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This work is a short review of the interactions between oenological yeasts and lactic
acid bacteria (LAB), especially Oenococcus oeni, the main species carrying out the
malolactic fermentation (MLF). The emphasis has been placed on non-Saccharomyces
effects due to their recent increased interest in winemaking. Those interactions are
variable, ranging from inhibitory, to neutral and stimulatory and are mediated by some
known compounds, which will be discussed. One phenomena responsible of inhibitory
interactions is the media exhaustion by yeasts, and particularly a decrease in L-malic
acid by some non-Saccharomyces. Clearly ethanol is the main inhibitory compound of
LAB produced by S. cerevisiae, but non-Saccharomyces can be used to decrease it.
Sulfur dioxide and medium chain fatty acids (MCFAs) produced by yeasts can exhibit
inhibitory effect upon LAB or even result lethal. Interestingly mixed fermentations with
non-Saccharomyces present less MCFA concentration. Among organic acids derived
as result of yeast metabolism, succinic acid seems to be the most related with MLF
inhibition. Several protein factors produced by S. cerevisiae inhibiting O. oeni have
been described, but they have not been studied in non-Saccharomyces. According to
the stimulatory effects, the use of non-Saccharomyces can increase the concentration
of favorable mediators such as citric acid, pyruvic acid, or other compounds derived
of yeast autolysis such as peptides, glucans, or mannoproteins. The emergence of
non-Saccharomyces in winemaking present a new scenario in which MLF has to
take place. For this reason, new tools and approaches should be explored to better
understand this new winemaking context.
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INTRODUCTION

Wine is the result of the alcoholic fermentation (AF) driven out by oenological yeasts in
a complex microbial environment (Constantí et al., 1997; Beltran et al., 2002). Apart from
Saccharomyces cerevisiae, recognized as the main agent of this process, other yeast species, known
as non-Saccharomyces yeasts, such as Hanseniaspora/Kloeckera, Pichia, Candida, or Metschnikowia
are implicated in early stages of the AF (Fleet et al., 1984). After the AF, the resultant wine can
undergo the malolactic fermentation (MLF), which consists on a fairly simple reaction: a unique
enzymatic decarboxylation of the L-malic acid to L-lactic acid (Liu, 2002). It is usually performed
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in red wines or high acidity white wines. This fermentation is
carried out by lactic acid bacteria (LAB). Four LAB genera are
usually found in wine: Lactobacillus, Pediococcus, Leuconostoc,
and Oenococcus; and particularly, the main dominant species in
wine is Oenococcus oeni (Wibowo et al., 1985; Lonvaud-Funel,
1999; Liu, 2002). MLF is related to a quality improvement in wine
since this biotransformation leads to a pH increase, enhanced
organoleptic properties and a microbial stabilization (Lonvaud-
Funel, 1999). During MLF, LAB consume L-malic acid and other
nutrients, impoverishing wine and avoiding the development of
contaminant microorganisms.

In the last few years the interest on the use of
non-Saccharomyces yeasts in winemaking has increased
(Padilla et al., 2016; Petruzzi et al., 2017), due to the particular
enzymatic activities that catalyze the liberation of aromas from
their non-volatile precursors (Belda et al., 2017). Generally,
these yeasts are inoculated to start the AF of must and later
S. cerevisiae is inoculated to finish the process. This type of
sequential inoculation with non-Saccharomyces undergoes
chemical changes in wine which modulate the organoleptic
profile of wines (Fleet, 2008; Padilla et al., 2016). What is more,
this chemical modulation presents new scenery in which MLF
may take place.

The purpose of this mini review is to summarize the current
knowledge about the compounds responsible for the interactions
that may take place between oenological yeasts and LAB during
winemaking, highlighting the new scenery of non-Saccharomyces
fermentations.

YEAST-LAB INTERACTIONS:
OENOLOGICAL CONTEXT

The performance of MLF by LAB is highly affected by the
physicochemical intrinsic properties of wine, such as pH, ethanol,
and SO2 (Carreté et al., 2002; Arnink and Henick-Kling, 2005).
Moreover, since MLF takes place usually after the AF, it is
also influenced by yeast metabolism. Those interactions range
from inhibitory, to neutral and stimulatory. There is not much
literature about this topic, but it is agreed that the type and
impact of the interactions is dependent on several factors like
(I) the initial must composition, (II) the yeast/bacteria strain
combination, (III) the uptake and release of nutrients by yeasts,
and (IV) the ability of yeasts to produce metabolites that affect
somehow LAB (King and Beelman, 1986; Lonvaud-Funel et al.,
1988; Alexandre et al., 2004; Du Plessis et al., 2017). There are
some compounds which mediate these interactions (Figure 1)
but, still the available information is not sufficient.

