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Abstract

Early clinical successes are driving enthusiasm for fecal microbiota transplantation (FMT),

the transfer of healthy gut bacteria through whole stool, as emerging research is linking the

microbiome to many different diseases. However, preliminary trials have yielded mixed

results and suggest that heterogeneity in donor stool may play a role in patient response.

Thus, clinical trials may fail because an ineffective donor was chosen rather than because

FMT is not appropriate for the indication. Here, we describe a conceptual framework to

guide rational donor selection to increase the likelihood that FMT clinical trials will succeed.

We argue that the mechanism by which the microbiome is hypothesized to be associated

with a given indication should inform how healthy donors are selected for FMT trials, catego-

rizing these mechanisms into four disease models and presenting associated donor selec-

tion strategies. We next walk through examples based on previously published FMT trials

and ongoing investigations to illustrate how donor selection might occur in practice. Finally,

we show that typical FMT trials are not powered to discover individual taxa mediating patient

responses, suggesting that clinicians should develop targeted hypotheses for retrospective

analyses and design their clinical trials accordingly. Moving forward, developing and apply-

ing novel clinical trial design methodologies like rational donor selection will be necessary to

ensure that FMT successfully translates into clinical impact.

Introduction

Fecal microbiota transplantation (FMT) is the transfer of gut bacteria through whole stool

from a healthy donor to a recipient. FMT has demonstrated high cure rates in recurrent C. dif-
ficile infection (CDI) across multiple randomized, placebo-controlled trials [1] and has now

entered standard of care for multiply recurrent CDI in European and North American guide-

lines [2–4]. Beyond CDI, FMT is being explored in range of microbiome-mediated diseases,

and has demonstrated promising results in inflammatory bowel diseases [5–10].

Despite these early successes, the underlying mechanism of FMT across all disease indica-

tions, including CDI, remains unclear. However, it is generally considered that FMT restores
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gut microbial community perturbations from a dysbiotic state to a healthy stable state with

engraftment of donor strains, or perhaps through other donor-dependent features such as

the abundance of non-bacterial components or donor clinical features [11,12]. However,

not all FMT donors are alike: gut microbiota compositions vary within healthy populations

in ways that could impact the findings from an FMT trial [13,14]. This critical point of

microbiome variation within healthy donors is rarely considered in the development of

FMT trials [15,16].

Unlike FMT trials in CDI, where selecting donors based on specific clinical or microbiome

profiles does not seem to affect clinical response rates, donor selection is likely to be crucial to

trial outcomes in diseases with more complex host-microbiome interplay or distinct disease-

associated perturbations [14]. Most notably, in a randomized controlled trial (RCT) of FMT

for ulcerative colitis (UC) using 5 donors, 78% of patients who achieved remission after FMT

received stool from a single donor [17]. Thus, it is possible that without this single donor, the

trial would have returned a negative result. Given the variation in healthy donor microbiomes

and donors’ potential impact on clinical efficacy, how should clinicians and investigators select

their donors for a clinical trial?

To date, the typical approach for donor selection in FMT trials is to use a single healthy

donor or to randomly select multiple donors from a set of screened potential donors

[10,18,19]. However, in clinical indications where successful donors may be rare, such as UC,

clinical trials with randomly-selected healthy donors may fail not because FMT is inappropri-

ate for the indication, but because an ineffective donor was chosen. An alternative approach is

to expose each patient to multiple donors in order to mitigate the risk of sub-optimal donor

selection. In a large RCT of FMT in UC, FMT enemas for a single patient were derived from

between three and seven donors with patients receiving multiple donors throughout the 8

week course of treatment [10]. However, using multiple donors for a single patient may not be

feasible or appropriate in many disease indications or clinical trial settings (e.g. single-dose

FMT studies). Continuing the practice of randomly selecting donors for FMT clinical trials

risks returning false negative trials, stalling the field and delaying the development of novel

therapies for microbiome-mediated conditions.

Unlike traditional clinical trials which test well-defined small molecules, FMT trials test the

donor microbiome, which is variable [16]. Fortunately, the emergence of large, stool banks

with multiple pre-screened healthy donors captures some of this variability and makes it avail-

able for use in FMT trials. These stool banks thus open the possibility of selecting donors ratio-

nally during the FMT clinical trial design phase, enabling clinicians to choose from among a

large pool of eligible donors for donor samples which have specific desirable characteristics.

Coupled with expanded access to genome sequencing technologies and publicly available

microbiome sequencing datasets, rational donor selection is feasible and presents a unique

opportunity to advance the research methods of this nascent field.

In this paper, we present a framework to guide donor selection for FMT trials. The mecha-

nism by which the microbiome is hypothesized to be associated with a given indication should

inform how donors are selected for FMT trials, and we describe different disease models

which may underlie microbiome-mediated conditions (Fig 1). We describe strategies to ratio-

nally select donors for each type of disease model, and provide examples based on previously

published FMT trials and ongoing investigations. Finally, we discuss limitations of performing

discovery-based retrospective research after an FMT clinical trial concludes. To our knowl-

edge, this is the first description of a comprehensive framework for rational donor selection in

FMT trials.

