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Diacylglycerol kinases (DGKs) are a family of enzymes that regulate the relative levels

of diacylglycerol (DAG) and phosphatidic acid (PA) in cells by phosphorylating DAG to

produce PA. Both DAG and PA are important second messengers cascading T cell

receptor (TCR) signal by recruiting multiple effector molecules, such as RasGRP1, PKCθ,

and mTOR. Studies have revealed important physiological functions of DGKs in the

regulation of receptor signaling and the development and activation of immune cells. In

this review, we will focus on recent progresses in our understanding of two DGK isoforms,

α and ζ, in CD8 T effector and memory cell differentiation, regulatory T cell development

and function, and invariant NKT cell development and effector lineage differentiation.

Keywords: diacylglycerol kinase, regulatory T cells, invariant NKT cells

INTRODUCTION

Diacylglycerol (DAG) and phosphatidic acid (PA) are two key lipid second messengers that
facilitate efficient receptor-mediated signaling in immune cells along with many other cells. They
regulate numerous intracellular signaling molecules to control cell differentiation, proliferation,
survival, and function. Following T cell receptor (TCR) engagement, DAG is produced through
the activation of Phospholipase Cγ1 (PLCγ1), which hydrolyzes membrane phosphatidylinositol
bisphosphate (PIP2) to DAG and inositol trisphosphate (IP3). DAG, together with other signal
events, recruits downstream effector molecules to the membrane through their C1 domains and
allosterically activates these effectors, with protein kinase Cθ (PKCθ), Ras guanyl–releasing protein
1 (RasGRP1), protein kinase D (PKD), Munc13s, and chimaerins being important for T cell
development and/or function (Krishna and Zhong, 2013a; Merida et al., 2015).

DAG plays an important role in recruiting PKCθ to the plasma membrane and immune synapse
in T cells (Diaz-Flores et al., 2003; Carrasco and Merida, 2004). The activation of PKCθ leads to
TCR-mediated NF-κB and mammalian/mechanistic target of rapamycin complex 1 (mTORC1)
activation in T cells (Sun et al., 2000; Isakov and Altman, 2002; Hamilton et al., 2014), which
affects key processes, including T cell activation and survival (Manicassamy et al., 2006; Hayashi
and Altman, 2007), IL-2 production (Werlen et al., 1998), TH2 responses (Cannons et al., 2004;
Marsland et al., 2004), TH17 responses (Kwon et al., 2012), invariant NKT (iNKT) cell development
and activation (Schmidt-Supprian et al., 2004; Fang et al., 2012), and Treg development (Gupta
et al., 2008; Barnes et al., 2009; Medoff et al., 2009).

Ras guanyl–releasing protein 1 (RasGRP1) is another downstream molecule that is recruited
to the cytoplasm membrane by DAG (Jones et al., 2002; Carrasco and Merida, 2004). RasGRP1
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promotes activation of Ras by exchanging GDP for GTP, leading
to the activation of the RAF1-MEK1/2-ERK1/2 pathway (Ebinu
et al., 1998; Dower et al., 2000; Roose et al., 2005). Additionally,
RasGRP1-Ras-Erk1/2 pathway functions upstream for TCR-
induced mTORC1, mTORC2, and PI3K activation in T cells
(Gorentla et al., 2011). RasGRP1 plays an essential role in
conventional αβ T cell development (Dower et al., 2000; Fuller
et al., 2012), particularly for the selection of thymocytes that
express weak TCR signals (Priatel et al., 2002) and for early iNKT
cell development (Shen et al., 2011a). While RasGRP1 appears
dispensable for overall γδT cell development, it ensures IL-17
expressing γδT17 lineage differentiation and TCR-induced γδT
cell activation (Chen et al., 2012). More recently, it was also
found that RasGRP1, together with RasGRP3, promotes early
thymic precursor generation (Golec et al., 2016). Additionally,
RasGRP1may play a role in promoting antigen-induced CD8 cell
expansion by lowering the threshold of T cell activation (Priatel
et al., 2010).

PKDs are recruited by both DAG and DAG-activated PKCs.
Upon stimulation, inactive PKDs translocate from the cytosol
to the plasma membrane in response to membrane DAG
production, where they are then activated by novel PKCs
(Rozengurt et al., 2005; Spitaler et al., 2006). PKDs have been
shown to exert different effects on VDJ recombination at
the TCRβ locus and on CD4 and CD8 expression during T
cell development based on their localization at the cytosol or
plasma membrane (Marklund et al., 2003; Spitaler et al., 2006).
Additionally, PKD2 acts as a sensitive digital amplifier of TCR
engagement, enabling CD8 T cells to match the production
of inflammatory cytokines to the quality and quantity of TCR
ligands (Navarro et al., 2014).

Munc13 proteins are mammalian homologs of the C. elegans
Unc13, which are important for neurotransmitter secretion
(Brose and Rosenmund, 2002). Munc13-1, Munc13-2, and
Munc13-3 isoforms bind to DAG with high affinity. The
Munc13-4 isoform lacks a C1 domain (Koch et al., 2000;
Shirakawa et al., 2004), but it is involved in granule maturation
and exocytosis in NK cells and cytotoxic T lymphocytes (CTLs)
(Feldmann et al., 2003; Menager et al., 2007), phagosomal
maturation, and the killing of intracellular bacteria in neutrophils
(Johnson et al., 2011; Monfregola et al., 2012). Deficiency
of Munc13-4 causes primary immune deficiency in patients
(Feldmann et al., 2003; Cichocki et al., 2014).

