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Abstract: Background. This study assessed the accuracy of bioimpedance analysis (BIA) for measuring
body composition and resting metabolic rate (RMR) in fasted and non-fasted state and the prospect
of using phase angle (PA) to indicate cellular health in youth. Methods. BIA body composition,
RMR, and hydration measures were compared to dual-energy x-ray absorptiometry (DXA), MedGem
metabolic analyzer, and urine specific gravity, respectively, at baseline in a fasted state using one-way
ANOVAs. Repeated BIAs at 0, 30, 60, 90, and 120 min post-prandial were compared to baseline
using repeated-measures ANOVA. Correlations were used to assess the relationship among PA
and health (blood lipids and glucose, resting BP) and fitness (grip strength and a 3 min step test)
measures. Results. BIA scans (N = 58; 11.4 ± 2.9 y) measured lower body fat % (BF%) in healthy
weight youth (BMI < 85th percentile; 16.4 ± 1.1 vs. 25.1 ± 1.0%) and lower visceral adipose tissue
(VAT) in males (44.5 ± 2.9 vs. 34.1 ± 6.0 cm2) than DXA and higher RMR in all youth (1244 ± 41 vs.
1104 ± 39 kcals/day), healthy weight (1231 ± 48 vs. 1049 ± 44 kcals/day), and teens (1541 ± 62 vs.
1234 ± 72 kcals/day) than MedGem. Compared to baseline, immediate post-prandial values were
significantly higher for BF% (21.4 ± 1.4 vs. 22.0 ± 1.4%) and VAT (45.4 ± 6.1 vs. 46.2 ± 6.2 cm2). PA
was significantly correlated with BF% (r = −0.33; p = 0.01), fat-free mass (r = 0.59; p < 0.001), grip
strength (r = 0.56; p < 0.001). Conclusions. While more data are needed to confirm these preliminary
findings, the results suggest caution is necessary in using BIA to assess aspects of youth health and
weight status, especially in males, healthy weight, and teens. However, these preliminary findings
do indicate that phase angle maybe be a valuable, non-invasive tool for identifying youth who are
heading towards obesity and/or obesity-related health consequences.

Keywords: children; adolescents; body composition; cellular integrity; bio-electrical impedance analysis

1. Introduction

Attention on youth health and wellness in the United States is due mainly to the
steady incline of obesity rates. In fact, 18.5% of U.S. children are considered obese, a
statistic that has more than tripled over the last four decades [1,2]. Childhood obesity is
concerning as it routinely persists into adulthood, which can lead to earlier onset of chronic
diseases typically seen only in adults, such as cancer, cardiovascular disease, and type
2 diabetes [1,3]. In order to understand the weight of these concerning facts, one must
understand the definition of obesity that is accepted in the United States.

According to the National Health and Nutrition Examination Survey (NHANES), a
cross-sectional survey that represents the population widely accepted as a credible indicator
of health trends in the United States, obesity in children aged 2 to 19 years is defined as
having a body mass index (BMI) at or above the 95th percentile according to the CDC’s age-
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and sex-specific growth charts [4]. While BMI, a calculation of weight relative to height,
is considered an index for determining weight status, there is reason to question whether
there may be better indicators, mainly because BMI does not account for the individual
components of weight, such as fat mass (FM) or fat-free mass (FFM). A recent study of
8-year-old children demonstrated the variability of body compositions at the same BMI
value [5]. Specifically, children with the same BMI had very different adiposity levels, and
similarly, those with similar body fat percentages (BF%) had very different BMI values.
These findings question the validity of BMI and support the need for alternative methods
for determining body composition, not BMI in this population.

Body composition can be measured in many ways, with each method possessing pros
and cons and different sources of error. While dual-energy x-ray absorptiometry (DXA)
is becoming the gold standard and most widely used as a criterion measure in validating
other methods [6], the cost and accessibility of this device as well as the radiation exposure
are barriers to using DXA in locations such as schools and pediatrician offices for the
purpose of more accurately measuring and tracking youth obesity rates [7].

Bioimpedance analysis (BIA) offers a more accessible and simplistic method of mea-
suring body composition and has been shown to provide accurate measures among adults
and children for clinical and epidemiological purposes [8]. This method is premised on
the distribution and quantity of tissues with varying electrical properties. For example,
FFM is primarily composed of water and electrolytes and acts as a good conductor (low
impedance) of electrical current, while FM is anhydrous and a poor conductor (high
impedance); the larger the FM the higher resistance it poses to an electric current [9]. Thus,
BIA measures the voltage drop as electric currents move through segments of the body
and the capacitance created by cell membranes [10,11]. Estimations of total body water are
used to calculate FFM, while FM is calculated by subtracting FFM from total body weight.

One of the issues that compromises the accuracy of older-generation BIA models
which use a single frequency is the impact of hydration status and food intake on these
results since dehydration can slow the currents movement through the body. The InBody
770 BIA (InBody USA, Cerritos, CA, USA) has the capacity to monitor body fluids as well
as nutritional status of individuals, where nutritional status accounts for an individual’s
health condition as influenced by the intake and use of nutrients, including water [12]. A
study by Saunders et al. (1998) found that fluctuations in hydration status altered the BIA-
derived BF% in athletes (N = 15; 19–56 y) by as much as 2–3% [13]. States of dehydration
reduce resistance of the electrical current resulting in the presumption of lesser FFM. This
finding was supported in a study that induced dehydration with diuretics in healthy
weight men (N = 18; 23–47 y) to find BIA-derived FFM decreased by 2.63 kg [14]. Similarly,
a more recent study (N = 100; 24.2 ± 6.7 y) also found that consuming 500 mL of water
prior to a BIA assessment resulted in a significant decrease in BF% of 0.16% (p = 0.02) [15].