Up to date, some strategies have been developed to mitigate
the possible yeast- O. oeni inhibitory interactions (Sumby et al.,
2014). Specifically, coinoculation of yeast and O. oeni has been
proposed as a promising strategy to reduce the length of MLF
(Izquierdo Cañas et al., 2014). In this way, the simultaneous
AF and MLF co-immobilized in alginate beads is a technique
currently in study (Bleve et al., 2016). Another classical approach
to deal with the MLF difficulties is to select specific strains
from the nature (Campbell-Sills et al., 2017; Petruzzi et al., 2017).

The purpose of this selection is to identify the most relevant
microorganisms related with the fermentation process in a
particular area and use them as culture starters (Portillo et al.,
2016; Franquès et al., 2017; Petruzzi et al., 2017).

Above the direct yeasts effect upon LAB and MLF
performance, the must, and the winemaking practices, have
a strong impact in how these interactions take place (Arnink and
Henick-Kling, 2005; Tristezza et al., 2016).

Beyond the particular production of certain compounds
(Table 1), yeast metabolism exhausts the nutrients of the
medium. LAB have complex nutrient requirements (Garvie,
1967; Fourcassie et al., 1992; Terrade and Mira de Orduña, 2009),
so their growth is highly dependent on the nutrients consumption
during AF by yeasts (Ivey et al., 2013). The effect of these
inhibitory interactions could be explained as the result of nutrient
competition, such as yeast assimilable nitrogen (YAN) or amino
acids (Costello et al., 2003). Therefore, yeast strains with complex
nutrient requirements would exhibit an increased antagonistic
relationship with LAB (Costello et al., 2003). In this way, it has
been recently described that coinoculation of S. cerevisiae with
other non-Saccharomyces yeasts result in a metabolic stimulation
of glucose and nitrogen uptake by yeasts, which could lead to a
more impoverished medium for LAB (Curiel et al., 2017).

Moreover, it has been reported that the use of some yeast
strains (Su et al., 2014) can cause a decrease in L-malic acid, the
prior substrate of LAB in wine, which can negatively affect the
MLF performance. Particularly, the use of non-Saccharomyces
leads a higher consumption of L-malic acid, as it has been
described with Torulaspora delbrueckii (Belda et al., 2015),
Starmerella bacillaris (syn. Candida zemplinina) (Tofalo et al.,
2012; Du Plessis et al., 2017), M. pulcherrima (Du Plessis et al.,
2017), and Issatchenkia orientalis (Kim et al., 2008). There is also
another non-Saccharomyces yeast that really consumes L-malic
acid to dryness (Du Plessis et al., 2017). Schizosaccharomyces spp.
can develop the maloalcoholic fermentation by consuming both
sugars and L-malic acid (Benito et al., 2013, 2014).

Alcoholic fermentation of grape must undergoes deep
chemical changes enhanced by ethanol and sulfur dioxide. Long
ago, it is agreed that concentrations over 4% (v/v) of ethanol
inhibit the growth of most LAB (Capucho and San Romao, 1994).
Also, a more recent study reported the triad of ethanol, SO2
and medium chain fatty acids (MCFAs) as the main inhibitor
compounds in the antagonism between yeast and O. oeni
(Nehme et al., 2008). The main functional categories of genes
affected by ethanol are metabolite transport and cell wall and
membrane biogenesis (Olguín et al., 2015). Nowadays, some non-
Saccharomyces yeasts are currently used in mixed fermentations
to decrease the alcoholic content of wines (Giaramida et al., 2013;
Loira et al., 2014; Ciani et al., 2016), such as M. pulcherrima
(Contreras et al., 2014), T. delbrueckii (Belda et al., 2015),
C. stellata (Ferraro et al., 2000) and S. bacillaris (Englezos et al.,
2016a), possibly mitigating the negative effect of ethanol upon
LAB growth.

The role of SO2 as an antimicrobial compound is known
since ancient Romans that used to add this chemical to prevent
food and beverage from spoilage. Its active mechanism affects
O. oeni membrane and causes an ATPase activity decrease
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FIGURE 1 | Compounds produced by yeast that can mediate inhibitory, stimulatory, or unknown effect in Oenococcus oeni growth or MLF performance.