Chimaerins possess Rac-specific GTPase Activating Protein
(GAP) activity (Caloca et al., 1999; Yang and Kazanietz, 2007).
Chimaerin isoforms α2 and β2 are expressed at different levels
in T cells and have been shown to translocate to the immune
synapse and to both participate in TCR signaling and receive
regulation from it (Caloca et al., 2008; Siliceo and Merida, 2009).
Chimaerins have been found to inhibit TCR-mediated NFAT
activation and DAG-dependent actin polymerization to regulate
T cell adhesion and chemotaxis (Siliceo et al., 2006).

Phosphatidic acid (PA) is produced both by the activity of
DAG kinases (DGKs) and by the phospholipase D (PLD) family
of enzymes in T cells. DGKs phosphorylate DAG to convert it
to PA, while PLDs mediate the hydrolysis of phosphatidylcholine
(Jenkins and Frohman, 2005; Zhong et al., 2008). The removal

of PA is mediated by lipins, which can turn off PA-mediated
signaling through dephosphorylation, and they have been shown
to regulate mast cell function in the immune system (Csaki
and Reue, 2010; Shin et al., 2013b). Intracellular levels of PA
change dynamically in response to environmental stimuli (Wang
et al., 2006). The downstream effector molecules of PA include
a multitude of kinases, such as mTOR (Chen and Fang, 2002),
phosphatidylinositol-4-phosphate 5-kinase (PIP5K) (Galandrini
et al., 2005; Jarquin-Pardo et al., 2007; Micucci et al., 2008;
Cockcroft, 2009; Yoon et al., 2011), spingosine kinase (SPHK
½), RAF1 (Ghosh et al., 1996; Shome et al., 1997; Rizzo et al.,
1999, 2000; Andresen et al., 2002), and other molecules, such
as Src homology region 2 domain-containing phosphatase 1
(SHP1) (Frank et al., 1999), kinase suppressor of Ras 1 (KSR1,
a scaffolding protein that interacts with several components of
the Raf-MEK-ERK cascade) (Morrison, 2001; Kraft et al., 2008),
and Sos, another guanine nucleotide exchange factor for Ras
activation (Zhao et al., 2007). Both PLD and DGK-derived PA
has been shown to directly activate mTOR in non-T cells (Chen
and Fang, 2002; Avila-Flores et al., 2005). In these cells, PA can
also activate mTOR indirectly via ERK (Winter et al., 2010), but
such a mechanism has not been examined in T cells. In T cells,
DGKα and ζ mainly inhibit TCR-induced mTOR signaling by
negative control of DAG-mediated RasGRP1 and likely PKCθ

activation (Gorentla et al., 2011; Hamilton et al., 2014). However,
DGK-derived PA has been shown to promote T cell maturation
in the thymus (Guo et al., 2008) and to regulate innate immune
responses (Liu et al., 2007). Future studies should determine
the direct downstream of the effector(s) of PA that mediate its
functions in these immune cells.

The diverse and important functions of DAG—and
PA-mediated signaling suggest their levels must be tightly
controlled temporally and spatially. DGKs switch from DAG-
mediated signals to PA-mediated signals to dynamically regulate
downstream pathways in response to the engagement of the
TCR and many other receptors (Merida et al., 2008; Cai et al.,
2009; Zhong et al., 2011). In mammals, there are ten DGK
isoforms encoded by different genes, some of which also contain
splicing variants, adding complexity to this family of enzymes.
All DGKs contain a kinase domain and at least two cysteine-rich
C1 domains but differ in the homology of their other structural
domains as well as their interaction with other biomolecules.
Based on their structural distinction and homology, DGKs are
classified into five types that may differ in subcellular localization,
function, and regulation. The existence of multiple isoforms
poses a significant challenge in studying the physiological roles of
any specific isoforms in cellular development and functions due
to functional redundancies, a fact demonstrated in conventional
αβ T cell and iNKT cell development in mice deficient in both
DGKα and DGKζ (Guo et al., 2008; Shen et al., 2011b). Of these
ten isoforms, DGKα and DGKζ as well as DGKδ are the major
isoforms expressed in T cells (Zhong et al., 2002; Olenchock
et al., 2006a; Sakane et al., 2007). Both DGKα and ζ have been
found to regulate multiple signaling pathways downstream from
the TCR (Zhong et al., 2002, 2003; Sanjuan et al., 2003; Baldanzi
et al., 2011; Gharbi et al., 2011; Gorentla et al., 2011), such as the
RasGRP1-Ras-Erk1/2 pathway, the PKCθ-IKK-NFκB pathway,
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mTOR signaling (Gorentla et al., 2011), and MAP kinase-
interacting serine/threonine kinase (Mnk) 1 and 2 signaling
(Gorentla et al., 2013). They control T cell development (Outram
et al., 2002; Guo et al., 2008; Almena et al., 2013), activation
and anergy (Zhong et al., 2003; Olenchock et al., 2006a; Zha
et al., 2006; Baldanzi et al., 2011), survival (Baldanzi et al., 2011;
Ruffo et al., 2016), secretion (Alonso et al., 2007, 2011; Chauveau
et al., 2014), and effector function (Shin et al., 2012; Yang et al.,
2016b). Besides T cells, DGKζ also regulates the development,
survival, and function of mast cells (Olenchock et al., 2006b),
B cells (Wheeler et al., 2013), dendritic cells and macrophages
(Liu et al., 2007), osteoclasts (Zamani et al., 2015), and NK cells
(Yang et al., 2016a). Extensive reviews about DGKs in immune
cells have been published recently (Merida et al., 2008, 2015;
Zhong et al., 2008; Krishna and Zhong, 2013b). Here, we will
focus on recent literature concerning DGKs in T cell tolerance,
iNKT cell development and function, and CD8 T cell-mediated
antimicrobial and antitumor immunity.

