
cancers

Review

Targeting PI3K/AKT/mTOR Signaling Pathway in
Breast Cancer

Huayi Li †, Lorenzo Prever † , Emilio Hirsch and Federico Gulluni *

����������
�������

Citation: Li, H.; Prever, L.; Hirsch, E.;

Gulluni, F. Targeting

PI3K/AKT/mTOR Signaling

Pathway in Breast Cancer. Cancers

2021, 13, 3517. https://doi.org/

10.3390/cancers13143517

Academic Editor: Alakananda Basu

Received: 9 June 2021

Accepted: 10 July 2021

Published: 14 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy;
huayi.li@unito.it (H.L.); lorenzo.prever@unito.it (L.P.); emilio.hirsch@unito.it (E.H.)
* Correspondence: federico.gulluni@unito.it
† Equal contributors.

Simple Summary: PI3K signaling pathway plays an essential role in many cellular processes and
is frequently altered in breast cancer, leading to increased tumor growth and reduced survival.
Small molecule inhibitors have been developed that target the three key elements of this pathway:
PI3K, AKT, and mTOR. Despite demonstrating promising preclinical activity, intrinsic and acquired
resistance, as well as high levels of adverse reactions, partially limited the therapeutic efficacy of
PI3K/AKT/mTOR inhibitors. To increase therapeutic benefit, drug combinations and schedules
need to be explored to identify those with the highest efficacy and lowest toxicity rate. In addition,
defining appropriate patient subpopulations, for either monotherapy or drug combinations, and
identifying predictive biomarkers remain a challenge.

Abstract: Breast cancer is the most frequently diagnosed cancer and the primary cause of cancer
death in women worldwide. Although early diagnosis and cancer growth inhibition has significantly
improved breast cancer survival rate over the years, there is a current need to develop more effective
systemic treatments to prevent metastasis. One of the most commonly altered pathways driving
breast cancer cell growth, survival, and motility is the PI3K/AKT/mTOR signaling cascade. In
the past 30 years, a great surge of inhibitors targeting these key players has been developed at a
rapid pace, leading to effective preclinical studies for cancer therapeutics. However, the central
role of PI3K/AKT/mTOR signaling varies among diverse biological processes, suggesting the need
for more specific and sophisticated strategies for their use in cancer therapy. In this review, we
provide a perspective on the role of the PI3K signaling pathway and the most recently developed
PI3K-targeting breast cancer therapies.
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1. Introduction

Phosphoinositide 3-kinase (PI3K) is a group of lipid kinases that phosphorylate the
3′-OH group of phosphatidylinositol (PI) at plasma and intracellular membranes. They are
split into three different classes according to their structure, binding partners, and substrate
specificity [1–3]. Among them, the most well-studied PI3K is class I PI3K, which generate
PI(3,4,5)P3 (PIP3) starting from PI(4,5)P2 (PIP2). PIP3 is mainly produced at the plasma
membrane in response to different stimuli and allows for the recruitment of a myriad of
phospholipid effectors, including serine/threonine kinase AKT and 3-phosphoinositide-
dependent protein kinase-1 (PDK-1), which are the central mediators of the PI3K pathway.
PIP3 also facilitates PDK1 and AKT interaction, resulting in phosphorylation of AKT at
thrPhosphorylated AKT promotes protein synthesis, cell growth, and cell survival and
motility by activating many downstream kinases, including the mammalian target of the
rapamycin (mTOR) complex [1]. On the other hand, the tumor suppressor phosphatase
and tensin homolog (PTEN) dephosphorylates PIP3, counteracting PI3K signaling [4]
(Figure 1).
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the rapamycin (mTOR) complex [1]. On the other hand, the tumor suppressor phospha-
tase and tensin homolog (PTEN) dephosphorylates PIP3, counteracting PI3K signaling [4] 
(Figure 1). 

 
Figure 1. Signaling by the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of the ra-
pamycin (mTOR) pathway and the respective inhibitors. 

Class I PI3K includes four highly homologous catalytic subunits, p110α, p110β, 
p110γ, and p110δ, which can associate with five regulatory subunits, collectively referred 
to as p85-type regulatory subunits (Figure 1) [5,6]. Whereas p110α and p110β isoforms are 
ubiquitously expressed, p110δ and p110γ expression is largely restricted to hematopoietic 
cells [7,8]. Dysregulation of phosphoinositide kinases, primarily in class IA PI3K, have 
been discovered in a number of human diseases, with mutations leading to either in-
creased or decreased enzymatic activity being critically involved in cancer [9], develop-
mental disorders [10], and primary immune deficiencies [11–13]. For an extensive descrip-
tion of the PI3K pathway, the reader can refer to the following reviews [1,14,15]. 

Several studies suggest that the PI3K/AKT/mTOR pathway is often genetically al-
tered in human cancers [15,16]. Although many small molecule inhibitors targeting the 
PI3K/AKT/mTOR signaling pathway were pre-clinically studied, only some of the PI3K 
and mTOR inhibitors are currently approved for the treatment of human cancers in the 
clinic. Here we summarize the most recent advances in the inhibition of the 
PI3K/AKT/mTOR signaling pathway in breast cancer. 

2. Genetic Alterations of the PI3K Pathway in Breast Cancer and Clinical Implications 
The PI3K/AKT/mTOR pathway is frequently deregulated in breast cancer by differ-

ent mechanisms, leading to increased PI3K activity and/or loss of PI3K inhibitory func-
tions as well as mutation in tumor suppressor genes like INPP4B and PTEN phosphatases. 
Among PI3K genes, PIK3CA is one of the most frequently altered, with mutations occur-
ring at two hotspot regions: an acidic cluster (E542, E545, and Q546) in the helical domain 
and a histidine residue (H1047) in the kinase domain. Whereas mutations on the helical 
domain mainly rely on the loss of p85-dependet inhibitory activity, activating mutations 
in the catalytic subunit of p110α directly stimulate lipid kinase activity by facilitating al-
losteric motions required for catalysis on membranes [17]. 