Rational donor selection for FMT clinical trials
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Results

Framework for rational donor selection

FMT trials are pursued when research or clinical experiences suggest that the microbiome may

be causing or exacerbating a disease. Here, we propose four different models which may

underlie microbiome-mediated etiologies and their corresponding rational donor selection

strategies (Fig 1). Ultimately, it is up to each individual clinician-researcher to use published

cross-sectional studies, mechanistic investigations in model organisms, and their own clinical

experience treating patients to determine which of these model(s) are relevant in their specific

case. Additionally, logistical considerations will be important factors in making the final donor

selection regardless of which strategy is pursued. For example, clinicians should ensure that

the pool of donors that they are screening have enough material to sustain the required num-

ber of FMTs for their entire trial. Finally, this framework represents an approach for optimiz-

ing the success of FMT clinical trials given that a clinician is already pursuing a trial, and is not

intended to be used for deciding whether or not an FMT trial should be pursued in the first

place.

Most of the donor selection strategies described below can be modified to incorporate

matching between patients and donors. More specifically, donors can be tailored to individual

patients to specifically make up for the unique taxonomic or functional deficiencies in that

patient’s microbiome [14]. With the increasing amount of microbiome data available from

published FMT trials, we encourage collaborations between clinicians, bioinformaticians, and

microbiologists to analyze these data in order to generate or perhaps even confirm the validity

of potential donor selection strategies before selecting one (Fig 2). Finally, the strategies

Fig 1. Overview of the different models of microbiome-mediated disease and associated donor selection strategy. In cases where the

underlying model is unknown, a variety of donor selection approaches could be employed to potentially identify which disease process

(es) may be involved.

https://doi.org/10.1371/journal.pone.0222881.g001
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presented here should also be combined with adaptive clinical trial designs to further increase

the probability of having a successful FMT trial [20].

In all cases, ensuring patient safety through carefully screening donors and following all

regulations relating to pursuing an FMT trial is of paramount importance and supersedes any

other considerations regarding donor selection. While FMT has shown promise and is defined

in some clinical guidelines as standard of care for multiply recurrent CDI [2–4], it is not yet

officially approved by the US FDA. Thus, clinicians should ensure that their trial has secured

all ethical and regulatory approvals before proceeding [21]. Additionally, only healthy donor

stools should be considered in the rational selection process. Donors should be evaluated

through assessments that exclude not only known pathogenic risk but also co-morbidities and

risk factors for indications that are associated with the microbiome but where causality is

unknown. Following two serious adverse events in immunocompromised individuals receiv-

ing FMT, the FDA recently implemented additional restrictions regarding screening require-

ments for donor stools [22]. As our understanding of the risk factors related to FMT increases,

donor screening criteria should be updated to reduce the likelihood of serious adverse events

in patients, regardless of where donor stool is sourced and whether rational donor selection is

performed. For example, OpenBiome, the first public stool bank, has implemented a rigorous

screening protocol to exclude donors with any of a variety of potential clinical and infectious

risk factors [23].

Models of microbiome-mediated disease

Acute dysbiosis. An acutely dysbiotic gut microbial community is broadly dysfunctional

and can no longer maintain the health of the host. For example, in the case of recurrent Clos-
tridium difficile infection (rCDI), a disturbed microbial community is unable to prevent colo-

nization by or overgrowth of the pathogen, leading to recurrent overgrowth of C. diff and

clinical symptoms [24]. Acute dysbiosis has also been described with the “Anna Karenina

Fig 2. Case study in IBD: Select donors based on abundance of butyrate producers? (A): abundance of butyrate

producers in each study’s donor samples, showing that healthy donors exhibit a range of abundances. Butyrate

producers were identified at the genus-level (see Methods). (B): abundance of butyrate producers in donor samples,

stratified by respective patient’s response. Patient response was defined as in the original publications: Jacob 2017 [38],

response at 4 weeks (ΔMayo score� 3 and bleeding subscore� 1); Goyal 2018 [37], response at 6 months (decrease of

15 points in PUCAI); Kump 2018 [36], response at day 90 (reduction of the total Mayo score by� 3 points). Patient

response is not significantly associated with the abundance of butyrate producers in their respective donor sample

(p> 0.2 for all response vs. no response comparisons, t-test).

https://doi.org/10.1371/journal.pone.0222881.g002
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principle”: all healthy microbiomes are alike but dysbiotic communities are all dysbiotic in

their own ways [25] In this view of acute dysbiosis, microbial communities respond stochasti-

cally to stressors, resulting in dysbiotic communities which are characterized by increased vari-

ability rather than deterministic shifts to precise community type(s) [25].

In this model, the host simply needs to return to a “healthy” microbiome and thus choosing

any healthy FMT donor should be sufficient to induce clinical improvements. Because there is

no specific disease-associated microbial community and deviation from health is instead the

more important factor, simply replenishing the microbiome with a healthy configuration

should be sufficient. Indeed, FMT trials have demonstrated that rCDI can be effectively treated

by almost any choice of healthy donor [26]. In this case, researchers should consider how they

define a “healthy” microbiome and how they will ensure clinical efficacy, for example through

engraftment of the transplanted healthy communities.