DGKα AND DGKζ IN T CELL TOLERANCE

Clonal deletion of highly self-reactive T cells in the thymic
medulla, generation of properly functioning regulatory T cells
(Treg), and T cell anergy are among the most important
mechanisms of T cell tolerance that prevent autoimmune diseases
(Metzger and Anderson, 2011; Xing and Hogquist, 2012).
Although DGKα and ζ synergistically promote T cell maturation
from the CD4+CD8+ double positive (DP) to the CD4+CD8−

or CD4−CD8+ single positive (SP) stage, no direct evidence has
implicated DGKα and ζ in interference with negative selection in
establishing central tolerance (Guo et al., 2008).

Regulatory T cells generated in the thymus (tTregs)
dominantly suppress T cells and other immune cells to prevent
autoimmune diseases. However, they also negatively regulate
antitumor and antipathogen immune responses. tTregs are
derived from CD4 SP thymocytes in the thymic medulla after
relatively strong but transient TCR-MHC/peptide engagement
and signaling (Mahmud et al., 2014; Li and Rudensky, 2016).
They express Foxp3, a key transcription factor that is critical for
their development, maintenance, and function. TCR signaling
is not only essential for tTreg generation but also required for
tTreg homeostasis and function (Kim et al., 2009; Delpoux et al.,
2014; Levine et al., 2014; Vahl et al., 2014). Multiple DAG-
mediated signaling pathways are involved in tTreg development
and function, indicated by the impaired tTreg development and
function in mice deficient in either RasGRP1-Ras or PKCθ-
IKK-NFκB signaling. Both NFκB and AP1 are involved in
transcriptional activation of Foxp3 expression and possibly in
regulating other tTreg properties (Schmidt-Supprian et al., 2004;
Willoughby et al., 2007; Chen et al., 2008; Gupta et al., 2008;
Barnes et al., 2009; Medoff et al., 2009). Both the percentage
and number of tTregs in the CD4+ population are increased
in DGKζ-deficient (but not DGKα-deficient) thymocytes and
splenocytes, compared to wild-type (WT) controls (Table 1).
Additionally, Foxp3−CD25+ cells within the CD4 SP thymocytes
are increased in a DGKζ-deficient thymus, suggesting that DGKζ

negatively controls early tTreg development. The inhibitory effect
of DGKζ on tTreg development is found to be dependent on
its negative control of the NFκB/c-Rel and RasGRP1-Ras-Erk
pathways (Joshi et al., 2013; Schmidt et al., 2013). Of note are
reports that DGKα and ζ manifest differential effects on TNFα-
induced NFκB activation in tumor cells and fibroblasts, with
DGKα positively regulating PKCζ-mediated p65/RelA at serine
311 residue (Yanagisawa et al., 2007; Kai et al., 2009), while
DGKζ inhibits TNFα-induced NFκB activation via decreasing
NFkB phosphorylation at Ser468/536, its nuclear localization,
and its association with CBP (Tsuchiya et al., 2015). It would be
interesting to investigate whether such mechanisms also operate
in T cells or downstream of TCR to contribute to DGKα and
ζ function in tTreg differentiation. It also remains unclear if
DGKα and ζ act redundantly or synergistically to control Treg
differentiation and function.

T cell anergy is a form of peripheral tolerance whereby
T cells that recognize self-antigens in the absence of co-
stimulatory signals are rendered functionally inactive (Schwartz,
2003; Powell, 2006; Fathman and Lineberry, 2007; Chappert and
Schwartz, 2010; Kalekar et al., 2016). In anergic T cells, DAG-
mediated signaling, including Ras/Erk1/2, NFκB, and mTOR
activation, is diminished, while Ca++-mediated signaling and
NFAT are selectively elevated or unhindered (Powell, 2006;
Chappert and Schwartz, 2010; Xie et al., 2012; Figure 1). Both
DGKα and ζ are expressed at higher levels in anergic T cells
than in activated T cells (Macian et al., 2002; Olenchock et al.,
2006a; Zha et al., 2006). Deficiency of either DGKα or ζ or
inhibition of DGK activity contributes T cell resistance to anergic
induction (Olenchock et al., 2006a; Zha et al., 2006), while
overexpression of DGKα promotes T cell anergy (Zha et al.,
2006). Because DAG and IP3 are produced at an equimolar
ratio by PLCγ1 from PIP2, the elevated DGKα and ζ expression
in anergic T cells may shift the equilibrium of IP3 and DAG
toward the predominance of IP3-Ca++-NFAT signaling over
DAG signaling and subsequent AP1 induction. NFAT forms
a NFAT/AP1 dimer to promote T cell activation, but it also
functions as a monomer to induce transcription of anergy-
promoting molecules, such as Cbl-b and TRAIL (Macian et al.,
2002; Wu et al., 2006). It is postulated that elevated DGK activity
may lead to NFAT monomer predominance over NFAT/AP1
dimer for anergy induction (Zhong et al., 2008; Krishna and
Zhong, 2013a), although experimental evidence has not yet been
presented.