Newer-generation BIA models, such as the InBody 770, use the capacitive properties
of the body to estimate total body water, thus resolving one of the main criticisms of
previous models—not accounting for hydration status. These capacitive properties of the
cell indicate the overall health of the cell. Specifically, the greater the ability of the cell
membrane to store electric charge, the greater the overall health of the cell [16,17]. The
InBody 770 also incorporates six different frequencies (1, 5, 50, 250, 500, and 1000 kHz)
and a tetrapolar eight-point electrode system to assess the entire body, including visceral
adipose tissue (VAT). Previous research has validated different BIA models against DXA
in children. A recent review found that BIA-derived whole-body BF% in children was
comparable to DXA values (r values ranging from 0.75 to 0.92) when using multiple
frequencies and multiple electrodes on both side of the body, whereas the correlations
between DXA and segmented FM and FFM values were more varied by BIA model (r= 0.14
to 0.88) [18]. In both boys and girls, 62.5–66.7% of the studies (N = 30) underestimated
measures of FM compared to a criterion reference.

The InBody 770 uses the phasal shift, or phase angle (PA) of the current moving
through the body to determine cellular health. PA reflects the resistance and reactance of
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the body’s cells in response to the external current, with the healthier cellular membrane
causing a greater phasal shift, thus a greater PA. PA is used to assess disease progres-
sion or recovery in those with chronic disease in youth [19,20]. For example, children
(N = 67, 3–20 y) undergoing treatment for bone marrow disfunction exhibited lower PA
values compared to healthy controls and these values decreased further in response to
the aggressive treatment [19]. In this sense, PA is being used as a prognostic tool. Further,
this study found that without concomitant changes in cell mass related to the treatment,
changes in PA indicate a sensitivity to cell integrity, regardless of changes in body mass.
Similarly, PA has been used to determine recovery progress in children (N = 122, 0–16 y)
undergoing cardiac surgery [20]. In this study, a PA of ≤2.7◦ at 2 days post-surgery was
indicative of a longer length of stay in the hospital, an indicator of survival from surgery.
These studies demonstrate that PA is a valuable, non-invasive tool for assessing disease
progression and recovery. However, there is little research to determine if PA could be
used to prevent disease, especially in the obese youth. If PA is sensitive to damage to
cell membrane integrity and cell death, which leads to inflammation and inflammatory
diseases [21], clinicians could detect health issues and intervene earlier to prevent obesity
and obesity-related chronic diseases.

The purposes of this preliminary study were trifold. First, this study assessed the
accuracy of body composition and basal metabolic rate (BMR) measures from the InBody
770 BIA against criterion measures. While the ease of using this device is valuable, the
accuracy in youth is not yet confirmed. If found to be accurate against the criterion
measures, this device could be incorporated into schools and clinics as a more accurate
assessment of weight status as well as provide a starting point for determining appropriate
energy intake requirements for treating or preventing obesity. Second, this study assessed
the impact of fasting status on InBody 770 measures of FM, FFM, BF%, VAT, BMR, and PA.
Placing this device in schools and clinics would provide valuable information to parents or
practitioners, but fasting status is difficult to control in these situations. The research in this
area is inconsistent in children. Understanding the impact of fasting status could provide
guidance on the timing of BIA scans. Lastly, this study correlated measures of health
(cardiovascular disease risk factors) and fitness (cardiorespiratory fitness and muscular
strength) with PA measures from the InBody 770. The InBody 770 is not limited to measures
of body composition and RMR but can also provide a non-invasive measure of cellular
health that has the potential for early detection and prevention of chronic disease in youth.
Until now PA has been used in a clinical sense to monitor disease prognosis, progress, and
recovery. The hope is to use this tool to identify children who require intervention for
the prevention of obesity and obesity-related diseases. However, for this to be possible,
reference values for apparently healthy youth of varying sex, age, and weight status need
to be established.

2. Materials and Methods

Recruitment. Youth (7–17 y) were recruited from Athens and surrounding counties
in Ohio. Youth were considered eligible if they were physically capable of completing a
moderate exercise bout and were free from musculoskeletal, neurological, and physiological
conditions that could be made worse with exercise. Both the parent or guardian and the
participant provided informed consent and assent, respectively. This study was approved
by Ohio University’s Institutional Review Board.

Eligible youth were asked to prepare for a single testing session by (1) avoiding all
strenuous exercise/activity for at least 12 h; (2) abstaining from eating or drinking anything,
except unlimited water for 3 h; and (3) wearing gym attire without metal zippers or plastic
buckles as these could interfere with the measurements.

Anthropometrics. Height (cm) was measured to the nearest 0.1 cm using a stadiome-
ter (Seca 213, Chino, CA, USA) both in a standing and seated position. Combined with age
and sex, the standing and seated height were used to estimate maturation status as years
(±) from peak height velocity using the Mirwald equation [22]. Weight (kg) was measured
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to the nearest 0.1 kg using the InBody 770 scale (InBody USA, Cerritos, CA, USA). Prior to
stepping on the scale, participants were asked to stand for at least 5 min and to clean the
palmar and plantar aspects of their hands and feet, respectively, with a wet towelette. After
measuring weight, participants followed the verbal instructions given by the device to
grasp both handles with their elbows fully extended and at an angle away from the body,
to not talk and to not move until the measurement was complete (approximately 1 min).
The InBody 770 provided overall and compartmentalized values for FM, FFM, BF%, VAT,
BMR, intra and extracellular water analysis for estimating hydration status, and PA as a
measure of cellular health. PA is defined as angular displacement between the current and
voltage waveforms as a result of capacitor interference, measured in degrees or radians.
PA is related to cell permeability and soft tissue hydration and is calculated as arctangent
(reactance/resistance) × 180◦/π. The BIA was conducted in a fasted state and immediately
post and at 30, 60, 90, and 120 min following a meal.