Absence or presence of individual taxa.

Absence of beneficial taxa

In other cases, perhaps a disease is being caused or exacerbated by the lack of certain spe-

cific microbes, and replenishing these few taxa would be sufficient to restore the host to health

[14]. For example, Hsiao et al. showed that a single microbe, R. obeum, restricted infection by

V. cholerae through quorum-sensing-mediated mechanisms [27]. Surprisingly, non-commu-

nicable diseases may also fall into this model: a single strain of Lactobacillus was sufficient to

ameliorate salt-induced hypertension in mice, and follow-up studies indicate that similar

mechanisms may be involved in salt-sensitive high blood pressure in humans as well [28].

In these cases, the donor selection strategy should focus on maximizing the probability of

engraftment of the beneficial taxa. In cases where the unique taxa are not specifically known or

are rare members of the human microbiota, many healthy donors could be pooled together or

a donor with a high alpha diversity could be selected in order to maximize the probability that

the transplanted sample contains the necessary taxa [14]. However, pooling donors may

increase the risk of adverse events and should be pursued with caution. If the missing microbes

are known and well-characterized, on the other hand, researchers can screen their pool of

potential donors to find the sample with the highest abundance of these taxa.

Presence of harmful taxa

Rather than being characterized by the absence of individual bacteria, perhaps a disease is

instead mediated by the presence or overabundance of specific microbes, and removing these

bacteria in a targeted fashion could lead to improvements in disease progression. For example,

Fusobacterium has been found to be more abundant in colorectal cancer patients, specifically

enriched in the tumors themselves [29]. Multiple groups have identified mechanistic associa-

tions between Fusobacterium, inflammatory transcriptional signatures, and tumor growth in

mouse and human models of colorectal cancer, pointing to a causal role for Fusobacterium in

colorectal cancer progression [29, 30]. Recent work has found that treating tumors with antibi-

otics slows tumor progression, further confirming these causal associations and pointing

toward potential microbiome-based therapeutic interventions [31].

Removing and replacing these bacteria should be the goal of FMT in cases where this dis-

ease model applies. This can be achieved by first removing the harmful bacteria (e.g. via antibi-

otic treatment) with follow-up FMT to re-establish a healthy community that prevents their

re-colonization. In all cases, donors should be screened to exclude any samples which contain

the harmful bacteria. Donor samples can then be selected based on the abundance of bacteria

which are known to out-compete the harmful taxa. Competitors can be identified by searching

the microbiology literature to identify bacteria which live in the same niche or which have

been experimentally shown to directly out-compete the undesirable taxa, or they can perform

these competition assays themselves. If resources to perform competition assays are not

Rational donor selection for FMT clinical trials
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available and the literature is sparse, researchers can also mine existing microbiome data to

find bacteria which consistently anti-correlate with the harmful taxa, and choose donor sam-

ples with a high abundance of these putative competitors [32].

Patient matching

Taxa-based donor selection strategies are particularly amenable to patient-matching, when

both patient and donor microbiome data are available prior to the start of a trial [14]. For

example, if one patient is completely missing some of the beneficial taxa but not others, then

these taxa can be weighted more heavily in the donor selection process. The phylogenetic rela-

tionships between donor and recipient taxa could also be incorporated into donor selection: if

a patient already has many bacteria which are closely phylogenetically related to known com-

petitors of some of the harmful bacteria, then competitors of the other harmful bacteria can be

upweighted in the donor selection process. Similarly, if patients already have taxa which are

already filling certain niches important for health, the taxa which fill those same niches can be

downweighted in donor selection.

Case study: Inflammatory bowel disease

An example where the “missing taxa” model may be applicable is in inflammatory bowel

disease (IBD). Butyrate has long been associated with IBD [14, 33], and recent case-control

and longitudinal studies point to a consistent lack of butyrate-producing bacteria in patients

with IBD [34, 35]. Furthermore, preliminary FMT trials in IBD have been marked by variable

efficacy, both between trials and between donors within individual trials, suggesting that

donor microbiome characteristics may be associated with FMT response [36–38]. These

results indicate that IBD may benefit from rational donor selection approach, and that donors

with high abundances of butyrate-producing organisms may yield higher FMT response rates

than randomly selected donors.

Given the availability of microbiome data from completed FMT studies, a clinician leading

an IBD FMT trial may elect to perform rational donor selection based on the “absence of bene-

ficial taxa” disease model. To illustrate this process, we re-analyzed microbiome data from

three completed IBD FMT trials which provided publicly available sequencing data for patient

and donor samples [36–38]. We selected butyrate-producers based on their genus-level taxon-

omy, using a simple heuristic from Vital et al. 2017 ([39], see Methods). Donors in the three

studies exhibited a range of total abundances of butyrate-producing bacteria (Fig 2A; S1, S2,

and S3 Figs). However, the abundance of butyrate producers in the donor stool was not associ-

ated with recipient patients’ clinical responses (Fig 2B) and we also found no association with

response when matching donor abundances with their respective patient’s original abundance

of butyrate producers (S4 Fig). This illustrative case study shows that selecting donors based

on the abundance of butyrate producers may not yield improved clinical trial outcomes in

IBD, and more broadly highlights some of the challenges involved in performing rational

donor selection in a real-world context.