An important issue is how DGKα and ζ expression is
regulated. The transcription factor early growth response gene 2
(Egr2) is upregulated in anergic T cells and plays an important
role in T cell anergy (Zheng et al., 2012). It binds directly
to both Dgka and Dgkz promoters to increase the expression
of these genes as well as several other anergy-promoting
genes (Zheng et al., 2012, 2013). Another transcription factor,
Foxo1, also directly promotes Dgka transcription (Martinez-
Moreno et al., 2012). Foxo1 function, which is regulated by
its subcellular localization between the cytosol and nuclei,
is sequestered in the cytosolic compartment following Akt-
mediated phosphorylation, which prevents it from association
with target genes. In naïve or unstimulated T cells, nuclear Foxo1
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TABLE 1 | Comparison of DGKα−/−, DGKζ−/−, and DGKα−/−ζ−/− mice.

DGKζ−/− DGKα−/− DGKα−/−ζ−/− References

T cell development Positive selection Not affected Not affected Severe decreases of CD4 SP

and CD8 SP thymocytes

Zhong et al., 2003;

Olenchock et al.,

2006a; Guo et al., 2008

Negative selection Not affected Not affected Not affected Guo et al., 2008

Regulatory T cell Foxp3−CD25+

CD4+SP thymocytes

Increased frequencies Increased but less obvious than

DGKζ−/−

Not reported Joshi et al., 2013;

Schmidt et al., 2013

Foxp3+ Treg Increased in thymus and

spleen

Not increased Not reported Schmidt et al., 2013

Suppressive function

(in vitro)

Enhanced Not obviously changed Not reported Schmidt et al., 2015

iNKT cells iNKT cell numbers Not affected Not affected Severely decreased Shen et al., 2011b

iNKT17 cell Decreased in numbers due

to extrinsic mechanisms

Not reported Not reported Wu et al., 2013

CD8 T cells Primary responses to

pathogens

Enhanced expansion and

cytokine production in

response to LCMV

Less obvious expansion than

DGKζ−/− but similar enhanced

cytokine production in response

to LCMV

Severely impaired in migration,

expansion, and cytokine

production in response to

LM-Ova

Zhong et al., 2003;

Shin et al., 2012; Yang

et al., 2016b

Memory responses Decreased formation;

impaired in expansion,

enhanced IFNγ and TNFα

production in recall

responses to LCMV

Decreased formation; impaired in

expansion (more severe than

DGKζ−/−), enhanced IFNγ but

not TNFα production in recall

responses to LCMV

Impaired formation and

maintenance; Decreased

expansion but enhanced IFNγ

and TNFα production in recall

response to LM-Ova

Shin et al., 2012; Yang

et al., 2016b

Sensitivity to TGF-β Decreased Not reported Not reported Arumugam et al., 2015

Anti-tumor

immunity-OT1 T cells

Enhanced expansion and

effector function; Enhanced

tumor control

Not reported Not reported Riese et al., 2011, 2013

Anti-tumor

immunity-Meso-CAR T

cells

Enhanced effector function Enhanced effector function Stronger effector function than

DGKα or ζ single deficiency;

Better tumor control

Riese et al., 2013

activates Dgka expression. TCR engagement in the presence of
CD28 costimulation induces strong PI3K/Akt activation, which
may reduce nuclear Foxo1 and subsequent DGKα expression to
ensure full T cell activation and avoidance of anergy (Martinez-
Moreno et al., 2012). DGKζ expression has also been found
to be regulated by microRNA. Two conserved sequences that
match to the miR-34a seed sequence are located in the coding
region and 3′ untranslated region (3′ UTR) of Dgkz. miR-34a
expression is greatly upregulated in activated T cells. miR-34a
directly represses DGKζ expression through targeting both Dgkz
3′ UTR and the coding region to promote T cell activation (Shin
et al., 2013a).

DGKS IN INKT CELL DEVELOPMENT AND
FUNCTION

Invariant NKT (iNKT) cells express the invariant Vα14Jα18 TCR,
which recognizes lipid antigens presented by MHC class I-like
CD1d molecules (Kawano et al., 1997; Mendiratta et al., 1997;
Gapin et al., 2001). They are derived from a unique innate-
like lymphoid cell lineage and can rapidly respond to agonist
stimulation in both innate and adaptive immune responses via

production of cytokines, such as IL-4, IL-17, IL-10, IL-13, IFNγ,
and TNFα (Bendelac et al., 2007; Coquet et al., 2008; Godfrey
et al., 2010; Milpied et al., 2011; Brennan et al., 2013; Salio et al.,
2014). iNKT cells participate in host defense against microbial
infection, antitumor immunity, and many diseases, such as
allergies, asthma, graft-vs.-host disease, and obesity (Osman et al.,
2000; Terashima et al., 2008; Van Kaer et al., 2013; Berzins and
Ritchie, 2014).