Hydration Status. Urine samples were used to determine urine specific gravity (USG)
using reagent test strips (10SG Urine Reagent strips; range: 1.005 to 1.035) and a urine
analyzer (McKesson Consult™ 121, Irving, TX, USA). Measures of hydration status from
reagent strips have been shown to be strongly correlated with refractometry measures
of USG in young male boxers (r = 0.85; p < 0.05) [23] and youth soccer players (r = 0.80,
p < 0.01) [24]. Hydration was also calculated from the BIA scan as a percentage that total
body water weight (%TBW) contributes to total body mass.

Resting Metabolic Rate. After resting for 10 min in a recliner in a temperature-
controlled room with no disturbances, participants were asked to breathe through a
portable metabolic analyzer (MedGem, MicroLife® Medical Home Solutions, Golden CO)
for a maximum of 10.5 min to measure resting metabolic rate (RMR; kcals/day) following
a 3-h fast. Since the InBody 770 provides estimations of BMR, which is approximately 10%
lower than RMR, BIA values were adjusted accordingly (RMR = BMR × 1.10) for direct
comparisons. The MedGem metabolic analyzer is accurate and reliable for measuring RMR
in this population with a ±1.15% mean difference in RMR measures between MedGem
and Douglas bag methods [25], and intraclass reliability ranging from 0.97 to 0.98 [26].

Blood Analysis. While in a fasted state, blood lipids and glucose levels were ob-
tained from a fingerstick sample. A 40 µL capillary tube of blood was analyzed using a
Cholestatic LDX® System (Alere, Charlottesville, VA). A lipid panel, including total choles-
terol (TC; 100–500 mg/dL), high-density lipoproteins (HDL; 15–100 mg/dL), triglycerides
(TRG; 40–650 mg/dL), an estimation of low-density lipoproteins (LDL), as well as glucose
(mg/dL) were measured with single-use cassettes. The Cholestech was calibrated as per
manufacturers recommendations prior to use. The Cholestech has been found valid and
reliable for these measures. Specifically, in comparing 119 patients’ samples with laboratory
analysis, the correlation coefficients were r = 0.97 for TC (CV ≈ 5%), and r = 0.95 for HDL
(CV = 5–10%) [27], and when compared to a venous blood sample from 250 healthy family
members of cardiovascular patients, the correlations coefficients were r = 0.91, 0.88, 0.70,
and 0.93 for TC, LDL, HDL, and TRG, respectively (p < 0.01) [28].

Body Composition. A whole-body dual-energy x-ray absorptiometry (DXA; Hologic®,
Marlborough, MA, USA) scan was performed on all participants by a licensed and experi-
enced general x-ray machine operator to determine FM and FFM and BF%. The participants
removed their shoes and socks and laid supine on the DXA scanner for 6 min. The DXA
software was used to process each scan by compartmentalizing the body into right and left
arm and leg and trunk.

Standardized School Lunch. After the DXA scan, participants were offered a stan-
dard school lunch, which consisted of a main entrée, fruit, vegetable, dip, and a drink
(500–600 kcals).

Resting Hemodynamics. During one of the free periods between post-prandial BIA
scans, the participant again rested for at least 10 min in a seated position. Resting blood
pressure and heart rate were measured using the OMRON digital blood pressure monitor
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(Omron Electronics, LLC, Estates, IL, USA) with the appropriate cuff size. The procedure
was repeated to ensure at least 2 measures with less than 5 mmHg difference.

Muscular Strength. Grip strength (kg) was measured using a handgrip dynamometer
(Jamar Hydraulic, JLW Instruments, Chicago, IL, USA) as an indicator of muscular strength.
Participant were asked to stand tall with their elbow at a 90◦ angle looking straight ahead
with their feet hip width apart to distribute their weight evenly. With the dynamometer
adjusted so that their middle metacarpal formed a 90◦ angle, participants were asked to
perform a maximal squeeze for at least 3–5 s three times in each hand.

Cardiovascular Fitness. During the final break between BIA scans, cardiovascular
fitness was measured using the Kasch Pulse Recovery (KPR) test. Participants wore a
POLAR RS400 heart rate monitor watch and strap to record heart rate at the end of each
minute during the test and through at least 3 min of recovery. The test requires the
participant to step up and down on a 12-inch platform for 3 min at a pace of 24 steps
per minute set by a metronome. Immediately post-exercise, participants were asked to
sit down on the platform and heart rate was recorded after each minute of the recovery
period. The 1 min recovery heart rate was used to estimate maximal oxygen consumption
(Est.VO2max; mL/kg/min) as a measure of cardiovascular fitness. The KPR has been
validated for use in this population for estimating cardiovascular fitness [29,30].

Statistical Analysis. Means (±SD) were calculated for all participant characteristics
and measurements. FM and FFM were also expressed relative to height (kg/m2); FM
index (FMI) and FFM index (FFMI) for both BIA and DXA measures. Only whole-body
measures are reported in this manuscript, the compartmentalized values were not reported
or analyzed. One-way ANOVA was used to compare all BIA measures to the criterion
measures overall and by sex, age group (child, 7–12 y; teen, 13–17 y), and weight status
[healthy weight (HW), BMI < 85th percentile; overweight (OW), BMI ≥ 85th and <95th
percentiles; obese (OB), BMI ≥ 95th percentile]. Repeated-measures ANOVA with Bonfer-
roni adjustment was used to compare the BIA measures between fasted and non-fasted
status from baseline to 120 min post-prandial. Correlation analyses were used to assess the
relationship among total body water relative to lean body mass (TBW/LBM), %TBW and
USG, and the relationship among PA and resting blood pressure, blood lipids and glucose,
grip strength, and estimated VO2max. All statistics were performed using SAS Enterprise
Guide (version 7.1) with significance set at p < 0.05.