Mutations in the catalytic domain are the most frequent genetic alterations found in 
more than one third of early breast cancer tumors. In particular, PIK3CA activating mu-
tations comprise up to 47% of HR+/HER2– (luminal A), 33% of HR+/HER2+ (luminal B), 
39% of HR-/HER2+ (HER2-enriched), and 8–25% of basal-like/triple negative breast cancer 

Figure 1. Signaling by the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of the
rapamycin (mTOR) pathway and the respective inhibitors.

Class I PI3K includes four highly homologous catalytic subunits, p110α, p110β, p110γ,
and p110δ, which can associate with five regulatory subunits, collectively referred to as
p85-type regulatory subunits (Figure 1) [5,6]. Whereas p110α and p110β isoforms are
ubiquitously expressed, p110δ and p110γ expression is largely restricted to hematopoietic
cells [7,8]. Dysregulation of phosphoinositide kinases, primarily in class IA PI3K, have
been discovered in a number of human diseases, with mutations leading to either increased
or decreased enzymatic activity being critically involved in cancer [9], developmental
disorders [10], and primary immune deficiencies [11–13]. For an extensive description of
the PI3K pathway, the reader can refer to the following reviews [1,14,15].

Several studies suggest that the PI3K/AKT/mTOR pathway is often genetically
altered in human cancers [15,16]. Although many small molecule inhibitors targeting
the PI3K/AKT/mTOR signaling pathway were pre-clinically studied, only some of the
PI3K and mTOR inhibitors are currently approved for the treatment of human cancers
in the clinic. Here we summarize the most recent advances in the inhibition of the
PI3K/AKT/mTOR signaling pathway in breast cancer.

2. Genetic Alterations of the PI3K Pathway in Breast Cancer and Clinical Implications

The PI3K/AKT/mTOR pathway is frequently deregulated in breast cancer by different
mechanisms, leading to increased PI3K activity and/or loss of PI3K inhibitory functions as
well as mutation in tumor suppressor genes like INPP4B and PTEN phosphatases. Among
PI3K genes, PIK3CA is one of the most frequently altered, with mutations occurring at
two hotspot regions: an acidic cluster (E542, E545, and Q546) in the helical domain and a
histidine residue (H1047) in the kinase domain. Whereas mutations on the helical domain
mainly rely on the loss of p85-dependet inhibitory activity, activating mutations in the
catalytic subunit of p110α directly stimulate lipid kinase activity by facilitating allosteric
motions required for catalysis on membranes [17].

Mutations in the catalytic domain are the most frequent genetic alterations found
in more than one third of early breast cancer tumors. In particular, PIK3CA activating
mutations comprise up to 47% of HR+/HER2– (luminal A), 33% of HR+/HER2+ (lumi-
nal B), 39% of HR-/HER2+ (HER2-enriched), and 8–25% of basal-like/triple negative
breast cancer subtypes [18–25]. The most common genetic alterations of PIK3CA were
observed also in metastatic breast cancer biopsies, confirming the clonal character of these
mutations [19,25,26]. Amplification of the PIK3CA gene locus has been also described [27],
together with rare cases of PIK3CB amplification or PIK3R1 inactivating mutations [28,29].
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The PI3KCB subunit also plays a key role in stimulating cell proliferation, invasiveness,
and tumorigenesis in breast cancer [30,31]. A possible mechanism of PI3KCB activation in
cancer occurs through the G protein-coupled receptor (GPCRs) [32]. In particular, a PI3KCB
helical domain mutation (E633K) was first reported in an HER2-positive breast cancer
patient [33]. E633K can enhance PI3KCB basal association with membranes, thus increasing
PI3KCB activation [30]. PI3KCB has been shown to be responsible for the accumulation of
PIP3 and reactivation of AKT in HER2-amplified breast cancers treated with a PI3KCA-
specific inhibitor, and concomitant inhibition of PI3KCA and PI3KCB induces greater
antitumor efficacy in HER2-amplified and PIK3CA mutant breast cancers [34].

Besides mutations in PIK3CA and PIK3CB genes, inactivating events also occur in
tumor suppressors such as PTEN (Cancer Genome Atlas, 2012). Although the observed
mutation rate for Luminal and HER+ is comparable to PIK3CA (up to 44% and 22%,
respectively), the frequency of genetic alterations in PTEN observed in triple-negative
subtypes reaches more than 65% [18,19,35–37]. Moreover, PTEN mutations select for an
aggressive genomic subtype of ER+ breast cancer, with associated poor prognosis and
acquired resistance to standard-of-care therapies [38]. The most studied cancer-associated
PTEN mutations in its catalytic region are C124S and G129E, which abrogate PTEN phos-
phatase function. Knock-in mice models carrying either the C124S or G129E mutation
were highly tumor prone and developed tumors in multiple tissues, including the thyroid,
adrenal gland, gallbladder, prostate, and mammary glands, similar to what was observed
in Pten+/− mice [38]. The fact that PIK3CA mutations and PTEN loss are nearly mutually
exclusive implies that deregulated PIP3 is critical for tumorigenesis in breast cancers and
that loss of PIP3 homeostasis by abrogation of either PIK3CA or PTEN relieves selective
pressure for targeting of the other gene [39]. In addition to PTEN, inositol polyphosphate-
4-phosphatase type IIB (INPP4B) can counteract PI3KCA signaling, and loss of its genetic
locus has been reported in breast cancer [40,41]. Inactivation of the lipid phosphatase
INPP4B is frequently observed in triple-negative breast cancer, where it functions as a
tumor suppressor by regulating RTK trafficking and degradation. As a consequence, loss of
INPP4B prolongs both PI3K and ERK activation [42]. In addition, recent findings suggest
that INPP4B facilitates PI3KCA crosstalk with Wnt signaling in ER+ breast cancer via
PI(3,4)P2-to-PI(3)P conversion on late endosomes, suggesting that these tumors may be
targeted with combined PI3K and Wnt/β-catenin therapies [43].

