INTERFACE Time variation in the probability of failing
to detect a case of polymerase chain
reaction testing for SARS-CoV-2 as
estimated from a viral dynamics model
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Viral tests including polymerase chain reaction (PCR) tests are rec-

Subject Category: ommended to diagnose COVID-19 infection during the acute phase of

Life Sciences—Mathematics interface infection. A test should have high sensitivity; however, the sensitivity of

the PCR test is highly influenced by viral load, which changes over time.
Subject Areas: Because it is difficult to collect data before the onset of symptoms, the cur-
computational biology rent literature on the sensitivity of the PCR test before symptom onset is

limited. In this study, we used a viral dynamics model to track the prob-
ability of failing to detect a case of PCR testing over time, including the
presymptomatic period. The model was parametrized by using longitudinal
viral load data collected from 30 hospitalized patients. The probability of
failing to detect a case decreased toward symptom onset, and the lowest
probability was observed 2 days after symptom onset and increased after-
wards. The probability on the day of symptom onset was 1.0% (95% CI:
0.5 to 1.9) and that 2 days before symptom onset was 60.2% (95% CI: 57.1
to 63.2). Our study suggests that the diagnosis of COVID-19 by PCR testing
should be done carefully, especially when the test is performed before or
way after symptom onset. Further study is needed of patient groups with
shingo Iwami potentially different viral dynamics, such as asymptomatic cases.
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1. Introduction

In persons with signs or symptoms consistent with COVID-19, or with a high
likelihood of exposure (e.g. history of close contact with a confirmed case,
travel history to an epicentre), viral testing combined with other tests (e.g.
X-ray) is recommended for the diagnosis of acute infection [1]. Viral tests

1— o .
These authors contributed equally to-this (such as the polymerase chain reaction (PCR) test) look for the presence of

work. SARS-CoV-2, the causative virus of COVID-19. Viral testing is also recommended

to screen asymptomatic individuals regardless of suspected exposure to the virus
Electronic supplementary material is available for early identification and to survey the prevalence of infection and disease trends
online at https:/doi.org/10.6084/m9figshare. [1]. Although antibody testing is another option to confirm infection, it is used to
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confirm past infection, because it takes a few weeks for anti-
body levels to reach detectable amounts after infection [1,2].

PCR tests for SARS-CoV-2 vary according to the sampling
process used (i.e. sampled by patients or by healthcare workers
[3]), the specimen type (upper and lower respiratory tract,
saliva, blood, stool [4,5]), the collection kit, and different
target and detection limits [6-8]. Further, test results can differ
among runs, laboratories and PCR assays. It is still under
debate which specimen type is best. The choice of specimen
type should be determined by the quality of the test (i.e. sensi-
tivity and specificity) and by the safety and purpose of the test.
For example, saliva samples can be self-collected, which will
mitigate the risk of infection of healthcare workers and which
is helpful for mass screening [9-12]. However, saliva samples
from some patients can be thick, stringy and difficult to pipette
[13]. Meanwhile, the viral load in nasal samples collected by
patients was reported to be not as high as that in nasopharyn-
geal swabs collected by health practitioners, which yields
lower sensitivity of nasal samples collected by patients [3].

In the context of controlling the COVID-19 pandemic, the
probability of failing to detect a case appears to be the most
important metric. Note that the probability is not the same as
the false-negative rate. The false-negative rate is the probability
of negative results given that a swab contains viral genetic
material, whereas the probability of failing to detect a case is
the probability that an individual is infected (and potentially
infectious) but the sample provided is like to not have any
viral material in it due to either being prior to viral shedding
or at a stage of infection where viral load is below the threshold
of consistent detection. Indeed, failing to detect a case leads
to lifting precautions and isolation for patients who are still
infectious, thus further increasing the transmission risk in
households and communities. In contrast, the probability of fal-
sely detecting a case is considered negligible in general unless
there are technical errors or contamination in the reagent [2].