Despite their accessibility, taxonomy-based approaches are limited in their ability to iden-

tify functional or strain-level associations. For example, in this 16S-based analysis, we were

unable to identify any of the Eubacteria taxa which are major contributors to SCFA production

in the human gut [39, 40]. More complex methods to identify butyrate producers (e.g. using

more finely resolved taxonomy, phylogenetic-aware methods and/or metagenomics data)

could be used in the next iteration to develop a donor selection strategy, if these data are avail-

able to clinicians. Another approach, discussed below, is to select donors based on functional

community assays and direct measurement of butyrate production rather than microbial tax-

onomies alone.

Community-level functionality. Some microbiome-associated diseases may not be

addressable by replenishing the patient with a generically healthy community or by targeting

Rational donor selection for FMT clinical trials
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individual taxa, and may instead be mediated by the microbiome through a community-level

function. Here, there may not be a consistent disease-associated microbiome across patients in

terms of taxonomic composition, but patients may be characterized by having microbiomes

which are similarly missing or enriched in some core functionality. This model may also apply

to conditions where there are consistent disease- or health-associated taxa, but in which their

collective functioning is the more important mediator of disease. The IBD case study described

above may reflect this situation: although depletion of butyrate producers is strongly associated

with IBD throughout the literature, a successful donor selection strategy may need to consider

butyrate production directly rather than through the proxy of taxonomy [14, 34, 35].

Missing community-level function

In the case where a community-level function is missing from patients’ microbiomes, the

goal of FMT should be to replace the deficient community with a beneficially functional

microbiome. Here, it is important that a single donor with an intact microbial community is

used, rather than a mixture of donors which may not yield the desirable community composi-

tion at steady-state after FMT. To choose a donor, molecules which can serve as proxies for the

metabolic output of the microbial community can be measured directly in donor stool, and

donors can be selected based on the abundance of these molecules.

Like IBD, hepatic encephalopathy (HE) is an example where community functionality is

likely more relevant to FMT outcome than specific taxa. A previous trial in HE [41] rationally

selected their single donor by maximizing the abundance of Lachnospiraceae and Ruminococ-
caceae, taxa which were were previously found to be depleted in HE patients based on cross-

sectional microbiome data. The clinical trial was a success, but it remains unclear from this

trial whether the donor’s strains engrafted in the patients post-FMT and whether this played

any role in the successful FMT responses. The exact mechanisms of action of these strains

remain unknown, though both bacterial families are known short chain fatty acid producers

(in particular butyrate) [39]. Recent studies have more directly implicated deficiencies in the

production of short-chain fatty acids (SCFAs) and secondary bile acids as being important in

liver cirrhosis and subsequent complications such as HE, suggesting that community-level

functioning may be a more important driver of FMT response. Thus, HE may be a case in

which function-based donor selection can be employed. To illustrate this process, we analyzed

stool metabolomics data from 83 OpenBiome donors and used this data to rank them based

on their estimated production of SCFAs and secondary bile acids (Fig 3; [42]). As in the IBD

case study (Fig 2A), we found that donors exhibited a range of values for our metabolites of

interest (Fig 3A and 3C). We ranked donors based on their amounts of the three measured

SCFAs (butyrate, isovalerate, and propionate) and on their bile acid conversion rates, approxi-

mated as the ratio between the total amounts of primary and secondary bile acids (Fig 3B and

3D, see Methods). With this process, we were able to identify four donors who were in the top

25% of all donors for both metrics (Fig 3E). In a real FMT trial, a clinician would then work

with their stool bank to ensure that these donors were still active and/or had enough material

to fulfill the full trial, or alternatively request that donors with a similar range of SCFAs and

secondary bile acid conversion be provided.

While measuring metabolites in stool as a proxy for community production will likely be

an improvement over taxonomy-based approaches in most cases, these measurements are also

complicated by potential host effects. For example, different hosts may absorb these molecules

at different rates, and so measuring them in stool may not be an accurate reflection of each

donor community’s productive potential. Additionally, community function may depend on

non-biologically relevant factors like the donor’s diet and time that they provided their sample.

As an example, bile acid production spikes after meals [43], so the amount of bile acids mea-

sured in a given stool sample may reflect the amount of time since the donor last ate rather

Rational donor selection for FMT clinical trials
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than their actual microbial community’s functional production of these molecules. If clinicians

have access to sufficient resources, a better way to screen donors may be to perform ex vivo
assays, in which each donor sample is homogenized and provided with the substrates (e.g.

fiber) needed to produce the desirable output (e.g. short-chain fatty acids like butyrate). In this

way, the donor community function can be measured directly [44, 45].