Based on surface CD24, CD44, and NK1.1 expression,
iNKT cells are traditionally defined by four developmental
stages in the thymus: stage 0 (CD24+CD44−NK1.1−), stage 1
(CD24−CD44−NK1.1−), stage 2 (CD24−CD44+NK1.1−), and
stage 3 (CD24−CD44+NK1.1+) (Bendelac et al., 2007; Godfrey
et al., 2010; Figure 2). Recently, iNKT cells have also been defined
into multiple terminally differentiated effector lineages, such
as IFN-γ-producing iNKT1, IL-4-producing iNKT2, and IL-17-
producing iNKT17 lineage (Matsuda et al., 2006; Michel et al.,
2007, 2008). In addition, IL-10-producing iNKT10, T follicular
helper (Tfh)-like iNKT cells (iNKTFH), and regulatory T cell
(Treg)-like iNKT cells have also recently been described (Chang
et al., 2012; Tonti et al., 2012; Sag et al., 2014; Lynch et al., 2015;
Rampuria and Lang, 2015). iNKT1 and iNKT17 cells mostly
reside in the CD44+NK1.1+ and the CD44+NK1.1−ICOS+
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FIGURE 1 | DGKα and DGKζ in T cell activation and anergy. Engagement of the TCR in the presence of co-stimulation results in strong activation of the

PI3K-PDK1-Akt pathway (left panel). This pathway leads to mTORC2 signaling. Together with activation of the RasGRP1/Ras-Erk1/2 and PKCθ-CARMA1 pathways,

they leads to mTORC1 activation. mTORC2 also promotes Akt activation via phosphorylation. Activated Akt phosphorylates Foxo1, leading to it sequestration in the

cytosol and failure to activate DGKα transcription. In activated T cells, miR-34a is upregulated, which in turn downregulates DGKζ expression. Decreased DGKα and ζ

expression leads to strong DAG-mediated signaling including increases of AP-1 and NFκB activity. AP-1 associates with NFAT to promote T cell activation. At the

same time, AP-1 reduces monomeric NFAT to prevent it from inducing anergy promoting molecules. Strong DAG signaling together with IP3-CaN (calcineurin)-NFAT

signaling allows full activation of T cells. In contrast, engagement of TCR in the absence of co-stimulation decreases PI3K-Akt-mTOR signaling, leading to increased

nuclear Foxo1 and DGKα transcription (right panel). miR-34a mediated repression of DGKζ might also be lost under anergy inducing conditions. Increased DGKα

and ζ expression may lead to a skewed balance between IP3 and DAG toward strong or selective Ca++-NFAT signaling and induction of Egr1/2, which further induce

transcription of DGKα and DGKζ as well as other anergy promoting molecules. Selective IP3-Ca++-NFAT signaling in the presence of weak DAG-mediated signaling

induces T cells to enter an anergic state.

FIGURE 2 | Regulation of iNKT cell development by DGKα and DGKζ. CD4+CD8+ DP thymocytes expressing the iVα14TCR undergo positive selection to

become iNKT cells. RasGRP1/mTOR signaling is critical for generation of stage 0 iNKT cells. Constitutive DGKα inhibits iNKT generation possibly by inhibiting

RasGRP1/Erk1/2 activation. DGKα and ζ double deficiency or overactivation of IKKβ causes similar blockade of early iNKT cell development. Overactivation of

mTORC1 due to TSC1 deficiency leads to blockade of iNKT terminal maturation. DGKα and ζ double deficiency or expression of a constitutively active KRas also

results in impaired iNKT terminal maturation, correlated with elevated mTORC1 activation.
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populations, respectively (Watarai et al., 2012; Constantinides
and Bendelac, 2013; Lee et al., 2013; Wu et al., 2014b).

Both the RasGRP1-Ras-Erk1/2 and PKCθ-IKK-NFκB
pathways have been shown to play important roles in iNTK
cell development (Yang et al., 2015). Although it was initially
thought that Ras and Erk1/2 activation were dispensable for
iNKT cell ontogeny, two recent studies have provided evidence
that the RasGRP1-Ras-Mek1/2-Erk1/2 pathway is critical for
early iNKT cell development (Hu et al., 2011; Shen et al., 2011a).
In RasGRP1-deficient mice, stage 0 iNKT cells as well as total
iNKT cell count are significantly decreased, suggesting defective
positive selection (Shen et al., 2011a). In concordance with
these observations, mice expressing dominant negative Ras in
developing thymocytes demonstrated iNKT cell developmental
defects (Hu et al., 2011). The RasGRP1-Ras-Erk1/2 pathway
activates mTORC1 and mTORC2 signaling as well as Mnk1/2
in developing thymocytes (Gorentla et al., 2011, 2013). Both
mTORC1 and mTORC2, but not Mnk1/2, are important for early
iNKT cell development (Gorentla et al., 2013; Shin et al., 2014;
Wei et al., 2014; Zhang et al., 2014; Prevot et al., 2015), revealing
a RasGRP1-Ras-Erk1/2-mTOR signal cascade in iNKT cells for
their development. mTORC1, but not mTORC2, promotes PLZF
nuclear localization, which may ensure iNKT cell maturation
in stage 1 and differentiation to cytokine-producing cells (Shin
et al., 2014; Prevot et al., 2015). In iNKT cells, both the DAG
and the SLAM (signaling lymphocytic-activation molecule)-SAP
(SLAM adaptor protein)-FynT pathway are involved in PKCθ

