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O-linked N-acetylglucosamine (O-GlcNAc) is an essential and dynamic post-

translational modification found on hundreds of nucleocytoplasmic proteins

in metazoa. Although a single enzyme, O-GlcNAc transferase (OGT), gener-

ates the entire cytosolic O-GlcNAc proteome, it is not understood how it

recognizes its protein substrates, targeting only a fraction of serines/

threonines in the metazoan proteome for glycosylation. We describe a

trapped complex of human OGT with the C-terminal domain of TAB1,

a key innate immunity-signalling O-GlcNAc protein, revealing extensive

interactions with the tetratricopeptide repeats of OGT. Confirmed by muta-

genesis, this interaction suggests that glycosylation substrate specificity is

achieved by recognition of a degenerate sequon in the active site combined

with an extended conformation C-terminal of the O-GlcNAc target site.
1. Introduction
The attachment of a single b-N-acetylglucosamine (O-GlcNAc) sugar onto

serine and threonine residues of nucleocytoplasmic proteins is a dynamic and

abundant post-translational modification found in higher eukaryotes [1–3].

Remarkably, this modification is regulated by only two antagonistic enzymes:

the O-GlcNAc transferase (OGT), which transfers the GlcNAc moiety onto

acceptor residues from the donor sugar nucleotide UDP-GlcNAc, and the

O-GlcNAc hydrolase (OGA), which removes it. To date more than 1000

O-GlcNAc proteins have been identified by mass spectrometry [4–10]. These

proteins cover a wide range of cellular processes such as transcription and

translation [11–13], trafficking and localization [14,15], as well as cell cycle pro-

gression [16–19]. However, it remains unclear how a single OGT enzyme is able

to specifically recognize a limited number of serines/threonines on such a large

number of substrates.

OGT is a multi-domain protein with a catalytic core at the C-terminus and

13 tetratricopeptide (TPR) repeats at the N-terminus, making up about half of

the enzyme. Early experiments suggested that the TPR domain is involved in

substrate recognition and/or protein–protein interactions [20–27]. The struc-

ture of the isolated OGT TPR domain revealed topological similarity to other

helical repeat proteins and led to speculation that this domain might bind sub-

strates in an extended conformation [20]. The first structural insights into the

OGT catalytic domain came from an OGT orthologue in the bacterium Xantho-
monas campestris [28,29]. This structure revealed that the sugar donor binding

site is made up of the two lobes of the glycosyl transferase B (GT-B) fold, tightly

fused to the superhelical TPR domain [28]. The subsequent structure of human

OGT [30] revealed a very similar fold with the addition of an intervening

domain of unknown function between the two catalytic lobes [30]. The struc-

ture suggested an ordered bi-bi mechanism of substrate binding, in which

UDP-GlcNAc binds before the acceptor substrate [30]. Initial structural studies

exploring Michaelis/substrate complexes with short acceptor peptides have
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revealed limited substrate interactions with the enzyme

[31,32]. More recently, Pathak et al. investigated the common

binding modes of acceptor peptides to OGT [33]. Starting

from a peptide library, they identified preference for certain

acceptor peptide sequences, leading to definition of a degen-

erate sequon of OGT peptide substrates ([TS][PT][VT][S/

T][RLV][ASY]). Crystal structures of complexes of OGT with

some of these peptides revealed that OGT binds all the accep-

tor peptides studied so far in an extended conformation with

similar conformation of the residues in the 23 to þ2 position

around the acceptor serine/threonine. Although the C-termini

of these peptides point towards the TPR domain, these

structural data do not explain how OGT recognizes larger

protein substrates for glycosylation. The short sequence

patterns alone are not sufficient to accurately predict the

O-GlcNAc proteome, suggesting other mechanisms contribute

to substrate recognition.