Overactive function

A disease may also be mediated by an overactive microbiome doing something harmful to

the host. For example, TMAO produced by the microbiota contributes to atherosclerosis [46,

47]. Here, the goal of FMT should also be to replace the patient’s microbiome with a benefi-

cially functional community, but the donor selection strategy may attempt to identify commu-

nities in which the harmful function is completely absent or which produces an inhibitor of

the harmful microbe-derived molecule [47].

Microbiome-associated host phenotypes. Diseases with more complex etiologies may

not have a direct taxonomic or functional association with the microbiome but instead be

related through some intermediate host phenotype which needs to be improved or corrected.

For example, severe acute malnutrition has been associated with a gut microbiota which is not

fully mature, with mouse experiments suggesting that this association may be causal [48, 49].

Other studies have shown a relationship between gut microbiome, immune development, and

development of autoimmune conditions later in life [50–52]. These relationships may have

Fig 3. Case study in liver cirrhosis: Selecting donors based on community function by mining stool metabolomics data. (A) Distribution of SCFAs in all donor

stools. (B) Abundance of each SCFA per donor, ranked by average SCFA abundance. (C) Distribution of bile acids in all donors. Primary bile acids are in the left

column, secondary bile acids are in the right column. Bile acids are colored according to pathways. (D) Bile acid conversion ratios in each donor, ranked by the ratio of

total secondary to primary bile acids. (C: cholate; DC: deoxycholate; CDC: chenodeoxycholate; LC: lithocholate) (E) Donors ranked on both SCFA production and bile

acid conversion allows for the selection of five donors which are in the top 25% for both of these metrics. These donors could be followed up with for use in a rationally-

designed liver cirrhosis FMT trial.

https://doi.org/10.1371/journal.pone.0222881.g003
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mechanistic explanations which are not directly measurable from donor or patient stool (e.g.

immunogenicity of bacteria, ability of bacteria to digest the host’s mucus) but which can never-

theless be inferred from existing data and used to select potential donors.

For these more complex cases, models can be trained from existing datasets to learn the

community signatures linked to the disease-associated phenotype. In some cases, it may be

possible to develop computational models which directly predict the phenotype of interest.

For example, Stein et al. developed a model to predict the induction of regulatory T-cells by

microbial communities [53]. In other cases with few known mechanistic models, machine

learning algorithms can be trained on multiple cross-sectional datasets to identify complex sig-

natures that reproducibly distinguish patients from healthy controls. These models can then

be applied to score potential donors, and the donor with the “most healthy” score may be cho-

sen for a trial.

Little understanding of underlying disease model. In some conditions, there may not be

enough understanding of the underlying microbiome-based etiology to inform donor selec-

tion in an FMT trial. It may also be the case that there are no existing datasets on which to

train models, existing datasets are not sufficiently powered to distinguish the different poten-

tial underlying models, or logistical considerations constrain a clinician’s ability to select spe-

cific donors for their trial. In these cases, we recommend selecting different healthy donors,

employing an adaptive clinical trial design in which donors are cycled after they have clinical

failures (as described previously in [20]), and performing retrospective analyses to answer tar-

geted hypotheses which were developed during the clinical trial design process.

Cycling healthy donors in adaptive trials

As donors change through the course of an adaptive trial, clinicians may elect to select their

donors randomly or to more rationally cycle through donors [20]. “Differently healthy”

donors may be selected through a combination of donor selection strategies to represent the

different underlying disease-associated models described above. Clinicians may be able to test

whether a biological mechanism is involved by strategically selecting donors and testing

whether one type of donor led to better outcomes than the others. For example, if the hypothe-

sized biological mechanism relates to butyrate production, healthy donors with high and low

levels of butyrate production could be used in the FMT arm, and retrospective analyses may be

able to determine whether there is an association between donor butyrate levels and FMT out-

come. However, since clinical trials prioritize clinical efficacy over secondary outcomes like

mechanistic insights, few exploratory FMT trials will likely have the sample size and power

necessary to conclusively perform such analyses.

Donors may also be selected to span the range of “healthy” microbiomes in a given popula-

tion. For example, clinicians may pick a "median" healthy donor who is similar to existing

healthy reference microbiomes [54, 55], or simply based on the presence or abundance of cer-

tain consistently “core” health-associated bacteria [34, 56]. In a similar vein, “healthy” donors

can also be chosen based on their distance from disease-associated microbiomes, as opposed

or in addition to similarity to health. Published case-control datasets can be used to identify

donors with communities which are farthest away from the median or average diseased

patient. These datasets can also be mined to identify taxa which are consistently disease-associ-

ated, and which should be minimized or perhaps even absent in the potential donor. Pairing

rational donor selection with adaptive trial designs may eventually yield insight into the under-

lying model mediating the disease of interest if certain types of “healthy” donors consistently

perform better at treating patients than others.

Discovery-based retrospective analyses of completed FMT trials

In these exploratory FMT clinical trials, discovering microbiome characteristics which are

differentially associated with FMT response may be a valuable secondary endpoint [16],

Rational donor selection for FMT clinical trials
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identifying characteristics of good donors and informing donor selection strategy for future

trials [36, 38, 57]. Furthermore, companies attempting to develop microbiome-based thera-

peutics may use FMT trials to discover the key bacteria which mediate FMT response in order

to include these in their microbial cocktail product. However, exploratory FMT trials tend to

enroll few patients, limiting the potential power of retrospective analyses of individual trials to

find associations between the microbiome and FMT response.