Similarly, activating mutations in AKT1 occur in nearly 4% of Luminal [19,44], and
genetic amplifications of AKT2 and PDK1 are observed in all breast cancer subtypes with
a frequency of 3% and 20–38%, respectively [45,46]. Conversely, activating mutations or
amplification of p70S6K or KRAS are infrequent events of unknown relevance in breast
cancer, compared to other types of tumors [47,48].

Clinically, the implication of these molecular aberrations in breast cancer is still un-
clear and analysis of the prognostic role of PIK3CA mutation resulted in conflicting re-
sults [39,49–59]. Better invasive disease-free survival (IDFS [60]), but not distant disease-
free survival (DDFS [60]) or overall survival (OS), was significantly associated with PI3KCA
mutations in advanced-age, HR+, low-grade breast tumors [61]. PIK3CA mutations in
operable primary breast cancer also indicated a significant correlation with better disease-
free survival (DFS) [62] as well as a better recurrence-free survival in the Luminal A
subtype [63].

However, PI3KCA mutations seem to have different clinical implications in advanced
and metastatic breast cancer, resulting in chemotherapy resistance and poor outcome [64].
Progression-free survival (PFS) among cohorts of metastatic breast cancer using non-PI3K
inhibitor-based therapies was reduced in PIK3CA-mutated compared with non-mutated
patients [65–71]. In HER2+ breast cancer, mutations in PIK3CA are linked with poor
prognosis not only in the advanced but also in the early setting [55,72]. On the other hand,
the use of PI3K inhibitors in cohorts of breast cancer patients resulted in favorable PFS
specifically for patients with PI3KCA mutation, thus showing that genetic alterations in
PIK3CA are predictive markers of PI3K inhibitor benefit.
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Moreover, in preclinical models, the hyperactivation of the PI3K/AKT/mTOR path-
way is one of the major causes of the acquired resistance to endocrine therapy through
ligand-independent activation of ER by its phosphorylation, mediated by the mTOR
complex 1 (mTORC1)/S6K1 axis [73,74]. In HR+ breast cancer, acquired resistance to
endocrine therapy can be abrogated by combination therapies targeting both ER and PI3K
pathways. Although directly targeting PI3K and mTOR maximally inhibited hormone-
independent cell growth and induced apoptosis, inhibition of signaling kinases upstream
(IGF-IR/InsR/ErbBs) and downstream (mTOR) of PI3K also had partial inhibitory ef-
fects [73].

In the following paragraphs we will describe the clinical development and efficacy of
different PI3K inhibitors for breast cancer treatment.

3. Clinical Usage of Pan-PI3K Inhibitors

• Buparlisib

Buparlisib (BKM120, Novartis Pharmaceuticals, Basel, Switzerland) is an orally avail-
able pan-PI3K inhibitor (Table S1, see supplementary file). In vivo studies showed a
marked anti-proliferative and pro-apoptotic activity towards human breast cancer cell
lines with PI3K pathway alterations, sufficient to induce a dose-dependent tumor growth
delay or regression in PIK3CA-mutant xenografts [75]. Buparlisib safety and efficacy
was then assessed in two large phase III randomized clinical trials called BELLE-2 and
BELLE-During the BELLE-2 clinical trial, either buparlisib or placebo was administered in
combination with fulvestrant to treat post-menopausal women with HR+/HER- metastatic
breast cancer who had been previously treated or who had progressed on treatment with
an aromatase inhibitor (AI) and up to one previous line of chemotherapy for advanced
disease [67]. Similarly, BELLE-3 was designed to include Luminal A (HR+/HER-) breast
cancer patients that had been previously unsuccessfully treated by prior endocrine therapy
and mTOR inhibitors [68]. Both trials met their primary objective, demonstrating that the
addition of buparlisib to fulvestrant increased PFS compared to fulvestrant alone. However,
buparlisib was associated with significantly more grade 3/4 adverse events, including
transaminitis, hyperglycemia, rash, and mood disturbance. Due to poor tolerability, many
patients discontinued buparlisib prematurely, thus limiting the duration of the treatment.
Particularly in BELLE-2, treatment discontinuation resulted in very short drug exposure
(median 1.9 months), potentially limiting the efficacy of the combined therapy.

Buparlisib was also tested in combination with chemotherapy in breast cancer patients
in the phase II/III clinical trial BELLE-4 by combining either buparlisib or placebo with
paclitaxel as first-line treatment in HER- metastatic breast cancer patients [76]. Although
effects of buparlisib appeared to be synergistic with paclitaxel in preclinical and clinical
models [77], during this clinical trial, the addition of buparlisib to paclitaxel did not
improve PFS in the full or PI3K pathway-activated study population. Consequently, the
trial was stopped due to futility at the end of phase II. Also in this trial, buparlisib treatment
resulted in a higher frequency of serious adverse effects, leading to a higher incidence of
treatment discontinuation.

The toxicity profile of buparlisib observed in all the three clinical trials, including
hepatic aminotransferase elevations and psychiatric complications such as depression,
anxiety, and suicide attempts, strongly limited the potential for this drug to be adopted as
standard of care. Nonetheless, the observation of significantly increased PFS in patients
from BELLE-2 and BELLE-3 trials who had PIK3CA genetic alterations supports the
rationale for PI3K inhibition plus endocrine therapy in HR+/HER2– Luminal A breast
cancer patients.