A clue to how this might work came from the unusual

OGT substrate host cell factor 1 (HCF1). HCF1 is a ubiqui-

tously expressed chromatin-associated protein and a major

transcriptional co-regulator involved in numerous cellular

processes such as cell cycle progression (reviewed in [34]),

which has also been shown to be heavily O-GlcNAcylated

[35]. HCF1 is initially expressed as an approximately

210 kDa protein that is activated by limited proteolysis (pro-

tease maturation) within the proteolytic processing domain

(PPD), consisting of multiple 20-residue repeats [36,37]. Strik-

ingly, in 2011 it was discovered that OGT not only

glycosylates HCF1 but is also needed for its proteolytic matu-

ration [13,35]. A depletion of OGT leads to an accumulation

of full-length HCF1 protein and the PPD is proteolytically

cleaved by OGT via an unusual glycosylated glutamate inter-

mediate [24,35,38]. A recent structural study of a short PPD

(HCF1PRO) repeat in complex with OGT revealed that part

of the substrate bound in extended conformation in the

TPR repeats [24]. OGT was shown to form an extensive

array of polar interactions with the backbone of the

HCF1PRO repeat peptide, as well as specific side chain inter-

actions that were demonstrated to be essential for HCF1PRO

binding [24]. However, it is as yet not clear if this binding

mode also extends to OGT glycosylation substrates.

A well-characterized OGT glycosylation substrate is the

TGFb-activated kinase 1 (TAK1) binding protein 1 (TAB1), a

pseudophosphatase involved in the TGFb-mediated inflam-

matory signalling pathway and found to be an essential

activator of TAK1 [39,40]. The structure of the TAB1 N-term-

inal pseudophosphatase domain has been reported and

revealed similarity to the PPM family of protein Ser/Thr

protein phosphatases [41]. Previous studies have shown

that phosphorylation at a C-terminal region of TAB1 regulates

TAK1 activity [42–44]. We have recently discovered that TAB1

is dynamically O-GlcNAcylated at Ser395 in the C-terminal

domain [45]. This glycosylation appears to be required for

full activity of TAK1 and activation of downstream transcrip-

tion and secretion of pro-inflammatory cytokines. Here, we

exploit a novel approach to covalently trap OGT-substrate

complexes to explore how OGT recognizes glycosylation sub-

strates through its TPR domain. The structure of the OGT in

complex with the TAB1 C-terminal domain combined with

mutagenesis studies reveals that OGT recognizes the TAB1

substrate, and by extension a group of glycosylation substrates

with similar disordered regions, through extensive essential

interactions with the TPR repeats.
2. Results and discussion
2.1. The TAB1 O-GlcNAc site resides in a disordered

region with similarity to other OGT targets
The O-GlcNAcylation sites on the OGT substrates TAB1 [45], col-

lapsin response mediator 2 protein (CRMP2) [9] and casein

kinase 2 (CK2) [46] are located in disordered regions close to

the C-terminus (figure 1a). Although short peptides derived

from these sites can be co-crystallized with OGT [31–33], we

have been unsuccessful in using this approach with longer

sequences/intact proteins to explore the role of the OGT TPR

domain in substrate recognition. Aligning the sequences

around the O-GlcNAc sites reveals similarities near the site of

modification (figure 1b). Remarkably, this is also similar to

the proteolytic cleavage site of a HCF1PRO repeat, with the

major difference being a glutamate at the acceptor position

(figure 1b). Mutating this glutamate to a serine is sufficient to

change the peptide from a proteolytic to a glycosylation substrate

[24]. In the OGT:HCF1PRO structure [24], the peptide substrate

spans the whole length of the TPR domain (figure 2b). The pep-

tide interacts with the TPRs through some of its side chains, but

intriguingly five regularly spaced asparagine side chains in OGT

form hydrogen bonds with the HCF1PRO peptide backbone

in a sequence-independent manner (figure 2b). We noted the

fortuitous proximity of the HCF1PRO C-terminus to the OGT

N-terminus (CaHCF1–1340-CaOGT313 approx. 12 Å; figure 2b),

and wondered whether this would enable the direct tethering

of substrates to OGT via a fusion linker to allow us to explore

OGT-glycosylation substrate complexes.