and subsequent NFκB activation. The PKCθ -IKK-NFκB pathway
is essential in the ontogeny of iNKT cells, at least in part by
increasing expression of antiapoptotic proteins, such as Bcl-xL
(Elewaut et al., 2003; Sivakumar et al., 2003; Schmidt-Supprian
et al., 2004; Stanic et al., 2004; Chung et al., 2005; Nichols et al.,
2005; Pasquier et al., 2005; Griewank et al., 2007; Fang et al.,
2012), but it is independent of CARMA1 and Malt1 (Mucosa-
associated lymphoid tissue lymphoma translocation protein 1)
(Medoff et al., 2009). CARMA1 contributes to TCR-induced
mTORC1 activation in T cells (Hamilton et al., 2014). Given the
minimal requirement of CARMA1 for iNKT cell development,
it would be interesting to determine if TCR-induced mTORC1
activation in iNKT cells would be independent of CARMA1.

Emerging evidence demonstrates that tight regulation of
DAG-mediated signaling by DGK activity is critical for
the development of iNKT cells. Elevated DGKα activity
brought about by expressing a membrane-targeted caDGKα in
thymocytes under the control of the proximal Lck promoter
caused reduced Erk1/2 activation in thymocytes and a 50%
decrease of thymic iNKT cells (Almena et al., 2013). Germline
deletion of either DGKα or ζ did not significantly alter iNKT
cell numbers in mice. However, simultaneous ablation of both
enzymes resulted in a drastic decrease in the number of iNKT
cells in the thymus and in peripheral lymphoid organs (Shen
et al., 2011b), correlated with prolonged DAG accumulation,
elevated Ras-Erk1/2 and PKCθ-IKK signaling, and enhanced
activation of both mTORC1 and mTORC2 activities in DP
thymocytes (Guo et al., 2008; Gorentla et al., 2011). In DGKα

and ζ double knockout mice, there was a decrease in the number
of stage 1 to stage 3 iNKT cells. Stage 0 iNKT cells were

not examined. The remaining iNKT cells in these mice were
mostly CD44+NK1.1− stage 2 cells, suggesting that DGKα and
ζ promote both early and terminal iNKT cell maturation (Shen
et al., 2011b). Interestingly, expression of constitutive active (CA)
IKKβ in developing thymocytes caused a severe reduction in
the number of stage 1–3 iNKT cells. Thus, DGKα and ζ double
deficiency may cause dysregulation of the PKCθ-IKK-NFκB
pathway, leading to early iNKT cell developmental blockage.
Different from CA-IKKβ, expression of CA-KRas in thymocytes
caused a selective blockage of the transition from stage 2 to 3 of
iNKT cells and was associated with decreased T-bet expression
(Shen et al., 2011b). Because CA-KRas and DGKα and ζ double
deficiency caused elevated mTORC1 signaling (Gorentla et al.,
2011) and overactivation of mTORC1 in the absence of TSC1 also
resulted in a similar iNKT cell terminal maturation defect (Wu
et al., 2014b), DGKα and ζmay synergistically promote iNKT cell
terminal maturation at least in part by preventing overactivation
of the RasGRP1-Ras-Erk1/2-mTORC1 signaling cascade.

The role of DGKs in iNKT effector functions, however, is
less clear. DAG-mediated signaling pathways play important
roles in T cell activation, effector lineage differentiation, and
tolerance (Chen et al., 2012). They are thus expected to be
important in iNKT activation and function. For example, PKCθ

is essential for iNKT-mediated liver inflammation (Fang et al.,
2012). In germline DGKζ-deficient mice, iNKT17, but not
iNKT1 cell number, was selectively decreased. Interestingly,
iNKT-17 defects caused by DGKζ deficiency can be corrected
in chimeric mice reconstituted with mixed WT and DGKζ-
deficient bone marrow cells, suggesting that DGKζ controls
iNKT-17 differentiation via an extrinsic mechanism (Wu et al.,
2013). Future investigation should define the type of cells that
provide such a DGKζ-regulated extrinsic control of iNKT-
17 development. Additionally, mTORC1 deficient iNKT cells
are defective in activation and are not able to inflict liver
damage (Shin et al., 2014). Overactivation of mTORC1 due
to TSC1 deficiency shapes iNKT cell effector lineage fates and
contributes to their resistance to anergy and enhanced antitumor
immunity (Wu et al., 2014a,b). Given the ability of DGKs in
regulating mTOR and PKCθ signaling, future studies should
determine if DGKs intrinsically regulate iNKT cell functions and
effector lineage differentiation under steady state and in various
pathologic conditions.