• Pictilisib

Pictilisib (GDC-0941; Genentech, San Francisco, CA, USA) is a pan-PI3K inhibitor
showing in vitro equipotent inhibitory effects on p110α and p110δ isoforms and fewer
inhibitory effects on p110β and p110γ isoforms [78] (Table S1). Its efficacy was evaluated
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in two phase II clinical trials called FERGI and PEGGY [69,79]. In the FERGI trial, either
pictilisib or placebo was administered in combination with fulvestrant in postmenopausal
women with ER+/HER2−metastatic breast cancer resistant to treatment with aromatase
inhibitor [69]. During the first part of the trial, patients were recruited independently from
their PIK3CA mutational status, whereas during the second part, patients without PIK3CA
mutations were excluded. Similar to the buparlisib treatment, high-grade adverse effects
occurred in more than half of the enrolled patients. Moreover, no significant difference in
media PFS between pictilisib and the placebo was observed.

The second trial, PEGGY, was designed to include randomized pre- and post-menopausal
Luminal A patients (HR+/HER2–) to receive paclitaxel with either pictilisib or placebo [79].
In both groups, one third of recruited patients was characterized by genetic alterations in
the PIK3CA gene. However, no significant differences in terms of PFS or over all response
were observed between the two groups, nor concerning PIK3CA mutational status.

In light of the results from these clinical trials, which were far from achieving clinical
benefit, the authors suggested that future developments need to investigate inhibitors with
marked selectivity towards PI3K-specific isoforms or mutants, thus improving tolerability
and providing the strongest and safest therapeutic index.

4. PI3K Isoform-Specific Inhibitors

Considering the limitations encountered with pan-PI3K inhibitors, the selective inhi-
bition of specific PI3K isoforms permits the administration of therapeutic doses of drugs,
avoiding severe off-target toxicity. On the other hand, a selective approach demands a
precise strategy to select patients who may benefit from that treatment [80]. In breast
cancer, activating mutations in the PIK3CA gene are the most frequent alteration of the
PI3K pathway, leading to hyperactivation of p110α. Therefore, great efforts have been
directed to developing PIK3CA-selective inhibitors to specifically target this PI3K isoform.

• Alpelisib

Alpelisib (BYL719) is the first oral PI3K inhibitor selectively targeting the p110α
isoform (Table S1). Its efficacy was first assessed in preclinical models showing potent inhi-
bition over the two most common PIK3CA mutations (H1047R and E545K) at nanomolar
concentration (4.6 nM/L) [81]. Notably, treatment with alpelisib not only interfered with
PIK3CA-mediated downstream signaling, but also induced a dose-dependent decrease
in p110α protein levels in ER+/PIK3CA-mutated breast cancer cell lines [82], suggesting
a dual mode of action. The combination of alpelisib with fulvestrant also demonstrated
synergism between the two drugs in xenograft models [73]. A tolerable safety profile
and encouraging activity in patients with PIK3CA-altered solid tumors was reported for
alpelisib in a first-in-human phase I study [28]. The subsequent phase II clinical trial was
conducted to assess the maximum tolerable dose, safety, and efficacy of alpelisib in combi-
nation with fulvestrant in HR+/HER2– metastatic breast cancer [83]. Partial or complete
response was observed among 29% of pretreated metastatic breast cancer patients with
PIK3CA alterations, whereas no tumor response was reported in the PIK3CA wild-type
group [83]. A favorable safety profile in these patients included mainly on-target effects
such as hyperglycemia, nausea, and diarrhea [83].

Next, a phase III SOLAR-1 clinical trial evaluated the efficacy and safety of alpelisib in
combination with hormonal therapy (fulvestrant) in HR+/HER2– metastatic breast cancer
patients who recurred or progressed after endocrine therapy [65]. Patients were selected
and stratified based on the PIK3CA mutational status to also include a cohort of PIK3CA
wild type as proof of activity in this subgroup. PIK3CA status was determined by tumor
tissue RT-PCR and led to the inclusion of 341 patients in the PIK3CA-mutant cohort and 231
in the wild-type group. The primary and secondary endpoints for this study were to evalu-
ate the PFS and the overall survival in patients with PIK3CA genetic alterations together
with the safety and efficacy in the PIK3CA wild-type group. The median PFS of patients
with PIK3CA genetic alterations was 11.0 months in the alpelisib/fulvestrant arm versus
5.7 months in the placebo/fulvestrant arm (HR 0.65 95% CI 0.50–0.85; p < 0.001). The over-
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all response was also higher with alpelisib/fulvestrant compared to placebo/fulvestrant
(26.6% and 12.8%, respectively). Conversely, in the PIK3CA wild-type group, alpelisib
administration was not significantly associated with improved PFS (7.4 versus 5.6 months,
respectively; HR 0.85; 95% CI, 0.58–1.25). Toxicity due to alpelisib administration was
associated with specific p110α inhibition and included hyperglycemia (63.7% versus 9.8%
for the alpelisib and placebo arms, respectively), diarrhea (57.7% versus 15.7%, respec-
tively), and rash (35.6% versus 5.9%, respectively). Permanent discontinuation due to
AEs occurred in 25% of patients in the alpelisib group versus 4.2% in the placebo arm.
The positive results from the SOLAR-1 trial prompted the Food and Drug Administration
(FDA) to approve the combination of alpelisib with fulvestrant for the treatment of men
and postmenopausal women with HR+/HER2–, PIK3CA-mutated, advanced, or metastatic
breast cancer, as detected by an FDA-approved test following progression on or after an
endocrine-based regimen. One year after the approval of alpelsib, the data of overall
survival were released. Although overall survival with a median follow-up of 30.8 months
did not meet statistical significance, the absolute difference of 8 months observed between
the alpelisib versus the placebo treatment was clinically relevant and valuable, with PFS
benefit not only maintained but also increased in terms of overall survival outcome [84].