(Carreté et al., 2002), causing a delay or the failure of MLF
(Lonvaud-Funel et al., 1988). It is customary to use this
compound to control microbial communities since vineyard to
wine in the winemaking. Moreover, yeasts are able to produce
this compound as result of their metabolism (Wells and Osborne,
2011). The common amount of SO2 produced by S. cerevisiae
strains is less than 30 mg/L, but some strains can produce
more than 100 mg/L of this compound (Suzzi et al., 1985;
Rankine, 1968). When it comes to non-Saccharomyces yeasts,
there is no much information about their SO2 production since
they are more affected by this compound (Jolly et al., 2014).
However, it has to be pointed that the use of T. delbrueckii as
sole starter increased the SO2 concentration of the final wine
(Belda et al., 2015). Apart from the cited strain effect, the medium
has great influence in the production of SO2 by yeasts. Higher
concentration of YAN in must ends on higher amount of SO2
(Osborne and Edwards, 2006), as result of the metabolism of the
sulfured amino acids.

Medium Chain Fatty Acids (MCFAs)
During AF, yeasts produce different compounds as result of
their growth metabolism that can inhibit O. oeni growth and
MLF. MCFA (C8–C14) constitute a group of organic molecules
that can limit O. oeni growth and even decrease their L-malic
consumption (Edwards and Beelman, 1987; Lonvaud-Funel et al.,
1988). It has to be mentioned the strong effect of winemaking
practices in fatty acids metabolism by yeasts (Guilloux-Benatier
et al., 1998). These authors related a fine MLF performance
with a large pre fermentative maceration, possibly due to the
high macromolecules concentration and long chain fatty acid
extraction (Guilloux-Benatier et al., 1995, 1998). The effect of
using non-Saccharomyces yeasts in the production of MCFA is

variable. Strains belonging to M. pulcherrima, C. stella, and Pichia
fermentans increase the final concentration of MCFA (Liu P.-T.
et al., 2016). In contrast, mixed fermentations with H. uvarum,
I. orientalis present the opposite behavior (Liu P.-T. et al., 2016).
Also, a significant decrease in MCFA concentration has been
reported by Lanchacea thermotolerans as sole starter (Shekhawat
et al., 2017). Hu et al. (2018) reported a strong influence in MCFA
concentration related with the inoculation timing of H. uvarum
in mixed fermentation with S. cerevisiae. In this experiment
inoculation timing seem to determine the increase or decrease
in MCFA concentration regarding to S. cerevisiae traditional
fermentation. Generally, C12 and C14, as free fatty acids, are the
most toxic MCFA for O. oeni (Guilloux-Benatier et al., 1998).
Moreover, the esterified forms are even more toxic than free fatty
acids, being the most toxic esterified MCFA C10, C12, and C14
(Guilloux-Benatier et al., 1998). So, depending on the particular
MCFA and its concentration, the inhibitory effect can become
lethal to LAB (Edwards and Beelman, 1987).

Organic Acids Similar to L-Malic Acid
Malolactic fermentation is the consequence of a unique
enzymatic activity performed by the malolactic enzyme.
Accordingly, structurally similar organic acids will act as
competitive inhibitors for the active site of the malolactic enzyme
(Lonvaud-Funel and Strasser de Saad, 1982) and probably they
will delay the MLF duration. Early studies in this subject related
this effect with succinic acid, fumaric acid, citric acid, and tartaric
acid (Lonvaud-Funel and Strasser de Saad, 1982; Davis et al.,
1985). Among these acids, succinic acid is the most studied since
oenological yeasts can largely produce this compound. First
studies related the inhibition of MLF by criotolerant S. cerevisiae
strains which are characterized by high production of succinic
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TABLE 1 | Main compounds affected (variation in content, negative or positive) by the use of non-Saccharomyces in alcoholic fermentation regarding to S. cerevisiae as
sole starter.