We performed a simulation to determine the likelihood of a retrospective analysis to iden-

tify donor-derived bacteria associated with different patient responses to FMT. We performed

this simulation for multiple FMT trial set-ups and outcomes (i.e. number of FMT responders

and non-responders). We used existing microbiome datasets to model different effect sizes,

where we use “effect size” to mean the number of bacteria which are differentially abundant in

donor samples given to patients who did and did not respond to FMT. Case-control datasets

were used to model the microbiome data and various effect sizes, with a large effect repre-

sented by an infectious diarrhea dataset [58], a medium effect represented by colorectal cancer

[59], and a weak effect represented by obesity [60]. For each of these datasets, we identified the

top ten most differentially abundant bacteria in the overall population as representative of

“key mediating bacteria” (see Methods). Next, we simulated different trials, varying the num-

bers of patients in the FMT arm and the FMT response rates (i.e. proportion of patients which

were FMT responders, represented by sampling from the “case” patients, vs. non-responders,

represented by sampling from the “control” patients). We subsampled patients according to

these parameter settings, identified differentially abundant genera, and compared these to the

top ten genera identified from the entire datasets (Fig 4).

In cases where the microbial signature for FMT response is expected to be large (i.e. the dif-

ference in donor stools given to FMT responders vs. non-responders is as large as the effect of

diarrhea effect on the microbiome), we found that small FMT trials would recover most of the

top hits in the majority of cases. The power to detect associations decreased as FMT response

rates became less balanced (i.e. response rates different from 50%), and in these cases trials

would need to include up to 50 patients in the FMT arm to recover the key mediating taxa. For

both medium and small effect sizes, however, prohibitively large FMT arms would be needed

to recover most key mediating taxa regardless of FMT response rate. We found that when the

microbial signature for FMT is equivalent to the effect of diseases like colorectal cancer on the

microbiome, at least 100 patients are needed in the FMT arm to recover at least half of the

most truly differentially abundant genera for most FMT trials. This simulation was performed

at the genus-level, and underestimates the power needed to identify associations at finer taxo-

nomic levels (e.g. OTU, ASV, or strain-level). In cases where strain-level biology is involved,

FMT trials will need even more patients to be powered to find significant associations in retro-

spective analyses.

These results suggest that successful secondary analyses of microbiome data from FMT tri-

als will require either very large FMT arms, investigating more targeted hypotheses, meta-anal-

yses, or additional sample collections. For example, clinicians may consider pairing donor and

patient samples or collecting longitudinal patient samples to increase power to make discover-

ies [57, 61]. They may also consider testing specific hypotheses developed before the trial, such

as comparing the total abundance of butyrate producers between FMT responders and non-

responders, or performing functional assays to measure specific metabolites thought to be

associated with FMT response [57]. On the other hand, researchers wishing to identify the key

taxa to include in an FMT drug may consider pursuing clinical trials in which identifying

these taxa is the primary endpoint, and power them accordingly. In all cases, making micro-

biome sequencing data and associated patient-donor matching and clinical response metadata
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publicly available will allow for future meta-analyses that will have more power to make dis-

coveries [34].

Discussion

The framework presented here encourages clinicians to leverage their clinical experience,

existing microbiome research and published datasets, the increasing availability of screened

healthy donor stools, and partnerships with bioinformaticians and microbiologists to more

efficiently translate microbiome-based interventions into clinical impact. Clinicians can apply

their existing knowledge and a priori hypotheses to determine which microbiome-mediated

disease model may underlie their indication of interest, and then select donors accordingly. By

rationally choosing donors during the FMT trial design, clinicians will increase the likelihood

of successful FMT trials in diseases in which donor heterogeneity affects patient response. Our

power simulation analysis also suggests that specific plans for retrospective analyses of the

microbiome data generated should be developed during trial design, with targeted hypotheses

of interest and sample collection plans tailored accordingly. Otherwise, exploratory analyses of

single FMT studies are unlikely to make new discoveries. Paired with adaptive clinical trial

designs, FMT trials with rationally-selected donors will become an important tool in advanc-

ing translational microbiome research and clinical treatment to improve and save patient lives.

As a conceptual framework for approaching rational donor selection in practice, this work

has significant limitations. Many logistical and scientific considerations (e.g. FMT delivery

mode, organism survival during FMT prep and delivery, etc) involved in performing FMT tri-

als are not addressed in this framework, and should be considered during the trial design in

addition to donor selection. FMT trials are also inherently limited by the material that they

use: donor stool. It is unclear to what extent stool will be sufficient to address diseases in which

regional differences in gut microbiota composition are involved (e.g. mucus-associated

microbes implicated in IBD), and to what extent analyzing fecal samples provides a representa-

tive view of the entire GI physiology. Furthermore, while 16S rRNA-based microbiome profil-

ing may be a good first-pass analysis when more extensive functional data (metagenomics,

metabolomics, functional assays) is not available, it is limited in its ability to provide insight on

functional or strain-level associations. Further work will be required to address which mea-

surement modality is optimal for performing rational donor selection in exploratory FMT

clinical trials, while recognizing that these pilot studies are often constrained for resources.