The SOLAR-1 clinical trial started to recruit the first patients during the second half of
2015, a few months after the FDA granted accelerated approval for the CDK4/6 inhibitor
palbociclib in combination with endocrine treatment for postmenopausal HR+/HER2-
metastatic breast cancer [85,86]. For this reason, only 5% of patients with mutations in
PIK3CA included in SOLAR-1 had received a CDK4/6 inhibitor before being enrolled
in the clinical trial. To better evaluate the efficacy of alpelisib in patients treated with a
CDK4/6 inhibitor, the phase II BYLieve trial was designed [87]. In this trial, patients were
enrolled based on their previous treatment with an aromatase inhibitor in combination
with CDK4/6 and received fulvestrant plus alpelisib. Almost 50% of patients showed no
disease progression at 6 months. Median PFS also resulted in 7.3 months [87], in line with
previous results from the SOLAR-1 subgroup analysis in which 44% of patients (9 out of 20)
receiving fulvestrant plus alpelisib were alive without disease progression at 6 months and
a median PFS of 5.5 months [65]. These findings support the use of alpelisib in combination
with fulvestrant after CDK4/6 inhibitors [65,87].

• Taselisib

Taselisib (GDC-0032, Genentech, San Francisco, CA) is an oral PI3K inhibitor equally
inhibiting p110α, δ, and γ isoforms of class I PI3K but with 30-fold less potency against
p110β [72] (Table S1). Given its greater selectivity against PI3K isoforms, taselisib was
expected to have improved efficacy on PIK3CA-mutant tumors and less toxic effects
compared to pan-PI3K inhibitors. In particular, treatment with taselisib resulted in marked
tumor suppression in preclinical studies performed on PIK3CA-mutant xenografts [88].
An initial phase I clinical trial demonstrated clinical activity of taselisib in patients with
advanced solid tumors, particularly in breast cancers with PIK3CA genetic alterations, with
an overall response of 36% compared to no response in patients with wild-type PIK3CA [89].
Based on encouraging phase I results, a phase III clinical trial called SANDPIPER was
performed on postmenopausal ER+/PIK3CA-mutated metastatic breast cancer patients
previously treated with AI. Fulvestrant was administered in combination with either
taselisib or placebo and the primary endpoint was the assessment of PFS in patients with
PIK3CA-mutated tumors (>80% of participants) [90]. Median PFS was significantly longer,
although modest, in the taselisib arm (7.4 months) versus the placebo arm (5.4 months) (HR
0.7 95% CI 0.56–0.89; p = 0.004). Patients treated with taselisib also had a significantly higher
objective response rate compared to placebo (28% and 11.9%, respectively). Treatment
with taselisib was also associated with higher severe adverse effects, including diarrhea
(grade 3/4 of 12% for taselisib arm versus <1% for placebo) and hyperglycemia ((grade 3/4
11% versus <1%, respectively). Because the clinical benefits observed in the SANDPIPER
trial were modest and the tolerability was questionable, further investigation of taselisib
was stopped [90]. One of the reasons accounting for the lack of efficacy of taselisib is
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likely related to the less potent and specific inhibition of p110a compared to alpelisib, as
evidenced by the higher rates of hyperglycemia in the SOLAR-1 trial compared to the
SANDPIPER trial [81,91].

5. PI3K Pathway Inhibition in HER2+ and Triple-Negative Breast Cancer Subtypes

• HER2-Positive Breast Cancer

Preclinical studies demonstrated that HER2 signaling largely relies on p110α rather
than on other class-I PI3K isoforms [92], thus providing a strong rationale for therapeutic
intervention and targeting of PIK3CA in HER2+ breast tumors. Particularly, reduced
pathological complete response (pCR) rate was linked to PIK3CA mutational status in
HER+ breast cancer patients who received neoadjuvant chemotherapy and anti-HER2
therapy [93]. Some clinical trials were conducted to determine the potential benefit of
inhibiting PI3K in HER2+ breast tumors. A phase I study called PIKHER2 was designed to
assess the effect of combining pan-PI3K inhibitors buparlisib and lapatinib in trastuzumab-
resistant HER2+ metastatic breast cancer independently of PIK3CA mutational status [94].
The observed clinical benefit rate (CBR) was 29%, and complete response was observed in
one patient (4%). Another phase Ib/II clinical trial tested the combination of buparlisib
with trastuzumab in HER2+ breast tumors resistant to trastuzumab [95]. Also in this case,
the trial was conducted without considering the PIK3CA mutational status. Although the
authors evidenced some clinical activity with the combination (2% complete response and
8% partial response), the trial failed to reach the estimated primary endpoint of objective
response rate >25%.

The NeoPHOEBE phase II clinical trial enrolled HER2+ early breast tumors to be treated
with either buparlisib or placebo in combination with paclitaxel and trastuzumab [96]. In this
setting, the percentage of patients with genetic alteration in PIK3CA was below 20%. The
authors observed a pCR rate of 32% for the buparlisib group compared to 40% in the placebo
group. In line with other trials conducted on buparlisib, its administration was associated
with higher toxicity, leading to 36% of adverse events compared to less than 10% in the
placebo arm.