2.2. A linear fusion of OGT and HCF1PRO reproduces
the HCF1PRO binding mode

To explore whether a fusion of the C-terminus of a peptide sub-

strate to the N-terminus of a truncated OGT (312–1031) would

generate physiological OGT-substrate complexes, we explored

this approach first with HCF1PRO. A construct was designed

where an 18-mer HCF1PRO repeat peptide (PPCETHETGTTN

TATTAT) was fused to the N-terminal Thr315 of OGT via

a three glycine (3xGly) linker (figure 2a). The fusion

construct was overexpressed as a His6-tagged protein in

E. coli, purified and crystallized. Well-diffracting protein crys-

tals were obtained and synchrotron data were collected to

1.9 Å (electronic supplementary material, table S1). Molecular

replacement and subsequent refinement revealed continuous

unbiased jFoj– jFcj density for both the HCF1PRO peptide and

the 3xGly linker (figure 2b). Encouragingly, the conformation

of the HCF1PRO peptide in the fusion protein was nearly iden-

tical to that observed in the previously published OGT-HCF1

peptide complex [24] (RMSD on Ca atoms ¼ 0.2 Å). Thus,

just as with the free peptide, the tethered HCF1PRO peptide

backbone binds the OGT TPR domain in an extended confor-

mation, interacting with residues lining the concave surface

of the TPR superhelix (figure 2b). Therefore, a linear fusion of

OGT and HCF1PRO reproduces the HCF1PRO binding mode.

2.3. A linear TAB1:OGT fusion suggests that TAB1 makes
extensive interactions with the OGT TPRs

We next explored the OGT-substrate fusion approach as

a means of trapping complexes of OGT with TAB1. We
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Figure 1. O-GlcNAc sites for a subset of proteins are located in a C-terminal disordered domain. (a) Cartoon depicting the domain structure and location of the
glycosylation sites of the three OGT substrates TAB1, CRMP2 and CK2. The O-GlcNAc sites are depicted as blue hexagons. (b) Sequence alignment of the O-GlcNAc
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(c) Schematic of OGT with a bound HCF1 peptide. The catalytic domain is shown in blue; the tetratricot-peptide repeat domain is shown in grey and the
HCF1 peptide as yellow sticks (PDBID 4N3B).

rsob.royalsocietypublishing.org
Open

Biol.7:170078

3

generated a TAB1:OGT fusion construct matching the

HCF1PRO:OGT fusion, using an 18-mer TAB1 peptide derived

from the S395 glycosylation site (VPYSSAQSTSKTSVTLSL;

figure 2a). The chimaeric protein was overexpressed as a

His6-fusion construct in E. coli and purified as described for

the HCF1PRO:OGT fusion protein (figure 2a). We were able

to generate crystals of the TAB1:OGT fusion protein, solve

the structure by molecular replacement and refine the com-

plex against 2.5 Å synchrotron diffraction data to Rwork/

Rfree ¼ 0.22/0.25 (electronic supplementary material, table

S1). The unbiased jFoj– jFcj density allowed unambiguous

building of the linker and peptide (figure 2b). The first

eight amino acids of the TAB1 peptide (VPYSSAQS),

covering the glycosylation site, were found in a similar

conformation in the active site to the free TAB1 peptide in

complex with OGT reported previously [31] (figure 2b,

RMSD on Cas ¼ 1.4 Å). The electron density revealed

Ser395 to be glycosylated as a result of self-glycosylation

during expression in E. coli, which was confirmed by western

blot analysis (figure 3a). The sugar occupies the same position

as observed in a complex with a short synthetic TAB1

glycopeptide [31] (maximum atomic shift ¼ 0.1 Å). Intrigu-

ingly, there appears to be some extra electron density

near Ser396 and Ser399 suggestive of additional glycosyla-

tion sites (electronic supplementary material, figure S1)

that could be an artefact of the very high (local) concen-

trations of the fused substrate peptide, or glycosylation

occurring in trans as a result of the high protein
concentrations (approx. 10 mg ml21) used in the crystalliza-

tion experiments. In the TAB1:OGT fusion structure, the

TAB1 peptide forms two side-chain-mediated interactions

(Ser404/Thr406) with the TPR domain of OGT (Asp386/

Asp420) (figure 2b). These are remarkably similar to the inter-

actions between the same OGT residues and Thr1090 and

Thr1092 of the HCF1PRO repeat (figure 2b). Similarly, the

interactions between the TAB1/HCF1 peptide backbones

and the five regularly spaced OGT TPR asparagines are con-

served (figure 2b). Furthermore, the overall conformations of

the TAB1 and HCF1 peptides in the respective fusion

constructs is similar (RMSD on Cas ¼ 1.3 Å). Thus, a linear

TAB1:OGT fusion suggests that the TAB1 OGT substrate

makes extensive interactions with the OGT TPRs.
2.4. Interactions with the OGT TPRs contribute to TAB1
O-GlcNAcylation