DGKα AND ζ IN CD8 T CELL-MEDIATED
ANTIPATHOGEN IMMUNE RESPONSES

CD8 T cells play important roles in immune responses against
pathogens, particularly intracellular pathogens. Upon microbial
infection, naïve CD8 T cells are activated after engagement of
their TCRs with pathogen-derived peptides presented by antigen-
presenting cells. They massively expand and differentiate into
cytotoxic T cells that are equipped to kill pathogen-infected target
cells and secrete proinflammatory cytokines. A typical antigen-
specific CD8 T cell-mediated response includes an expansion
phase in which CD8 cells proliferate rapidly and differentiate into
effector cells, a contraction phase in which 90–95% of effector
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CD8 cells die due to apoptosis, and a memory maintenance
phase in which the remaining 5–10% of cells are retained as
fast-responding memory cells (Williams et al., 2006; Harty and
Badovinac, 2008; Zhang and Bevan, 2011). During the expansion
phase, effector CD8 T cells differentiate into short-lived effector
cells (SLECs, CD127lowKLRG1hi) andmemory precursor effector
cells (MPECs, CD127hiKLRG1low) (Kaech et al., 2003; Sarkar
et al., 2008). SLECs produce high levels of cytokines but are prone
to death, while MPECs have high potential to differentiate to
long-lived memory cells.

Engagement of the TCR on naïve CD8 T cells provides
a critical signal that initiates their activation and expansion.
TCR signal strength and quality regulate both the magnitude of
expansion and the effector fates of CD8 T cells (Zehn et al., 2009;
Iborra et al., 2013; Marchingo et al., 2014; Fulton et al., 2015)
through the Ras-Erk1/2-AP1 and PKCθ-IKK-NFκB signaling
pathways (Sun et al., 2000; Priatel et al., 2002; Zhong et al.,
2008; Merida et al., 2015). An initial study found that DGKζ-
deficient mice mounted an enhanced antiviral immune response
following lymphocytic choriomeningitis virus (LCMV) infection.
These mice showed enhanced expansion of viral-specific effector
CD4 and CD8 T cells that contained higher percentages of IFNγ-
producing cells 7 days after LCMV infection, which resulted
in a quicker clearance of the virus than in WT mice (Zhong
et al., 2003). A subsequent study further revealed that DGKα

and ζ differentially regulate effector and memory CD8 T cell
differentiation. While a deficiency of either DGKα or ζ resulted
in enhanced effector CD8 T cell expansion, it slightly decreased
memory CD8 T cell formation and response to LCMV infection,
which correlated with elevated mTORC1 signaling in these cells
(Shin et al., 2012).

Although deficiency of either DGKα or ζ enhances antiviral
immune responses, DGKα and ζ double deficiency actually
caused severe impairment of CD8 T cell-mediated responses to
Listeria monocytogenes (LM) infection (Yang et al., 2016b). In
an ovalbumin (OVA) specific OT1 TCR transgenic model and
newly generated floxed DGKζ conditional-deficient mice where
DGKα and ζ activity can be selectively deleted in naïve and
memory CD8 T cells, it was found that ablation of both DGKα

and ζ, but not of the individual DGKα or ζ isoform, impaired
primary CD8 T cell responses (Table 1). At the earliest hours after
LM-OVA infection, DGKα and ζ double deficient CD8 T cells
expressed decreased levels of chemokine receptors CCR4, CCR5,
and CXCR3 and showed impaired migration to the draining
lymph nodes (dLNs). Cells that migrated to the dLNs were
compromised in their proliferative ability due to not yet defined
mechanism(s). In contrast to this in vivo setting, DGKα and ζ

double deficient CD8 T cells proliferated more vigorously than
WT controls in vitro following antigen stimulation, suggesting
that the defect in proliferation was not due to intrinsic defects. It
would be interesting to determine if DGKα and ζ are involved
in regulating T cell/APC engagement for initiation of T cell
activation. As a consequence of impaired expansion of DGKα

and ζ double deficient CD8 T cells during primary immune
responses, formation of memory cells was severely decreased as
well. In addition, DGKα and ζ double deficiency compromised
memory CD8 T cell function in homeostasis. Ablation of DGKα

and ζ in preformed memory CD8 T cells accelerated the decline
of these cells due to increased death and decreased homeostatic
proliferative renewal (Yang et al., 2016b).

In DGKα and ζ double deficient CD8 T cells, TCR-induced
NFκB nuclear localization was surprisingly diminished, although
nuclear NFκB was elevated before stimulation (Yang et al.,
2016b). A similar situation was also observed in T cells expressing
a constitutive active IKKβ. CD8 T cells expressing a constitutive
active IKKβ are defective in expansion in vivo following LM-
OVA infection and are impaired in TCR-induced nuclear NFκB
translocation (Krishna et al., 2012). It is likely, then, that elevated
DAG levels may lead to an increase of basal activation of
the PKCθ-IKK-NFκB pathway, which may trigger a negative
feedback inhibition for TCR-induced activation of this pathway.
Further studies should illustrate the exact negative feedback
mechanism caused by DGKα and ζ double deficiency and by
overactivation of IKKβ.