Besides pan-PI3K inhibitors, a phase I trial was conducted with the p110α-specific
alpelisib inhibitor in association with trastuzumab emtansine (TDM-1) in trastuzumab-
resistant breast cancer patients [97]. The objective response rate of this study was 43%,
with 60% of clinical benefit rate specifically in patients who had previously progressed
on TDM-Moreover, 53% of patients included in the study presented alteration of the PI3K
pathway, including PIK3CA mutations, PTEN loss, or AKT overexpression. Almost half
of these patients showed clinical benefit rate, even in case of previous progression in
TDM-1 therapy [97]. Adverse effects (grade > 3) occurred in 59% of patients but they were
generally manageable. These findings demonstrated that activation of the downstream
PI3K pathway can be a possible mechanism of tumor resistance to TDM-1 [98].

Other alpha-specific class I PI3K inhibitors are currently being tested in clinical trials
to target the PI3K pathway in breast cancer patients. Among them, GDC-0077 is a new
potent, orally available, and p110α-selective inhibitor. It has already shown robust ac-
tivity in preclinical models of breast tumors with genetic alterations in PIK3CA [99,100].
Mechanistically, GDC-0077 leads to downregulation of p110α, thus interfering with the
activation of PI3K downstream targets such as the phosphorylation of AKT. Accordingly,
treatment of human PIK3CA-mutant breast cancer cell lines with GDC-0077 resulted in
reduced proliferation and increased apoptosis. Similar results were observed in xenograft
models where GDC-0077 was combined with standard-of-care treatments for HR-positive
breast cancer such as anti-estrogen (fulvestrant) or CDK4/6 inhibitor (palbociclib) [100]. An
ongoing phase I trial showed that GDC-0077 in association with palbociblib and fulvestrant
can be combined at maximum doses. INAVO120 is a phase III, randomized, double-blind,
pbo-controlled study that will assess the efficacy and safety of GDC-0077/pbo plus palbo-
ciblib and fulvestrant in patients with PIK3CA-mutant/HR+/HER2– advanced metastatic
breast cancer [101].
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Another novel PI3K inhibitor, targeting the mutated form of p110α and p110γ, is
MEN1611 [102]. In both xenografts and PDX models of breast cancer, MEN1611 showed
significant activity either as a monotherapy or in combination with targeted therapies
in breast cancer and other solid tumors. In HER2+ breast cancer cell lines mutated for
PIK3CA, as well as in patient-derived xenograft models, MEN1611 seemed to act synergis-
tically when associated with trastuzumab, also inducing a dose-dependent p110α protein
depletion and a pro-inflammatory phenotype compatible with p110γ inhibition [103].

• Triple-Negative Breast Cancer (TNBC)

In the other types of breast cancer, there is a shortage of clinical trials of alpelisib
application. For example, in triple-negative breast cancer (TNBC), a phase I clinical trial
is testing the effect of chemotherapy combining alpelisib with enzalutamide in AR+ and
PTEN+ breast cancer, including a cohort of TNBC (NCT03207529). Another phase III study
is assessing the efficacy and safety of alpelisib plus nab-paclitaxel in subjects with advanced
TNBC with PIK3CA mutation. The results from these ongoing trials will provide us a better
perspective on how alpelisib affects triple-negative breast cancer patients. Similar results
have been reported in a phase II neoadjuvant-based clinical trial (NCT02273973).

A phase I clinical trial (NCT01884285) is also studying the PI3KCB/PI3KCD inhibitor
AZD8186 in patients with TNBC and known PTEN-deficient/-mutated or PIK3CB-mutated/-
amplified advanced tumors and in combination with abiraterone acetate or AZD2014, an
mTOR inhibitor [104]. AZD8186 has single-agent efficacy in PTEN-deficient TNBC cell lines
in vitro, but has limited single-agent efficacy in vivo [105]. However, AZD8186 showed
enhanced efficacy when combined with paclitaxel and anti-PD1 in vivo [105]. Further study
is needed to determine the optimal combination therapies for PTEN-deficient breast cancer.

Immuno-oncology is also gaining increasing interest as a valuable therapeutic strategy
in breast cancer [15,106]. TNBC is considered the most immunogenic subtype of breast
cancer, with a higher lymphocyte infiltration rate than HER2+ or HR+ tumors and thus is
regarded as a promising target for immunotherapies [107]. MARIO-3 (NCT03961698) is a
phase 2 clinical study designed to evaluate IPI-549 (eganelisib), Infinity Pharmaceutical’s
oral immuno-oncology product targeting immuno-suppressive tumor-associated myeloid
cells through selective inhibition of PI3KCG, in combination with Tecentriq (atezolizumab)
and Abraxane (nab-paclitaxel) in front-line TNBC. The novel triplet regimen of IPI-549,
atezolizumab, and nab-paclitaxel showed promising antitumor activity irrespective of
biomarker status, with manageable toxicity. The expansion phase of the phase II study is
currently enrolling, with a target completion date of 2022 [108].

6. Currently Available Inhibitors Acting on AKT and mTOR in Breast Cancer

• AKT Inhibitors

AKT consists of three isoforms (AKT1, AKT2, and AKT3). It is the major downstream
target of PI3K and one of the most common molecular alterations in cancer [109]. Targeting
of this altered pathway by pharmacologic modulation of AKT activity represents a powerful
strategy for cancer intervention [110]. Among different AKT inhibitors (Table S1), AZD5363
(capivasertib) has been used as a monotherapy in breast cancer in a phase I, open-lab
study for patients with AKT E17K mutations [111]. Capivasertib was well tolerated
and achieved plasma levels and robust modulation of AKT activity in tumors. Proof-of-
concept responses were observed in patients with PIK3CA-mutant cancers treated with
AZD5363 [111]. Another pan-AKT inhibitor, GDC-0068 (ipatasertib) has been used as a
monotherapy in triple-negative breast cancer cases and has already entered phase I and
II studies [112]. Dose-limiting side effects during treatment together with dose reduction
occurred in both trials and were mainly due to the fact that the ATP-binding pocket of AKT
is highly conserved among other kinases, which limits selectivity [113].

