6. Figure S4: Whole-mount in situ hybridization of WT and eif2b3~/~ probed for crybbl,
Table S1: All detected protein lists. Table S2: Primer sequences used for in situ probe synthesis.
Hybridization temperature for each probe was 70 °C.
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