Fig 4. Power simulation: Most FMT trials are not powered to discover individual taxa mediating FMT response. Plots showing how many of the

10 most “truly” differentially abundant genera would be recovered as significant under different FMT study designs. Each panel represents a

different FMT response rate (i.e. percent of patients in the responder vs. non-responder group). The effect size (i.e. number of genera which are

differentially abundant in FMT responders vs. non-responders) was simulated by using three different case-control microbiome datasets. A large

effect size is modeled by the effect of diarrhea on the microbiome, medium by colorectal cancer, and small by obesity. The top 10 "true" differentially

abundant genera were identified by calculating their signal-to-noise ratios in the full original dataset (i.e. mean difference divided by the standard

deviation). (See Methods).

https://doi.org/10.1371/journal.pone.0222881.g004
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As FMT-specific clinical trial design methodologies become more developed, many addi-

tional questions will need to be addressed. Some of these key questions relate to choosing

healthy donors: what defines a “healthy” donor, and when and how should that definition

change? Some screening criteria, like excluding certain known pathogens, will apply to all

donors. Beyond these, however, there is little consensus on what defines a “healthy” micro-

biome. Consider a clinician carrying out an FMT trial in an African setting: given that healthy

Africans from across the continent are known to have more Prevotella than North Americans,

it might be advisable to source donors locally to better match the expected healthy state of the

patients [13, 62, 63]. But what if the local population has higher asymptomatic colonization

rates of undesirable bacteria like opportunistic pathogens, resulting in usual screening criteria

excluding many or all potential donors: should the criteria be adapted to allow for local donors,

or should donors be sourced from a foreign stool bank whose donors may not match the local

population? To answer this question, more research is needed to understand differences

between healthy microbiomes globally and their clinical implications [42, 64, 65]. Regardless,

ensuring patient safety in light of our evolving understanding of the microbiome and FMT is

critically important to the success of the field. Identifying criteria that should be applied to all

donor stools to ensure the safety of FMT will require balancing stringent screening require-

ments while also allowing for a large enough pool of healthy donors to facilitate successful

trials.

On the patient side, comorbidities, lifestyle, and dynamic disease manifestations present

additional challenges and opportunities to improve donor selection and FMT clinical trial

designs. How should comorbidities be incorporated into donor selection? Patients with multi-

ple disease processes may be dominated by one disease model or may exhibit a combination of

models, perhaps affecting which donors would be optimal for their specific case. For example,

a person whose condition involves both acute dysbiosis and community-level dysfunction

might respond well to any healthy donor, or may require a more complex combination of total

community replacement along with enrichment for community function. Relatedly, diseases

that change manifestations over time may benefit from employing different donor selection

strategies over the course of a longitudinal FMT trial. Additionally, although there have been

no serious adverse events related to FMT material in either clinical practice for rCDI or in clin-

ical trials across adults or pediatrics, could some donors further reduce the probability of

adverse events in at-risk patients? Finally, how should other sources of heterogeneity like life-

style, diet, and medication usage be incorporated into rational donor selection? In cases where

FMT is combined with other microbiome-targeted interventions like prebiotics or dietary

changes, could some donors have synergistic effects with these paired interventions and lead

to greater clinical success?

To ensure that FMT reaches its full potential to improve and save patient lives, clinicians

should think critically about how their FMT trials can be designed for maximal impact. Apply-

ing new approaches like rational donor selection will decrease the number of false negative

clinical trials which fail even though they could have succeeded with a more optimal donor.

Furthermore, by developing targeted hypotheses, post-trial analysis plans, and associated sam-

ple collection schema alongside the core FMT trial design itself, the number of basic scientific

discoveries that are made from each trial will significantly increase. As FMT expands beyond

rCDI and microbiome-based therapeutics are developed to target a range of diseases, novel

methods and approaches tailored to the unique challenges and opportunities presented by

FMT will be critical to ensuring the advancement of translational microbiome science and

beneficial impact on patient lives.
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Methods

Microbiome data processing (IBD case studies)

Raw fastq data files were downloaded from the European Nucleotide Archive using the follow-

ing accession numbers: Jacob et al 2017 [38], PRJNA388210; Goyal et al. 2018 [37],

PRJNA380944; and Kump et al. 2018 [36], PRJEB11841. All data was processed using QIIME 2

(v. 2018.6.0, [66]). Briefly, data was imported into QIIME 2 as paired-end (Kump et al. 2018

[36]; Jacob et al. 2017 [38]) or single-end (Goyal et al. 2018 [37]) data, filtered based on

sequence quality with ‘quality-filter q-score‘, and denoised with deblur using ‘deblur denoise-

16S‘[67]. Representative sequences were assigned taxonomy using ‘feature-classifier classify-

sklearn‘with the GreenGenes-trained Naive Bayes classifier provided by QIIME 2 (gg-13-8-

99-nb-classifier.qza) [68]. All data was exported to tab-delimited format and analyzed in

Python 2.7.6. We converted raw read counts to relative abundances by dividing each value by

the total reads per sample, and collapsed ASVs to genus level by summing their respective rela-

tive abundances.