3. Results
3.1. General Characteristics

To date, 58 children (30 girls; 37 HW) participated in the Ohio University BIA Valida-
tion Study. The general characteristics for the sample overall and by group (sex, weight
status, and age group) are presented in Table 1. As expected, teens were heavier and
taller than the younger children and there was a significant difference in BMI (kg/m2 and
percentile) across weight status. Teens also had 19.3% higher RMR than younger children
(p < 0.05). Health and fitness characteristics of the sample are also presented in Table 1
overall and by group. Sex and weight status had no significant effect on health and fitness
measures. However, teens had approx. 10.9% lower TC, 17.8% lower HDL and 3.5% lower
Est.VO2max, 6.1% higher systolic BP, and 49.3% greater grip strength compared to the
younger children (p < 0.05). DXA scans revealed that BF% was significantly higher in girls
(+18.2%, p = 0.03) and children (+24.9%, p = 0.005) compared to their counterparts. The
DXA-derived FM, FMI, VAT, and BF% were significantly different across weight classifi-
cations as expected, but FFMI was also 13.8% higher in OB compared to HW youth and
16.1% higher in teens compared to children. Baseline BIA scans revealed that PA was 5.5%
(p = 0.04) higher in boys than girls while BF% was 29.1% (p = 0.04) higher in girls. Teens
had 32.7% higher BIA-derived BMR, 12.6% higher PA, 46.8% higher FFM and 14.7% higher
FFMI than younger children (p values < 0.0001). All fat-related parameters (FM, BF%, VAT,
and FMI) were significantly different across weight classifications, as expected, but FFMI
also increased by 8.0% from HW to OB youths (p < 0.0001).
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Table 1. Participant characteristics by sex, weight status and age group (means ± SD).

Sex Weight Status Age Group

Sample Size
Girls Boys HW OW OB Child Teen

29 29 37 10 11 39 19

Anthropometrics
Age (years) 11.1 ± 2.6 11.7 ± 3.2 11.8 ± 3.0 11.1 ± 2.9 10.4 ± 2.7 9.7 ± 1.7 * 14.8 ± 1.5 *
Weight (kg) 46.3 ± 18.4 48.0 ± 18.2 43.1 ± 14.2 * 48.2 ± 16.2 59.8 ± 26.3 * 41.3 ± 17.7 * 59.1 ± 12.8 *
Height (cm) 147.3 ± 14.3 150.1 ± 19.6 150.0 ± 17.7 147.0 ± 17.1 145.7 ± 15.9 140.3 ± 12.6 * 165.9 ± 11.0 *
BMI (%ile) 65.9 ± 27.9 67.0 ± 32.2 51.4 ± 27.5 * 88.2 ± 2.1 * 97.3 ± 1.4 * 72.0 ± 28.2 * 55.1 ± 30.8 *
RMR (Kcals/day) 1042 ± 210 * 1202 ± 308 * 1068 ± 257 1209 ± 251 1231 ± 312 1043 ± 232 * 1267 ± 290 *

Blood Analysis
TC (mg/dL) 165.2 ± 5.0 161.1 ± 5.9 158.6 ± 4.7 169.6 ± 9.9 174.5 ± 6.6 168.9 ± 22.7 * 151.5 ± 30.6 *
HDL (mg/dL) 52.0 ± 2.7 53.1 ± 3.6 54.7 ± 3.0 51.0 ± 4.8 46.1 ± 2.7 55.6 ± 16.0 46.5 ± 12.4
TRG (mg/dL) 97.0 ± 10.2 85.0 ± 10.6 83.9 ± 8.0 98.8 ± 19.2 114.1 ± 22.8 100.2 ± 57.0 73.9 ± 30.3
LDL (mg/dL) 94.1 ± 5.5 90.7 ± 4.7 87.3 ± 4.8 98.7 ± 6.9 105.0 ± 6.5 93.2 ± 25.2 90.3 ± 26.5
Glucose (mg/dL) 83.2 ± 1.7 * 91.0 ± 1.3 * 85.8 ± 1.5 90.0 ± 3.0 86.9 ± 3.1 87.7 ± 7.6 84.9 ± 10.2

Resting Hemodynamics
Systolic BP (mmHg) 99.7 ± 1.6 * 106.7 ± 2.0 * 103.5 ± 1.7 102.6 ± 1.7 101.4 ± 4.2 100.9 ± 9.4 * 107.3 ± 8.8 *
Diastolic BP (mmHg) 58.1 ± 1.7 59.4 ± 1.9 57.6 ± 1.3 57.9 ± 2.2 62.8 ± 5.0 57.3 ± 9.8 61.2 ± 6.5
HR (bpm) 78.9 ± 2.1 79.4 ± 2.6 77.4 ± 2.2 79.2 ± 3.4 83.9 ± 4.2 81.6 ± 11.3 * 73.1 ± 12.9 *