Compound Non-Saccharomyces∗ Variation respect to
S. cerevisiae

Reference

L-Malic acid T. delbrueckii+ S. c. − Belda et al., 2015

S. bacillaris+ S. c. − Tofalo et al., 2012; Du Plessis et al., 2017

M. pulcherrima+ S. c. − Du Plessis et al., 2017

I. orientalis+ S. c. − Kim et al., 2008

Sc. pombe+ S. c. − Benito et al., 2013, 2014

Ethanol M. pulcherrima+ S. c. − Contreras et al., 2014

T. delbrueckii+ S. c. − Belda et al., 2015

C. stellata+ S. c. − Ferraro et al., 2000

S. bacillaris+ S. c. − Masneuf-Pomarede et al., 2015

Sulfur dioxide T. delbrueckii + Belda et al., 2015

Medium chain fatty acids H. uvarum+ S. c. − Liu P.-T. et al., 2016

I. orientalis+ S. c. − Liu P.-T. et al., 2016

T. delbrueckii+ S. c. − Belda et al., 2015

L. thermotolerans − Shekhawat et al., 2017

M. pulcherrima+ S. c. + González-Royo et al., 2015; Liu P.-T. et al., 2016

C. stella+ S. c. + Liu P.-T. et al., 2016

P. fermentans+ S. c. + Liu P.-T. et al., 2016

Citric acid S. bacillaris+ S. c. + Giaramida et al., 2013

Pyruvic acid T. delbrueckii + Belda et al., 2015

T. delbrueckii+ S. c. + Belda et al., 2015

C. stellata+ S. c. L. thermotolerans + S. c. + Soden et al., 2000; Jolly et al., 2006; Belda et al., 2015

Glycerol T. delbrueckii+ S. c. + Benito et al., 2016

C. stellata+ S. c. L. thermotolerans + S. c. + Soden et al., 2000; Jolly et al., 2006; Benito et al., 2016

S. bacillaris+ S. c. + Englezos et al., 2016b

Mannoproteins M. pulcherrima+ S. c. + Belda et al., 2016

T. delbrueckii+ S. c. + González-Royo et al., 2015; Belda et al., 2016

∗S. c. corresponds to Saccharomyces cerevisiae.

acid and β-phenylethanol (Caridi and Corte, 1997). More recent
studies agreed with the inhibition effect of succinic acid (Son
et al., 2009), and not with its role as MLF extender.

Citric Acid
Even though citric acid is considered as inhibitor of the malolactic
enzyme (Lonvaud-Funel and Strasser de Saad, 1982), citric acid
can be catabolized by LAB (Liu, 2002). This metabolic activity is
found in some O. oeni strains as response to acidity or ethanol
stress (Olguín et al., 2009). Due to the consumption of citric
acid, diacetyl is produced (Swiegers et al., 2005). It is usually
desirable to have strains which can consume citric acid due to
the organoleptic complexity that is achieved (Lonvaud-Funel,
1999). In this way, a high concentration of diacetyl is reported as
undesirable (Davis et al., 1985; Bartowsky and Henschke, 2004).
Moreover, due to the citric acid metabolism, O. oeni increases the
volatile acidity (Lonvaud-Funel, 1999; Liu, 2002). Even thought,
citric acid increases the transmembrane gradient which generate
energy in terms of proton-motive force for O. oeni (Liu Y. et al.,
2016).

Anyway, since citric acid concentration is usually not very
high, acetic acid does not increase very much. Citric acid
production by yeast is highly species and strain dependent
(Fleet, 2008). On the top of that, mixed fermentations with

different non-Saccharomyces species exhibit particular citric acid
production (Jussier et al., 2006; Giaramida et al., 2013; Izquierdo
Cañas et al., 2014). For the moment the only mixed fermentation
that clearly increased citric acid concentration is with S. bacillaris
(Giaramida et al., 2013).

Pyruvic Acid
Pyruvic acid is an intermediary produced by yeast during
the AF. This compound can improve MLF performance by
O. oeni. It acts as external electron acceptor, facilitating the
regeneration of NAD+ (Maicas et al., 2002). It can also promote
diacetyl production (Mink et al., 2015). Related to increasing
the concentration of this compound, Belda et al. (2015) reported
higher production of pyruvic acid when T. delbrueckii was used as
sole or mixed culture starter with S. cerevisiae. Benito et al. (2016)
reported similar results using L. thermotolerans.

Glycerol
The production of glycerol is directly related with the
activity of yeasts by the glyceropyruvic fermentation pathway
(Ciani and Maccarelli, 1998). Glycerol can be assimilated and
degraded by some spoiling Lactobacillus in wine (Liu, 2002).
On the contrary, there is no literature that reports this behavior
when it comes to O. oeni. It is unclear how can affect glycerol
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to O. oeni, since it does not assimilate it, neither degrade
it. Usually, non-Saccharomyces yeasts exhibit higher metabolic
activity of this pathway (Ciani and Maccarelli, 1998; Jolly et al.,
2006, 2014). Specifically, T. delbrueckii (Belda et al., 2015) and
C. stellata (Soden et al., 2000; Jolly et al., 2006) have been
reported as big glycerol and pyruvic acid producers as result
of their high glyceropyruvic fermentation activity. Also, mixed
fermentations with S. bacillaris and L. thermotolerans exhibit
higher production of glycerol in regards to a conventional
S. cerevisiae fermentation (Benito et al., 2016; Englezos et al.,
2016b).