Major efforts are now directed towards the identification of AKT-specific and isoform-
selective small molecules. For instance, MK-2206 and miransertib (ARQ092) are bioactive
allosteric inhibitors that offer greater specificity, reduced side effects, and lower toxic-
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ity compared to other targeted approaches [109,114]. In a clinical trial (I-SPY TRIAL,
NCT01277757), MK-2206 is currently tested in combination with or without trastuzumab
for treatment of advanced breast cancer with PIK3CA or AKT mutations, and/or PTEN
loss/PTEN mutation [115]. However, MK-2206 monotherapy had limited clinical activity
in advanced breast cancer patients due to tumor heterogeneity and tolerable dose. Similarly,
MK-2206 is unlikely to add further benefit to the efficacy of anastrozole alone in a phase II
study based on PIK3CA-mutant ER+ breast cancers (NCT01776008). Future study designs
should consider emerging data regarding population subtypes that may benefit most from
specific drug combinations.

Another phase 1b study of the miransertib next-generation inhibitor ARQ 751 (vevoris-
ertib, NCT02761694) as a single agent or in combination with either paclitaxel or fulvestrant
in patients with advanced solid tumors with PIK3CA/AKT/PTEN mutations was recently
completed, although results are not yet available. The pan-inhibitor MK2206 remains the
most prominent of the allosteric inhibitors; however, others such as TAS-117 have also
shown promising effects [109,116,117].

Another innovative approach to targeting AKT in disease involves the irreversible co-
valent modification of two noncatalytic cysteines in the activation loop of AKT by covalent–
allosteric inhibitors (CAAIs), such as borussertib. The in vivo efficacy of borussertib was
proven in combination studies with MEK-inhibitor trametinib in KRAS-mutant patient-
derived xenograft models, leading to a partial response [114,118]. Further studies are
required to better understand its clinical relevance, particularly in breast cancer.

• mTOR Inhibitors

mTOR is one of the most important downstream effectors of the PI3K/AKT path-
way. Inhibitors targeting mTOR, including everolimus (RAD001), MLN0128, and AZD014,
have been broadly studied and evaluated in hematological cancer and solid tumors [119]
(Table S1). Everolimus and its combination with exemestane has been approved by the
FDA for the treatment of hormone receptor-positive/HER2-negative (HR+/HER2−) breast
cancer [120,121]. This synergistic effect was also observed in postmenopausal women
with metastatic ER+/HER− breast tumor. In this study, a combination of everolimus
and tamoxifen showed a significant reduction in cancer progression and increased over-
all survival rate compared to tamoxifen monotherapy [122]. Similarly, a clinical study
including ER+ breast cancer patients showed that treatment with neoadjuvant letrozole
and everolimus before surgery resulted in higher clinical response and reduced tumor
proliferation compared to letrozole alone [123].

Sapanisertib (MLN0128) is an oral, potent, and highly selective ATP-competitive
inhibitor of mTOR kinase that exhibits dual specificity against both mTOR complexes
(mTORC1 and mTORC2). In a phase II study (NCT02049957), sapanisertib plus exemestane
or fulvestrant was well tolerated and exhibited clinical benefit in postmenopausal women
with pretreated everolimus-sensitive or everolimus-resistant breast cancer [124,125]. A
randomized study of AZD2014 (vistusertib) in combination with fulvestrant in metastatic
or advanced breast cancer (MANTA, NCT02216786) was conducted. The combination of
fulvestrant and everolimus demonstrated significantly longer PFS compared to fulvestrant
and vistusertib or fulvestrant alone. The trial failed to demonstrate a benefit of adding the
dual mTORC1 and mTORC2 inhibitor vistusertib to fulvestrant [126].

mMTOR inhibitors were generally well tolerated in clinical trials. The most fre-
quently observed side effects included headache, fatigue, and erythema (skin rash). In
particular, the use of MTOR inhibitors was associated with a higher risk of developing
hypertriglyceridemia, hypercholesterolemia, and hyperglycemia [116,127–129]. Future
studies should take into account the improvement of clinical benefits together with reduced
risk of adverse events.
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• Dual PI3K/mTOR Inhibitors

During the early developmental phases of mTOR and PI3K inhibitors, it was noted
that the catalytic pocket of these two enzymes possess structural similarities, making it
possible to design ATP-competitive drugs targeting both kinases simultaneously [130,131].
In particular, mTOR inhibition commonly results in the repression of a negative feed-
back loop, which activates the PI3K and MAPK pathways. In line with this, inhibition
of both PI3K and mTOR was proposed as a good strategy to limit this compensatory
mechanism [132,133]. In breast cancer, gedatolisib (PF-05212384) is a dual PI3K/mTOR
inhibitor that was evaluated in combination with either docetaxel, cisplatin, or dacomi-
tinib in triple-negative breast cancer (NCT01920061). This phase I study assessed the
safety, pharmacokinetics, and pharmacodynamics of these combinations in patients with
advanced cancer in order to determine the maximum tolerated dose in each combination.
The cisplatin combination expansion portion was used to evaluate the anti-tumor activity
of gedatolisib plus cisplatin in patients with TNBC in two separate arms. A manageable tox-
icity profile was observed in gedatolisib combined with docetaxel, cisplatin, or dacomitinib.
Dose escalation to determine the maximum tolerated dose is still ongoing [134]. Another
phase I study was conducted to assess the tolerability and clinical activity of gedatolisib in
combination with either palbociclib/letrozole or palbociclib/fulvestrant in women with
metastatic breast cancer (NCT02684032). This clinical trial was recently concluded; how-
ever, results are not yet available. Gedatolisib combined with either palbociclib/letrozole
or palbociclib/fulvestrant showed manageable toxicity and promising antitumor activity.
Further analysis on dose escalation is being completed and dose expansion is ongoing [135].
Whether the effect of this class of agents in combination with immunotherapy can lead to
further clinical benefit is an open issue.