Quantifying abundance of butyrate producers

We identified butyrate producers at the genus-level based on the analysis performed in Vital

et al. 2017 [39]. These taxa were detected in >70% of individuals in Vital et al. 2017 [39], are

known butyrate producers (with a majority of the analyzed representative genomes containing

known butyrate production pathways, as described in Table S2 of the original publication

[39]), and accounted for the majority of the total butyrate pathway abundances in human

metagenomics data. We did not consider E. ventriosum, E. hallii, and E. rectale from our analy-

ses as these species-level taxa were not present in our data and do not comprise one genus with

conserved butyrate production (Table S2 from Vital et al. 2017 [39]). The genera found in each

dataset and their abundances in each of the donor stool samples are plotted in S1, S2, and S3

Figs. Statistical significance was assessed using the ttest_ind function from the scipy.stats

Python package.

Stool metabolomics

Metabolomics data was generated as described in [42]. and downloaded after personal com-

munication with the authors. The processed data has since been made available at the NIH

Common Fund’s Metabolomics Data Repository and Coordinating Center website, the Meta-

bolomics Workbench, where it has been assigned Project ID PR000804. The data can be

accessed directly via its Project DOI: 10.21228/M8RM32.

For donors with multiple samples, we considered the mean metabolite abundances across

all sampled time points. We identified three short chain fatty acids (SCFAs) in the data (propi-

onate, butyrate, and isovalerate) and the major primary (cholate and chenodeoxycholate) and

secondary (deoxycholate and lithocholate) bile acids. Lithocholate abundances were available

for both C-18 negative and HILIC negative modes; we considered only the C-18 negative data

to match the other bile acids. Bile acid conversion rates were calculated as in [69]. Donors

were ranked based on their average SCFA abundances and based on the total bile acid conver-

sion ratio ((lithocholate + deoxycholate) / (chenodeoxycholate + cholate)).

Power simulation

We performed a simulation to determine the power of FMT trials to retrospectively find asso-

ciations between donor bacterial abundances and FMT response. We used case-control gut

microbiome datasets from MicrobiomeHD [34] to model different effect sizes for FMT
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response. Here, we use “effect size” to mean the number of genera which are differentially

abundant between patients who respond to FMT vs. patients who do not. Per the results in

MicrobiomeHD, we used infectious diarrhea to model a large effect [58], colorectal cancer to

model a medium effect [59], and obesity to model a small effect [60]. We collapsed OTUs to

genus-level as in [34] and ranked genera according to their signal-to-noise ratio in each entire

dataset, where the signal-to-noise was calculated as the difference in mean log abundance in

cases and controls divided by the standard deviation of the log abundances across all samples.

We considered the 10 genera with the largest absolute signal-to-noise ratios as our “top hits”

in the main text.

We modeled different FMT clinical trial designs and outcomes by varying the number of

total patients in the trial and the percent of FMT responders (i.e. the number of patients we

selected from the original “case” group relative to the original “control” patients, to model

FMT responders and non-responders). For each of these designs, we subsampled the correct

number of case samples to represent FMT responders and control samples to represent non-

responders from the original datasets. We identified significantly differentially abundant gen-

era with the ‘kruskalwallis’ function from scipy.stats.mstats (scipy v. 1.1.0) as genera with

q< 0.05 after multiple hypothesis testing correction with the multipletests function (method =

‘fdr_bh’) from the statsmodels.sandbox.stats.multicomp package (statsmodels v. 0.9.0). We

then counted how many of the top genera identified through the signal-to-noise ranking were

identified as significantly different as a proxy for the power to detect effects.

Code and data availability

Code to reproduce all of these analyses and figures can be found at https://github.com/

cduvallet/donor-selection/. Data were downloaded from original sources as described above.

Supporting information

S1 Fig. Relative abundance of butyrate-producing genera in Jacob 2017 study. Donors are

ordered along the x-axis in the same order for all plots. The respective patient response status

is indicated through the bar color (blue = response, orange = no response).

(PNG)

S2 Fig. Relative abundance of butyrate-producing genera in Goyal 2018 study. Donors are

ordered along the x-axis in the same order for all plots. The respective patient response status

is indicated through the bar color (blue = response, orange = no response). Note: Butyricicoc-

cus was not present in any of the donor samples.

(PNG)

S3 Fig. Relative abundance of butyrate-producing genera in Kump 2018 study. Donors are

ordered along the x-axis in the same order for all plots. The respective patient response status

is indicated through the bar color (blue = response, orange = no response).

(PNG)

S4 Fig. Difference between abundance of butyrate producers in donor sample and respec-

tive patient sample, stratified by patient response. The difference was calculated by subtract-

ing the patient’s total abundance of butyrate producers from the total abundance in their

respective donor sample. Butyrate producers were identified as described in the Methods.

(PNG)
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