One consequence of decreased NFκB activation in DGKα

and ζ double deficient CD8 T cells was decreased miR-155
expression and, subsequently, increased SOCS1 expression (Yang
et al., 2016b). miR-155 promotes expansion of effector CD8 T
cells and generation of memory CD8 T cells by targeting SOCS1
expression to ensure signaling from the common γ (γc) chain
cytokine receptors (Dudda et al., 2013; Gracias et al., 2013).
Common γ chain receptor signaling is known to be critical
for CD8 effector and memory responses (Becker et al., 2002;
Kieper et al., 2002; Carrio et al., 2004; Bachmann et al., 2007;
Cui and Kaech, 2010; Sandau et al., 2010; Feau et al., 2011;
Boyman and Sprent, 2012; Van Der Windt et al., 2012; Starbeck-
Miller et al., 2014; Cui et al., 2015); SOCS1 negatively controls
signaling from these γc-chain cytokine receptors (Cornish et al.,
2003). Overexpression of miR-155 restored signaling from these
receptors in DGKα and ζ double deficient CD8 T cells and
partially corrected their defective responses. The data identified a
DGK-NFκB-miR-155-SOCS1 axis that bridges TCR and γc-chain
cytokine signaling for robust CD8 T-cell primary and memory
responses to bacterial infection (Yang et al., 2016b).

DGKα AND ζ REGULATE CD8 T CELL AND
CAR-T CELL MEDIATED ANTITUMOR
IMMUNITY

A tumor microenvironment suppresses T cell mediated
antitumor immunity, rendering tumor-infiltrating T cells
hyporesponsive or anergic (Abe and Macian, 2013; Crespo et al.,
2013). DGKζ-deficient CD8 T cells contain elevated antitumor
immunity. DGKζ-deficient mice subcutaneously injected with
the EL-4 thymoma had reduced tumor burdens and increased
tumor-specific proliferative CD8 effector T cells compared to
WT controls (Riese et al., 2011, 2013). Both increased Erk1/2
activation and decreased sensitivity to the suppressive cytokine
TGF-β in DGKζ-deficient CD8 T cells may be responsible for
stronger activation and antitumor immunity (Arumugam et al.,
2015).

Recently, chimeric antigen receptor (CAR) T cells (CAR-T
cells) have demonstrated superior activity in tumor control and,
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in some cases, tumor eradication (Fesnak et al., 2016). However,
CAR-T cells have manifested limited efficacy for solid tumors
in that they are subjected to suppression by the local tumor
environment and may become hyporesponsive or anergic. Such
hyporesponsive or anergic tumor-infiltrating T cells or CAR-
T cells show decreased Ras/Erk activation but elevated DGKα

and ζ levels (Moon et al., 2014). Both type 1 and type 2 DGK
inhibitors are capable of reversing such hyporesponsiveness in
tumor-infiltrating CAR-T cells ex vivo, leading to increased
cytotoxicity (Moon et al., 2014). Consistent with this finding,
genetic ablation of DGKα, ζ, or both DGKα and ζ enhanced CD8
T cells transduced with a mesoCAR, a CAR with high affinity
to the human tumor antigen mesothelin. DGKα and ζ single
or double deficient mesoCAR-T cells produced elevated IFNγ

production and demonstrated stronger antitumor cytotoxicity
than WT controls, which correlated with reduced sensitivity to
TGFβ and increased expression of FasL and TRAIL, ligands for
the death receptors FAS and TRAIL-RI/RII. Importantly, DGK-
deficient mesoCAR-T cells controlled mesothelioma in vivo
better than WT controls (Riese et al., 2013). The enhancement
of CAR-T function by DGKα and ζ double deficiency sharply
contrasts with the defective anti-LM responses of DGKα and ζ

double deficient CD8 T cells, suggesting differential requirements
of DAG-mediated signaling downstream of CARs and TCR and
for CAR-T and conventional CD8 T cell activation.

SUMMARY

Over the past few years, our understanding of the DGK
family of enzymes in immune cells has been significantly
advanced. DGKα and ζ act individually to negatively control
T cell activation, effector CD8 T cell differentiation and
function during antimicrobial and antitumor immune responses,
and tTreg generation. DGKα and ζ also manifest functional
redundancy in promoting conventional αβ T cell and iNKT
cell development and in enhancing CAR-T cell function.
The unexpected severe impairment of CD8 T cell-mediated
immune responses to microbial infection in the absence of

both DGKα and ζ underscores the importance of fine-tuning
DAG levels and also suggests potential negative feedback
mechanisms triggered by deregulated DAG-mediated signaling.
Defining such mechanisms should shed additional light on the
regulation of DAG-mediated signaling pathways. Additional
efforts are also needed to illustrate the underlying mechanisms
of differential effects of DGKα and ζ double deficiency on
CD8 T cells during antitumor and antipathogen immune
responses. While DGKα and ζ perform similar or redundant
functions, a more prominent role of DGKζ than DGKα in
certain aspects of T cell biology, such as effector CD8 T
cell differentiation and Treg, development has been noted
(Table 1); however, determinants of such differences between
DGKα and ζ remain unclear. The drastic differences observed
between DGKα and ζ double and single deficient CD8 T
cells during immune responses beg for development of DGK
isoform-specific inhibitors. Such inhibitors used individually

or in combination may provide great advantages over pan-
DGK inhibitors in modulating immune responses for therapeutic
purposes in different disease settings to minimize undesirable
side effects. Key elements, such as transcription factors,
microRNAs, and posttranslational modifications that control
the dynamic individual and synergistic functions of DGK
isoforms in T cells are beginning to be appreciated and
require further exploration for better understanding of their
physiological importance and the development of novel strategies
enabling selective modulation of DGK α and ζ expression and
activities for treating autoimmune diseases, viral infections, and
cancer.
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