Although the similarity to the HCF1 peptide binding mode

and the presence of glycosylation on Ser395 suggests we

have trapped a physiologically relevant TAB1:OGT complex,

we further tested this model by structure-guided site-directed

mutagenesis in the context of truncated OGT (312–1031) and

TAB1 (7–409) as separate proteins. Two types of OGT

mutants were generated: a single-point mutant in the active

site (K842M), known to be essential for catalytic activity

[31] and a quintuple mutant where the five key asparagine
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residues that form the bulk of interactions in the TPR domain

(Asn322, Asn325, Asn356, Asn390 and Asn424, figure 2b)

were all mutated to alanines (from here on referred to as

the 5N5A mutant). Based on the TAB1:OGT fusion protein

complex, the 5N5A mutations would be expected to disrupt

the binding of the C-terminal region of TAB1 to the TPR

domain. Using western blot analysis, we probed OGT activity

on TAB1 and blotted for O-GlcNAcylation using an

O-GlcNAc Ser395 specific antibody [45]. As demonstrated

previously, TAB1 is readily O-GlcNAcylated by WT OGT,

whereas no glycosylation is observed with the catalytically

inactive K842M mutant [31] (figure 3c). The 5N5A mutant

shows significantly reduced activity on a free TAB1 peptide
(KKPVSVPYSSAQSTSKTSVTLSL) matching the peptide

used in the fusion construct (figure 3b), in agreement with

the interactions formed by the key asparagines in the TPR

domain of OGT observed in the structure (figure 2b). How-

ever, when using a shorter synthetic TAB1 peptide

(KKPVSVPYSSAQSTS, ending just before the start of the

TPR repeats), the 5N5A mutant shows the same activity

levels as WT OGT (electronic supplementary material,

figure S2a). Intriguingly, the 5N5A mutant appears to show

a more modest reduction of glycosyltransferase activity

(approx. 50%), as calculated by quantifying fluorescent

signal from the fluorophore conjugated secondary antibodies

used in the western blot analysis (electronic supplementary
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material, figure S2b), on the TAB1 (7–409) protein (figure 3c),

suggesting that while interactions of the TAB1 C-terminus

with the OGT TPRs are important, further interactions with

the globular pseudophosphatase domain of TAB1 may

exist. Nevertheless, interactions with the OGT TPRs

contribute to TAB1 O-GlcNAcylation.

3. Concluding remarks
The human O-GlcNAc transferase is a multi-domain protein

and is essential in metazoa [12,47,48]. However, it is still

unclear how a single OGT enzyme recognizes its multitude

of substrates. Previous work has proposed sequence speci-

ficity targeting 22 to þ3 relative to the acceptor residue

[33,49]. Previous work has also suggested the involvement

of the TPR domain in substrate recognition by incrementally

removing repeats from the TPR domain, resulting in a loss of

activity on substrates even on a peptide level, although the

molecular basis of this was as yet unclear [20–23,25–27].

Using the proteolytic OGT substrate HCF1, Lazarus et al.
[24] revealed the involvement of multiple OGT residues on
the concave surface of the TPR domain in binding side

chains and backbone of the HCF1PRO repeat proteolytic sub-

strate. Here, we used a fusion approach to trap OGT-substrate

complexes to investigate the role of the TPRs in recognition of

glycosylation substrates. We first demonstrated that this

fusion approach recapitulates the published HCF1PRO

peptide binding mode and then used that to reveal how the

C-terminus of the OGT glycosylation substrate TAB1 is recog-

nized by the enzyme. The TAB1 C-terminus binds in an

extended conformation in the TPR domain, making extensive

contacts with the concave surface through regularly spaced

asparagines in OGT. An OGT mutant lacking these aspara-

gines was deficient in glycosylation of TAB1. Interestingly,

the data show a complete loss of O-GlcNAcylation of a free

TAB1 C-terminal peptide, whereas activity on a TAB1 protein

is more modestly reduced. These findings, coupled with

recently published work on an OGT substrate sequence

preference [33], suggest that OGT may bind its substrates

through a combination of mechanisms. It is interesting to

note that many other OGT substrates (e.g. Casein kinase II

and CRMP2; figure 1a) also possess similarly disordered
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regions C-terminal of the O-GlcNAcylation site, suggesting