Fitness Measures
Grip Strength (kg) 39.1 ± 3.2 45.7 ± 4.2 42.6 ± 3.6 44.9 ± 5.9 38.6 ± 4.6 35.0 ± 14.8 * 57.8 ± 18.9 *
Est.VO2max (mL/kg/min) 43.6 ± 0.7 * 54.4 ± 0.6 * 48.9 ± 1.0 49.5 ± 2.1 46.7 ± 3.1 49.2 ± 6.9 * 47.5 ± 5.8 *

DXA Measures
FM (kg) 14.9 ± 1.8 12.6 ± 1.3 10.3 ± 0.6 * 15.2 ± 1.6 * 23.9 ± 3.8 * 13.5 ± 9.4 14.2 ± 5.5
FMI (kg/m2) 6.7 ± 0.7 5.6 ± 0.5 4.6 ± 0.2 * 6.9 ± 0.4 * 10.7 ± 1.3 * 6.6 ± 3.6 5.2 ± 2.1
BF (%) 31.6 ± 1.4 * 27.0 ± 1.7 * 25.1 ± 1.0 * 33.0 ± 1.7 * 40.1 ± 2.1 * 31.6 ± 8.1 * 24.6 ± 7.8 *
VAT (cm2) 39.6 ± 6.6 46.4 ± 3.4 30.9 ± 1.7 * 47.6 ± 4.7 * 79.3 ± 13.1 * 43.9 ± 32.2 41.2 ± 17.2
FFM (kg) 28.8 ± 1.8 32.6 ± 2.5 30.1 ± 1.8 30.2 ± 3.6 32.9 ± 4.2 25.5 ± 8.5 * 41.3 ± 9.7 *
FFMI (kg/m2) 12.9 ± 0.4 13.8 ± 0.4 12.9 ± 0.3 * 13.4 ± 0.6 14.8 ± 0.9 * 12.6 ± 2.1 * 14.8 ± 2.0 *

BIA Measures
BMR (kcals/day) 1101 ± 38 1207 ± 62 1150 ± 45 1159 ± 92 1168 ± 92 1024 ± 30 * 1424 ± 55 *
Phase Angle (◦) 5.2 ± 0.1 * 5.6 ± 0.1 * 5.4 ± 0.1 5.4 ± 0.2 5.4 ± 0.2 5.2 ± 0.1 * 5.9 ± 0.1 *
FM (kg) 12.3 ± 2.1 9.3 ± 1.3 7.0 ± 0.6 * 11.6 ± 1.5 * 22.8 ± 4.5 * 11.0 ± 1.7 10.4 ± 1.3
FMI (kg/m2) 5.5 ± 0.8 4.1 ± 0.5 3.1 ± 0.3 * 5.2 ± 0.5 * 10.1 ± 1.6 * 5.3 ± 0.7 3.9 ± 0.5
BF (%) 24.0 ± 1.9 18.8 ± 1.9 16.4 ± 1.1 * 24.4 ± 2.1 * 35.9 ± 3.1 * 23.4 ± 1.8 17.4 ± 2.0
VAT (cm2) 53.0 ± 10.0 37.8 ± 6.8 26.7 ± 2.7* 47.4 ± 8.1 * 106.4 ± 21.9 * 47.7 ± 8.5 40.7 ± 6.2
FFM (kg) 33.9 ± 1.8 38.8 ± 2.9 36.1 ± 2.1 36.5 ± 4.3 37.0 ± 4.3 30.3 ± 1.4 * 48.8 ± 2.6 *
FFMI (kg/m2) 15.3 ± 0.3 16.4 ± 0.5 15.5 ± 0.3 16.3 ± 0.7 16.8 ± 0.8 15.1 ± 0.3 * 17.5 ± 0.5 *

BMI, body mass index; RMR, resting metabolic rate; TC, total cholesterol; HDL, high-density lipoproteins; TRG, triglycerides; LDL, low-
density lipoproteins; BP, blood pressure; Est.VO2max, estimated maximal oxygen consumption; DXA, dual-energy x-ray absorptiometry;
VAT, visceral adipose tissue; FMI, fat mass index; FFMI, fat-free mass index; BIA, bioimpedance analysis; BMR, basal metabolic rate; HW,
healthy weight (BMI < 85th percentile); OW, overweight (BMI ≥ 85th but <95th percentile); OB, obese (BMI ≥ 95th percentile); Child,
7–12 years; Teen, 13–17 years. One-way ANOVA was used to assess differences between sex, age group, and weight status. * Denotes
significant difference within groups (i.e., girls vs. boys) in bold (p < 0.05).

3.2. Baseline Comparisons between BIA and Criterion Measures

Comparison between BIA values and the respective criterion measures are presented
in Table 2. Overall, there were no significant differences between DXA and BIA measures
of body composition when the sample was analyzed as a whole and by sex and age group.
The results were inconsistent when analyzed by weight status, with BIA measuring BF%
42.0% (p < 0.001) lower in HW youth compared to DXA. After converting BMR to RMR,
BIA-derived RMR was significantly higher (p < 0.001) than MedGem values, overestimating
RMR by 12.4% (+148 kcals/day) compared to MedGem values. Specifically, these BIA-
derived RMR values were higher in girls (+15.1%, p < 0.001), boys +10.0%, p = 0.002), HW
(+16.9%, p < 0.001), children (+7.6%, p < 0.001), and teens (+10.3%, p < 0.001) compared
to MedGem.
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Table 2. Comparison of body composition and RMR between DXA and BIA (means ± SEE).