Compounds Derived of Yeast Autolysis
One of the most known positive effects upon MLF performance
is its development in presence of yeast lees (Guilloux-Benatier
et al., 1995). It has been reported that the inhibitory interactions
between yeasts and LAB is counteracted by the presence of
yeast lees, and even more, the positive interactions are enlarged
(Patynowski et al., 2002). During aging, yeasts undergo an
autolytic process that result in the release of different compounds.
Nitrogenated compounds, such as amino acids, peptides and
proteins, are mainly released as result of yeast autolysis (Guilloux-
Benatier et al., 1995; Martínez-Rodriguez et al., 2001). The release
of such compounds can help to enrich the previously exhausted
medium by yeasts (Costello et al., 2003), stimulating the growth
of LAB and MLF performance (Guilloux-Benatier et al., 1995;
Diez et al., 2010).

Other molecules like glucans and mannoproteins are also
released due to this mentioned process and can stimulate
LAB growth (Diez et al., 2010). These authors realized that
the presence of mannoproteins only exhibited its positive
effect on LAB growth when ethanol was present. O. oeni can
catabolize these mannoproteins and release mannose, which
can be substrate of the phosphotransferase system that helps
the adaptation of O. oeni to the medium (Jamal et al., 2013).
Besides this, the impact of the mannoproteins upon LAB was
yeast-LAB strain dependent. Recently, it has been reported that
some non-Saccharomyces strains belonging to M. pulcherrima
and T. delbrueckii release more mannoproteins than S. cerevisiae
(Belda et al., 2016). Moreover, these molecules could help hijack
MCFA present in wine, stimulating LAB growth (Guilloux-
Benatier et al., 1995). It has been also been reported that during
AF those cited macromolecules are released, depending in the
initial colloidal concentration (Guilloux-Benatier et al., 1995).
Still, the same study states that the amount of macromolecules
released during yeast growth is insignificant in regards to yeast
autolysis.

Apart from the mentioned compounds, there are more
released compounds during yeast autolysis, such as vitamins,
nucleotides and long chain fatty acids, which could be also
stimulatory to LAB (Alexandre et al., 2004). Unfortunately, there
is no literature currently available about the possible effect of
these compounds.

Other Compounds
In regards to the possible incompatibility between oenological
yeasts and LAB, apart from metabolite compounds, the

production of antimicrobial proteinaceous compounds by some
S. cerevisiae strains has been reported. Dick et al. (1992)
firstly studied these compounds. They discovered two cationic
proteins which were effective against LAB. More recently,
another inhibitory protein fraction produced by S. cerevisiae
CCMI 885 and active against LAB was identified (Branco
et al., 2014). In this work, an exhaustive characterization was
performed, which resulted in the identification of glyceraldehyde
3-phosphate dehydrogenase (GAPDH) protein fragments. This
newly identified antimicrobial peptides with 2–10 kDa size agreed
with previously reported antimicrobial peptides (Comitini et al.,
2005; Osborne and Edwards, 2007).

There are no studies about these compounds produced by
non-Saccharomyces yeasts, but some species could present such
antimicrobial compounds, like M. pulcherrima that produce
pulcherrimic acid (Oro et al., 2014), active against other
yeasts.

FUTURE PERSPECTIVES

The increasing number of non-Saccharomyces species described
as beneficial in winemaking demands further investigation of
their metabolism. Many factors can influence the effect of non-
Saccharomyces on wine composition. Besides the yeast species
and strain characteristics, the time and the ratio of inoculation,
with respect to S. cerevisiae, may alter notably the global effect
on wine of the use of non-Saccharomyces. All these variables may
also affect the development of O. oeni and MLF. Future research
should contribute to a better knowledge of metabolic traits of a
wider number of non-Saccharomyces strains and their influence
on O. oeni performance. Among other possible approaches,
metabolomics may be a powerful tool to elucidate how the
new winemaking scenario of combined yeasts may change MLF
evolution.
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