that this may be a general mode of OGT substrate recog-

nition. However, O-GlcNAc sites have also been reported to

reside in/close to secondary structure motifs, as is the case

for Histone H2B [50], p53 [51], the glucose-6-phosphate dehy-

drogenase G6PD [52] and SNAP-29 [53]. It is possible that a

subset of substrates is O-GlcNAcylated in a co-translational

fashion as proposed by recent work [54]. In this work, we

have shown, using crystallography and site-directed muta-

genesis, that the OGT substrate TAB1 binds the enzyme in

the same way as the proteolytic substrate HCF1 [24] and

that the five asparagine residues found on the concave sur-

face of the TPR domain (Asn321, Asn322, Asn356, Asn390

and Asn424) are important for binding. Future studies

could be directed at dissecting which other parts of OGT

and/or substrate proteins contribute to substrate binding.
0078
4. Material and methods
4.1. Construct design/cloning
A codon-optimized version of hOGT 313–1031, based on the

boundaries described in [31], was ordered from GenScript

and cloned as a BamHI-NotI restriction fragment into a

modified version of pGEX6P1 containing a 6His tag instead

of a GST tag. PCR primers (6H_HCF1_GGG_hOGT_fwd

GTATTCATGCATCATCACCACCATCACccgccctgcgagacccacg,

6H_HCF1_GGG_hOGT_rev CAGGTTGTTCAGGGAATCAG

CATGGGTaccgccaccggtggcggtggtggcggtg; 6H_TAB1_GGG

_hOGT_fwd GTATTCATGCATCATCACCACCATCACGTG

CCATACTCCAGCGCCCAG and 6H_TAB1_GGG_hOG

T_rev CAGGTTGTTCAGGGAATCAGCATGGGTaccgccacc

AAGGGAGAGGGTCACGCTGGTC) were then designed to

introduce a TAB1 or HCF1 peptide followed by a GGG

linker in place of the PreScission Protease site and the first

two residues of the hOGT, changing the boundaries to

315–1031. This PCR product was introduced into the existing

construct by restriction free cloning [55].

Cloning of the quintuple mutants of hOGT was carried

out by ordering a GeneBlock from Integrated DNA

Technologies containing all five codon changes. This was

then incorporated into the existing construct by restrictionless

cloning based on [55] but using KOD polymerase and

DpnI from Fermentas and using primers OGT5N5A_F:

CCTGTCCGACCCATGCTGATTC, OGT5N5A_R: CCGGAG

TCTTTGTGAATCGATGC and GeneBlock OGT_5N5ACCT

GTCCGACCCATGCTGATTCCCTGgcCgcCCTGGCGAACA

TTAAGCGTGAACAAGGCAACATTGAAGAAGCCGTCCG

TCTGTATCGTAAAGCGCTGGAAGTCTTTCCGGAATTCG

CGGCGGCACATAGTgcCCTGGCCTCCGTGCTGCAGCAA

CAGGGCAAGCTGCAGGAAGCTCTGATGCACTATAAA

GAAGCGATTCGTATCTCTCCGACCTTTGCCGATGCATA

CAGTgcCATGGGTAATACGCTGAAAGAAATGCAAGAC

GTGCAGGGCGCCCTGCAATGTTATACCCGCGCAATTCA

GATCAACCCGGCTTTCGCGGATGCCCATTCAgcTCTGGC

ATCGATTCACAAAGACTCCGG.