Body Fat (%) FMI (kg/m2) FFMI (kg/m2) VAT (cm2) RMR (kcal/day)

N DXA BIA DXA BIA DXA BIA DXA BIA MG BIA

All Youth 58 29.3 ± 1.1 21.4 ± 1.4 6.1 ± 0.4 4.8 ± 0.5 13.4 ± 0.3 15.9 ± 0.3 43.0 ± 3.7 45.4 ± 6.1 1104 ± 39 * 1244 ± 41 *

Sex
Girls 30 31.6 ± 1.4 24.0 ± 1.9 6.7 ± 0.7 5.5 ± 0.8 12.9 ± 0.4 15.3 ± 0.3 39.6 ± 6.7 53.0 ± 10.0 1070 ± 48 * 1227 ± 44 *
Boys 28 27.0 ± 1.7 18.8 ± 1.9 5.6 ± 0.5 4.1 ± 0.5 13.8 ± 0.4 16.4 ± 0.5 46.4 ± 2.9 * 37.8 ± 6.8 * 1148 ± 64 * 1268 ± 75 *

Weight Status
HW 37 25.1 ± 1.0 * 16.4 ± 1.1 * 4.6 ± 0.2 * 3.1 ± 0.3 * 12.9 ± 0.3 * 15.5 ± 0.3 * 30.9 ± 1.7 26.7 ± 2.7 1049 ± 44 * 1231 ± 48 *
OW 10 33.0 ± 1.7 24.4 ± 2.1 6.9 ± 0.4 5.2 ± 0.5 13.4 ± 0.6 16.3 ± 0.7 47.6 ± 4.7 47.4 ± 8.1 1153 ± 105 1248 ± 125
OB 11 40.1 ± 2.1 35.9 ± 3.1 10.7 ± 1.3 10.1 ± 1.6 14.8 ± 0.9 16.8 ± 0.8 79.3 ± 13.1 106.4 ± 21.9 1231 ± 94 1285 ± 101

Age Group
Child 39 31.6 ± 1.3 23.4 ± 1.8 6.6 ± 0.6 5.3 ± 0.7 12.6 ± 0.3 15.1 ± 0.3 43.9 ± 5.2 47.7 ± 8.5 1038 ± 42 * 1113 ± 34 *
Teens 19 24.6 ± 1.8 17.4 ± 2.0 5.2 ± 0.5 * 3.9 ± 0.5 * 14.8 ± 0.5 17.5 ± 0.5 41.2 ± 4.0 40.7 ± 6.2 1234 ± 72 * 1541 ± 62 *

N, sample size; DXA, dual-energy x-ray absorptiometry; BIA, bioimpedance analysis; FMI, fat mass index; FFMI, fat-free mass index;
VAT, visceral adipose tissue; HW, healthy weight (BMI < 85th percentile); OW, overweight (BMI ≥ 85th but <95th percentile); OB, obese
(BMI ≥ 95th percentile); Child, age 7–12 years; Teen, age 13–17 years. One-way ANOVA was used to assess differences between sex, age
group, and weight status. * Denotes significant difference between methods (i.e., DXA vs. BIA) overall (all youth) or within group (i.e.,
girls, HW, or Child) in bold (p < 0.05).

Since there was no direct comparison between USG and measures of hydration (body
water analyses) from the BIA, correlation coefficients were used to determine consistency
between methods. USG was not well correlated with any measure of body water content
from the BIA, including %TBW (r = −0.25, p = 0.07) and TBW/LBM (r = 0.25, p = 0.07) over-
all or by age group. However, there was a moderate correlation between USG and %TBW
for boys (r = −0.48, p = 0.02) and strong correlations among USG and TBW (r = −0.86,
p = 0.006) and TBW/LBM (r = 0.82, p = 0.02) for OW youth.

3.3. Fasting vs. Non-Fasting State

One participant declined participation in the repeated-measures portion of this study,
only completing the baseline comparisons. An additional five participants did not complete
the final BIA scan at 120 min due to time constraints, thus accounting for the differences
in sample size across timepoints. Comparison of baseline to post-prandial BIA measures
are presented in Table 3. BIA measures across timepoints were not consistent. Specifically,
weight was held constant throughout the six scans, while BMR did not differ between
baseline and all post-prandial measures, but at 90 (+0.3%, adj. p = 0.008) and 120 (+0.1%,
adj. p = 0.011) minutes BMR was higher than immediate post-prandial (0 min). Similarly,
PA did not differ between baseline and any other timepoint, but PA was significantly lower
at 120 min compared to 30 (0.9%, adj. p = 0.008) and 60 (0.7%, adj. p = 0.012) minutes
post-prandial. With respect to the FM analysis, BF% was significantly different at baseline
compared to all timepoints (range: +2.5 to −3.9%, adj. p values < 0.05) and VAT measures
were higher at 0 (+1.7%, adj. p = 0.006) and lower at 120 (−10.9%, adj. p = 0.014) minutes
for VAT compared to baseline measures. FFM analysis revealed again that there were no
differences between baseline and all other timepoints, but immediate post-prandial was
lower than at 90 (0.5%, adj. p = 0.013) and 120 (0.1%, adj. p = 0.017) minutes post-prandial.
While there was no difference in %TBW, defined as the amount of body weight accounted
for by water weight and an indicator of hydration status across all timepoints, the other
measures of body water differed significantly across many of the timepoints.

3.4. Relationship among PA and Health and Fitness Measures Overall

Figure 1 depicts the relationships among PA and body composition measures (BF%
and FFM) and blood analysis measures (TC and TRG). A negative relationship was found
among BF%, TC, TRG, and PA with a positive relationship between PA and FFM. The
relationships among PA and fitness levels (grip strength and Est. VO2max) are depicted in
Figure 2. Positive relationships were observed for PA and both fitness measures.
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Table 3. Comparison of fasting vs. non-fasting BIA measures up to 2 h post-prandial (means ± SEE).