7. Rationale for Targeting Class II PI3K in Breast Cancer

Class II PI3Ks consist of three genes encoding for distinct functional isoforms: PI3K-
C2α and PI3K-C2β, which are ubiquitously expressed [2,136], and PI3K-C2γ, whose ex-
pression is mainly restricted to liver [137,138]. Different from class I, class II PI3Ks act as
monomers, regulating vesicle trafficking and membrane remodeling through their con-
served N-terminal domain [2,139,140]. They synthetize PI(3)P on endosomes and PI(3,4)P2
at plasma membrane [138,139,141–147]. However, their catalytic pocket is structurally
different from class I PI3K and largely unaffected by treatments with class I PI3K in-
hibitors [148–150]. Recent studies suggested that class II PI3Ks are directly involved in
breast cancer progression independently of class I PI3K, opening the way for the develop-
ment of new therapeutic strategies targeting this enigmatic class of PI3K in breast cancer.

PI3K-C2α is the most studied isoform, and it has been linked with breast cancer in
different studies. Overexpression of the PI3K-C2α encoding gene, PIK3C2A, was found
in an MCF7 cancer stem-cell side population, correlating with increased tumorigenesis in
mouse models [151]. This suggests that PI3K-C2α might have a role in the early phases
of cancer development. Conversely, PI3K-C2α was found to rarely be mutated in breast
cancer patients on publicly available datasets, but it was observed as lost at both the
mRNA and protein levels in a large cohort of breast cancer patients [152]. This study
demonstrated that PI3K-C2α has kinase-independent activity by stabilizing microtubules at
kinetochore during mitotic metaphase and allowing proper chromosome congression [152].
Loss of this activity was associated with increased genomic instability that led to the
emergence of fast-growing clones with mitotic checkpoint defects. Therefore, low PIK3C2A
expression was related to high sensitivity to paclitaxel treatment in human breast cancer
patients [152]. Accordingly, development of future inhibitors targeting PI3K-C2α scaffold
function in breast cancer can be beneficial in combination with microtubule-targeting drugs,
i.e., paclitaxel.

Different from PI3K-C2α, PI3K-C2β isoform was found to be overexpressed in human
primary breast tumors and in lymph-node metastases compared to non-neoplastic breast
tissue [153]. An additional study conducted on different human breast cancer cell lines
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found a similar increase in PI3K-C2β levels, which was directly related to enhanced
tumorigenesis and invasive abilities both in vitro and in vivo [153]. In line with this, PI(3)P
produced by PI3K-C2β was shown to be involved in breast cancer migration and invasion
by dismantling lamellipodia and filipodia, thus resulting in reduced cell adhesion [154–156].
Consistently, data from xenograft models showed that the overexpression of PI3K-C2β
leads to increased cell motility and enhanced metastasis development in vivo [153].

At the current state, there is no pharmacological option to selectively target the class
II PI3K that has been clinically tested. Nevertheless, given their emerging functions in
many pathological processes, some efforts have been made to find effective inhibitors
targeting this less investigated class of PI3K. In general, pharmacological inhibition of
class II can be achieved by “off-target” activities of different class I inhibitors [157], such
as PIK90, PIK124, PI-103 [158], and NVP-BEZ235 [159]. Of note, some inhibitors, such as
PI701 and PI702 [157,160], have shown to be more selective for PI3K-C2β than PI3K-C2α
isoform. However, a lack of selectivity for class II keeps these options far from being
effective at specifically targeting class II PI3K in any pathological process. Interestingly,
a subsequent study claimed the discovery of a PIK3-C2α-selective inhibitory molecule,
MIPS-21335, suggesting a potential new therapeutic anti-thrombotic approach based on
class II PI3K-selective targeting [161].

Taken together, recent discoveries showed that PI3K activity in cancer development
and migration is not limited to PIP3 production by class I PI3K, thus highlighting the
importance of class II PI3K-derived phosphoinositides. These findings suggest that phar-
macological targeting of class II PI3K may lead to the development of alternative thera-
peutic strategies for treating breast cancer, emphasizing the need for class II PI3K-selective
inhibitors in clinic.

8. Conclusions

Great effort has been directed to demonstrating the relevance of targeting the PI3K
pathway in breast tumors driven by PIK3CA aberrations. Although pan-PI3K inhibitors
showed efficacy in PIK3CA-mutated patients, particularly in combination with endocrine
therapy, their low tolerability due to lack of isoform selectivity largely limits their clinical
usage. The development of PI3K isoform-specific inhibitors such as alpelisib was able to
partially overcome these issues, providing new treatment opportunities for HR+/HER2–,
PIK3CA-mutated, metastatic breast cancer that progresses after endocrine therapy. How-
ever, proper adverse-event management is also required for alpelisib to limit patients’
discontinuation and dose reduction, which were events frequently observed during trials.
Further clinical studies to evaluate combinations of hormone therapy with PI3K, AKT,
mTOR, or CDK 4/6 inhibitors, together with clinical trials in other breast subtypes, are still
ongoing and will lead to improved therapies to treat breast cancer patients. In addition,
further studies may lead to the emergence of a new class of PI3K inhibitors selectively
targeting class II PI3K.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/cancers13143517/s1, Table S1: selective inhibitors of PI3K/AKT/mTOR pathway in breast cancer.
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