The pGEX6P1 TAB1 7-409 construct was generated from a

larger fusion construct produced as above, then the GGG-

hOGT region was erased using a method based on the

QuikChange site-directed mutagenesis kit by Agilent but

using KOD polymerase and DpnI from Fermentas. All inserts

were confirmed by DNA sequencing.
4.2. Expression and purification of linear fusion
constructs

Both HCF1PRO:OGT and TAB1:OGT fusion constructs were

recombinantly expressed as His6-tagged proteins in E. coli
BL21 (DE3) pLysS. Cultures were grown in LB media,

supplemented with ampicillin, until an OD600 of approximately

0.6 was reached. Expression was induced with 250 mM IPTG

for 18 h at 168C. Cells were harvested by centrifugation at

4800g in a J6-MI centrifuge (Beckman Coulter). The pellet

was resuspended in lysis buffer (25 mM Tris, 150 mM

NaCl, 0.5 mM TCEP and 30 mM imidazole pH 8.5, contain-

ing approx. 0.1 mg ml21 lysozyme, 0.1 mg ml21 DNAse,

1 mM benzamidine, 0.2 mM PMSF and 5 mM leupeptin).

Cell lysate was spun down at 20 000g for 10 min in an

Avanti J-25 centrifuge (Beckmann). The supernatant was

incubated with Nickel-NTA resin for 2 h at 48C. The beads

were isolated by passing through a column and washed exten-

sively with lysis buffer. Bound protein was eluted from the

beads with lysis buffer containing 200 mM imidazole. The

eluent was diluted to 25 mM NaCl in Tris–HCl pH 8.5 and

purified further by anion-exchange chromatography using a

HiTrap QFF 5 ml column (GE Healthcare). Fractions corre-

sponding to the size of the fusion protein were pooled,

concentrated to less than 2 ml and loaded onto a SuperDex

200 gel filtration column (GE Healthcare). Purity was checked

by subjecting the fractions to SDS-PAGE analysis and pure

fractions were pooled and buffered exchanged into a 50 mM

Tris–HCl pH 8.5, 25 mM NaCl and 0.5 mM TCEP.

4.3. Crystallization and structure solution
The fusion constructs were crystallized at a protein concen-

tration of approximately 10 mg ml21 in the presence of

5 mM UDP. Sitting drop vapour diffusion experiments

were performed by combining 0.5 ml of protein with 0.5 ml

mother liquor. Crystals grew in 2–3 days in 3.5 M

sodium formate, 0.1 M Tris pH 8.5 for TAB1-OGT fusion

and 1.3 M ammonium tartrate dibasic, 0.1 M Tris pH 8.5

for HCF1PRO:OGT. Crystals were cryoprotected using 10%

glycerol in mother liquor and 2.5 M lithium sulfate for

TAB1:OGT and HCF1PRO:OGT, respectively. Data were col-

lected at the European Synchrotron Radiation Facility

(ESRF) beam line ID29 and were autoprocessed with XDS

[56,57]. Structures were solved by molecular replacement

using Molrep [58] and chain A of PDB 3PE4 [30] as search

model. Crystals belong to space groups P6122 (TAB1:OGT)

and P6222 (HCF1PRO:OGT) and have one molecule per

asymmetric unit. A ligand topology for UDP was created

with PRODRG [59]. The structures were fully refined using

iterative cycles of Refmac5 [60] and manual building with

COOT [61]. Data collection and refinement statistics can be

found in the electronic supplementary material, table S1.

4.4. In vitro TAB1 glycosylation assay
For glycosylation assays, TAB1 and hOGT (WT and mutants)

were expressed and purified as described previously

[30,31,33,41]. Ten mircomolar of TAB1 was incubated with

50 nM hOGT (WT or mutants) in TBS reaction buffer (0.1 M

Tris–HCl pH 7.4, 150 mM NaCl) supplemented with

0.5 mM TCEP and 0.1 mg ml21 BSA. The reaction was started
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by adding UDP-GlcNAc to a final concentration of 100 mM

and incubating the reaction mixtures at 258C. Ten microlitres

of sample mixtures was taken at indicated times and mixed

with 4x LDS sample loading buffer to a final volume of

50 ml and boiled at 958C for 5 min. Proteins were resolved

using precast SDS-PAGE gels (NuPAGE 4–12% Bis-Tris

gels, Invitrogen) and blotted onto nitrocellulose membranes

(GE Healthcare). The primary antibodies were used at the fol-

lowing concentrations: Anti-TAB1-O-GlcNAc (1 : 1000 [45]),

anti-TAB1 (1 : 1000, Division of Signal Transduction and

Translation, University of Dundee) and anti-OGT (1 : 2000,

DM17, Sigma-Aldrich, Cat#: O6264). Li-Cor secondary anti-

bodies (IRDye 680 Donkey anti-rabbit and IRDye

800 Donkey anti-rabbit, anti-sheep) were used at dilutions

of 1 : 10 000. Blots were imaged using the Li-Cor Odyssey

infrared imaging system (Li-Cor, Lincoln, NE). Quantification

of the O-GlcNAc specific signal (gTAB1) was performed

using imageStudioLite (Li-Core) and normalized to total

OGT (tOGT) and total TAB1 (tTAB1) signal. Data were

plotted with GraphPad PRISM 7.