Variable
Timepoints

N Baseline N 0 min N 30 min N 60 min N 90 min N 120 min

Weight (kg) 58 47.1 ± 2.4 57 46.6 ± 2.3 57 46.7 ± 2.3 57 46.7 ± 2.3 57 46.6 ± 2.3 52 45.9 ± 2.5
BMR (kcals/day) 58 1155 ± 37 57 1143 ± 35 57 1144 ± 35 57 1144 ± 35 57 1147 ± 35 52 1144 ± 38
Phase Angle (◦) 58 5.42 ± 0.08 57 5.43 ± 0.08 57 5.45 ± 0.08 57 5.44 ± 0.08 57 5.41 ± 0.08 52 5.40 ± 0.08

Fat Mass Analysis
FM (kg) 58 10.8 ± 1.2 57 11.0 ± 1.3 57 10.9 ± 1.2 57 10.6 ± 1.3 57 12.0 ± 1.8 52 10.0 ± 1.2
BF (%) 58 21.4 ± 1.4 * 57 22.0 ± 1.4 * 57 21.9 ± 1.4 * 57 21.7 ± 1.4 57 21.4 ± 1.4 52 20.6 ± 1.3
VAT (cm2) 58 45.4 ± 6.1 * 57 46.2 ± 6.2 * 57 45.5 ± 6.6 57 45.2 ± 6.7 57 45.0 ± 5.9 52 40.7 ± 5.6 *
FMI (kg/m2) 58 4.7 ± 9.5 57 4.9 ± 1.5 57 4.8 ± 7.5 57 4.8 ± 4.5 57 5.4 ± 1.8 54 4.2 ± 7.5

Fat-Free Mass Analysis
FFM (kg) 58 36.3 ± 1.7 57 35.8 ± 1.6 57 35.8 ± 1.6 57 35.8 ± 1.6 57 36.0 ± 1.6 52 35.8 ± 1.7
FFMI (kg/m2) 58 15.8 ± 6.3 * 57 15.7 ± 5.3 57 15.7 ± 7.3 57 15.7 ± 8.3 57 15.8 ± 3.3 * 54 15.2 ± 0.5 *

Body Water Analysis
TBW (L) 58 26.6 ± 1.2 * 57 26.2 ± 1.2 57 26.2 ± 1.2 57 26.2 ± 1.2 57 26.3 ± 1.2 * 52 26.2 ± 1.3 *
ECW/TBW 58 0.3 ± 8.0 * 57 0.3 ± 8.0 * 57 0.3 ± 8.0 57 0.3 ± 8.0 57 0.3 ± 8.0 * 52 0.3 ± 8.0 *
TBW/LBM 58 73.2 ± 4.0 57 73.2 ± 1.0 57 73.2 ± 0.0 57 73.2 ± 1.0 57 73.2 ± 2.0 52 73.2 ± 4.0
%TBW 58 57.5 ± 1.0 57 57.5 ± 1.2 57 57.2 ± 1.0 57 57.3 ± 1.0 57 57.6 ± 1.0 52 58.1 ± 1.0

BIA, bioimpedance analysis; BMR, basal metabolic rate; FM, fat mass; BF, body fat; VAT, visceral adipose tissue; FMI, fat mass index; FFM,
fat-free mass; FFMI, fat-free mass index; TBW, total body water; ECW/TBW, ratio of extracellular water to total body water; TBW/LBM,
ratio of total body water to lean body mass; %TBW, percent of body weight accounted for by the weight of total body water. Repeated-
measures ANOVA with Bonferroni adjustment was used to assess differences between timepoints. * Denotes the timepoint is significantly
different from baseline in bold (p < 0.05).
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4. Discussion

The purpose of this preliminary study was to assess the overall accuracy and feasibility
of using BIA for measuring and tracking weight and health status in youth of varying age,
sex, and weight classifications. Recruitment was stratified to include even samples of older
and younger, healthy weight, overweight and obese girls, and boys. In this preliminary
paper, some of the subgroups, while small have adequate power for simple comparisons,
but are not large enough to assess age, sex, and weight classification interactions. This will
be included in the final analyses.

Baseline Comparison. The new-generation BIA device is simple to use, portable and
accounts for hydration status, which has been shown to be a significant source of error [8].
Overall, the findings are unequivocal in some respects, but show promise in others. For
example, in comparing the BIA-derived whole-body measures of body composition to
DXA, there was no difference in BF%, FMI, FFMI, and VAT when assessing the group as a
whole. However, BIA was significantly different for %BF, FMI, and FFMI in HW youth and
FMI in teens. All other body composition measures were not significantly different between
methods. The correlation coefficient for %BF was r = 0.96 (p < 0.0001) between DXA and
BIA and for RMR was r = 0.79 (p < 0.0001) between BIA and MedGem. Previous research
comparing InBody 720 BIA to DXA have also found strong correlation coefficients in this
population ranging from r = 0.80 to 0.99 [18,31,32], with one study (N = 178, 7.7 ± 0.4 y) also
reporting very similar %BF in both boys (r = 0.94) and girls (r = 0.95) [32]. Similarly a study
comparing the Tanita BF-689 BIA (pediatric lower body device) to DXA reported a strong
intraclass correlation coefficients (ICC) for %BF of 0.788 (95% confidence interval: −0.167,
0.942), which did not change when conducting sex-specific ICCs [boys 0.786 (−0.182, 0.944)
and girls 0.764 (−0.163, 0.939)] [33]. The mean difference found between Tanita and DXA
of −6.75% was similar to the mean difference of 7.8% between InBody and DXA found in
the current study.

Even though some values were significantly different, care should be taken when
relying too heavily on statistical significance as some comparisons may not be physio-
logically or practically meaningful or vice versa. For example, BIA-derived VAT in OB
youth was 29.1% higher than DXA. Although not statistically different (adj. p = 1.00), an
overestimation of VAT could exaggerate health risks association with this type of body
fat. In contrast, BIA-derived BF% was 37.1% lower than DXA, which would have re-
sulted in a lower body fat classification for the overall sample. Such an underestimation
is physiologically meaningful since it could miss identifying youth who are at risk for
obesity-related complications. More research is needed with larger samples to see if these
differences persist.

This is also noted when examining the differences in RMR between BIA and the
MedGem metabolic analyzer. This appears to be the first study to compare RMR val-



Int. J. Environ. Res. Public Health 2021, 18, 10094 10 of 13

ues between these devices in this population. While BIA was significantly higher than
MedGem-derived RMR overall and for HW youth and teens, the mean difference was
only +170.8 kcals/day. Practically, this overestimation could lead to a surplus intake of
1195 kcals/week. Since the childhood obesity problem is associated with small chronic
energy surpluses, found to be as little as +15 kcals/day in 2–7 y children [34,35], the mag-
nitude of this surplus could contribute rather than help alleviate the childhood obesity
problem.

Fasting vs. Non-Fasting. The second purpose of this study was to assess the impact
of fasting status on BIA measures. Ideally, since BIA is quick, simple to use and places
very little burden on the child, it has the potential to replace standard weight scales in
schools and pediatrician offices for measuring and tracking weight and body composition.
However, measuring body composition in these places does not guarantee the child would
be in a fasted state as recommended by the manufacturer (InBody USA). Adult research has
demonstrated that feeding decreased impedance measured by BIA by 4.4%, leading a de-
crease in FM (−1.8%) and BF% (−2.5%) in young adults (N = 54; 21.8 ± 2.9 y; 27 males) [36].
In that study, non-fasting status accounted for 37 to 79% of the variability of the measures.
In the current study, body weight, FM, FFM, BMR, and water analyses did not differ from
baseline following a standard school lunch. However, for the first 60 min post-prandial
BF% was significantly higher from baseline but this difference disappeared for the last
two measures (90 and 120 min). The mean difference from baseline across sex, age, weight
status varied from −3.0 to +3.3% across post-prandial timepoints. These differences are
negligible and would likely result in few misclassifications of obesity status based on BF%.
Similarly, changes in BIA-derived BMR from baseline across sex, age, and weight status
varied from −34 to +26 kcals/day throughout the 2 h of post-prandial measures. While
more research is needed to determine if weight status classifications would be affected by
fasting status when using BIA to measure BF%, the information about nutritional needs
(BMR measure) appears to closely match measures from the MedGem metabolic analyzer
(RMR measures). This would facilitate appropriate nutritional counselling for obesity
treatment and prevention.

The biggest concern about the effects of feeding prior to BIA measures was the vari-
ability in the body water analyses. While TBW and ECW/TBW (a measure of extracellular
water relative to total body water) between baseline and several timepoints, the main
measures provided by the InBody 770 used for determining FM and FFM (TBW/LBM and
%TBW) did not differ from baseline. These findings show promise for using the InBody
770 BIA for measuring and tracking body composition and nutritional status in children.

The final purpose of this study was to assess the sensitivity of PA to differences in
health and fitness levels in youth. Significant relationships were found among PA and
health and fitness levels. Specifically, cardiometabolic disease markers, such as TC, TRG
and BF%, were negatively associated with PA; lower TC, TRG, and BF% were related
to higher PA values indicating healthier bodies and therefore, healthier cells. There was
also a positive relationship found among FFM and fitness markers (grip strength and Est.
VO2max), especially in OW and OB youth. As expected, increased strength and FFM would
be related to better fitness and therefore, healthier bodies and cells. PA is dependent on the
opposition to the flow of the electrical current (resistance) and the capacitive ability of the
cell membrane to impede the current (reactance) [20]. Meaning, healthier cells will result in
a greater phasal shift and thus a greater PA compared to less healthy cells as seen in these
findings. In previous research, changes in PA have been shown to precede changes in body
weight and as such may be an early marker of changes in an individual’s overall resilience
or health [19,37,38]. Most research on PA in children have focus on malnutrition related to
disease or illness. This is one of the first to examine if PA could detect variations in health
and fitness in otherwise healthy youth and to establish healthy ranges for these measures
across sex, age, and weight status. These findings indicate PA might be a valid measure of
cellular health and could be used to identify children heading toward chronic disease.
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As all studies have limitations, this study is limited in sample size, especially in OW
and OB youth and teens. Based on these preliminary findings, recruitment for this study
has continued in order to increase sample size and balance the subgroups. This will allow
for more sophisticated statistical analyses, such as two- and three-way comparisons to
assess group and timepoint interactions as well as multiple regression analyses. Future
research will investigate changes in BIA-derived measures in youth over time in schools,
pediatrician offices, and nutrition clinics. This longitudinal study would test if this simple,
non-invasive device can be used for early detection of excessive growth patterns that could
lead to early onset of chronic disease in youth.

5. Conclusions

These preliminary findings suggest some caution is necessary in using BIA to assess
youth health and weight status, especially in boys, healthy weight youth and teens. How-
ever, more research is necessary in larger sample sizes to confirm these findings and to
determine the practicality and feasibility of using such a device in schools and clinics for
measuring and tracking body composition in youth, although the non-invasive phase angle
measure does show promise as a marker for early detection and prevention of childhood
obesity and obesity-related chronic diseases.
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