4.5. Steady-state kinetics
hOGT activity was determined in reactions containing 50 nM

of either WT or 5N5A His6-hOGT (312–1031), 50 mM Tris–

HCl pH 7.4, 0.1 mg ml21 BSA, 10 mM sodium dithionate

and varying concentrations of the TAB1 peptide

KKPVSVPYSSAQSTSKTSVTLSL or at a fixed concentration

of 10 mM of the TAB1 peptide KKPVSVPYSSAQSTS, in a

total volume of 100 ml. Reaction mixtures were preincu-

bated for 15 min before initiating the reaction by adding

UDP-GlcNAc to a final concentration of 50 mM. Reactions

were incubated for 30 min at 218C before addition of

200 ml of 75 mM pyrocatechol violet/15 mM fluorophore,

DP-sensitive xanthene-based Zn(II) compound [33,62,63],

in 25 mM HEPES pH 7.4, 10 mM NaCl, 50% (v/v) MeOH.

UDP formation was detected on a Gemini EM fluorescent

Microplate reader (Molecular Devices) using excitation

and emission wavelengths of 485 nm and 530 nm, respect-

ively. Turnover did not exceed 10% for either substrate.

Data are presented as average of three measurements,

with error bars showing s.e.m. Data were analysed with

GraphPad PRISM 7.

4.6. Western blot analysis of purified TAB1:OGT
Samples of purified TAB1:OGT fusion protein were

incubated for 30 min at 378C in the presence and absence of

approximately 10 mg ml21 CpOGA, a promiscuous bacterial
O-GlcNAc hydrolase [64]. Samples were supplemented

with 4x LDS-loading buffer and boiled for 5 min at 958C. A

total of 0.5 mg of each untreated and treated TAB1:OGT

fusion protein were subjected to SDS-PAGE analysis and

transferred onto a nitrocellulose membrane (GE Healthcare),

using a wet-transfer system (Invitrogen). The membrane was

blocked in 5% BSA for 30 min at 218C before incubating with

anti-O-GlcNAc AB (RL2, 1 : 1000, Abcam, catalogue no.

ab2739) and anti-OGT AB (1 : 2000, Abcam, catalogue no.

177941). Li-Cor secondary antibodies IRDye 680 Donkey

anti-mouse (anti-O-GlcNAc) and IRDye 800 Donkey anti-

rabbit (anti-OGT) were used at dilutions of 1 : 10 000. Blots

were imaged using the Li-Cor Odyssey infrared imaging

system (Li-Cor, Lincoln, NE).

4.7. Peptide synthesis
Microwave-assisted solid-phase peptide synthesis was per-

formed with CEM Liberty automated peptide synthesizer

on Rink amide MBHA resin (Novabiochem) using standard

Fmoc chemistry protocols. The peptide was cleaved from

the resin and deprotected with i-Pr3SiH-H2O-TFA 2.5 : 5 :

92.5 mixture for 2 h. The crude peptide was obtained after

dilution of the cleavage mixture with diethyl ether and cen-

trifugation. It was finally purified by reverse-phase HPLC

at C18 Waters Xbridge OBD 5 mm 19 � 100 column in a

linear gradient of buffer B (acetonitrile20.1% trifluoroacetic

acid) in buffer A (water20.1% trifluoroacetic acid) 5–40%

in 5 min, flow rate 20 ml min21. Appropriate fractions were

pooled and freeze-dried to provide the target compound as

fluffy solid.
5. Accession codes
X-ray diffraction data and refined structures have been

deposited in the Protein Data Bank under accession codes

5LWV (HCF1PRO:OGT) and 5LVV (TAB1:OGT).
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