The sensitivity of a PCR test is influenced by the sampling
process and other factors including the quality of sample col-
lection [14]. Although not frequently discussed, sensitivity is
also dependent on the timing of sample collection [2]. Viral
load typically increases exponentially during the acute
phase of infection, hits a peak, and then declines and disap-
pears. Because sensitivity is dependent on the viral load, the
probability of failing to detect a case changes corresponding
to the temporal dynamics of viral load. In particular, the
probability of failing to detect a case is high at the beginning
of infection and long after infection, and it is low when the
viral load hits its peak. For example, Kucirka et al. [15] and
Borremans et al. [4] showed that the probability of failing to
detect a case of SARS-CoV-2 tests varies dependent on time
since exposure or onset. The lowest rate was achieved 3
days after symptom onset, which corresponds to peak viral
load as observed in clinical data and as estimated from math-
ematical models [16-21]. However, most of the data used
by Kucirka et al. and Borremans et al. were collected after
symptom onset. Furthermore, those authors estimated the
probability of failing to detect a case before symptom onset
by using data from a single person, which may be an extre-
mely poor estimate of the true probability of failing to detect
a case. Kucirka also did not consider the different types of
tests used in the different studies, which is problematic
because the detection limit varied between studies.

In the present study, we investigated the probability of
failing to detect a case over time by using a viral dynamics

model rather than observed test results. Our approach [ 2 |

enabled us to investigate the probability of failing to detect
a case even before symptom onset by extrapolating the viral
load before symptom onset from the model and allowed us
to derive the probability of failing to detect a case for different
detection limits. First, we parametrized the viral dynamics
model by fitting the model to the data. Then, we ran simu-
lations based on the parametrized viral dynamics model,
adding errors to create realistic viral-load distributions, and
computed the probability of failing to detect a case over time.

2. Results

2.1. Simulation to compute the probability of failing to

detect a case over time

Using the parametrized viral dynamics model, we computed
the viral-load distribution over time with days since symptom
onset as the time scale. The fitted viral dynamics and the
data are depicted in the electronic supplementary material,
figure S1 and table S1. We randomly resampled the parameter
set (i.e. B, y, 6§ and V(0)) from the estimated distributions
(lognormal distributions), accounting for both fixed-effect
estimation and variation in random effects, and ran the
model (see Methods). We assumed that the viral load obtained
by running the model is expected viral load. Thus, each viral load
curve corresponds to each patient; in other words, the parameter
distributions reflect a random-effect component that accounts
for individual variability. However, what we obtain from the
PCR test is subject to some measurement error. Thus, we
added the measurement error to the expected viral load to
obtain measured viral load data. We assumed that the error fol-
lows a normal distribution with a mean of zero and the
variance on log 10 transformed viral load, computed in the pro-
cess of fitting. In other words, we assumed that the error is
independent and identically distributed (i.e. the errors are not
correlated between patients or within patients from multiple
measurements). We repeated this process 1000 times to create
the viral-load distribution over time. The probability of failing
to detect a case is computed as the proportion of cases with a
viral load below the detection limit at day ¢ (te{-2,...,20}),
denoted by p@®): p®) = I I(VL(#); < DL)/1000, where
VL(t); is the measured viral load of individual i at time ¢, DL
is the detection limit and I is the identity function. The large-
sample 95% confidence intervals (Cls) of the probability of fail-
ing to detect a case were computed by assuming a binominal
distribution: p(t) + 1.96,/p(H)(1 — p(H)/1000. Note that the
detection limit varied depending on the test assay [7,22,23].
The lowest was 1 copy ml™ and the highest was over
1000 copies ml™". We used 100 copies ml™" because it is roughly
the median value that we have seen in the literature. As a
sensitivity analysis, we performed the same simulation
using different detection limits (10 and 1000 copies m1™"). The
computational process is summarized in figure 1.

2.2. Time-dependent probability of failing to detect a
case during SARS-CoV-2 infection

Figure 2a shows the computed probability of failing to detect a
case over time with a detection limit of 100 copies ml™". As
expected from typical viral dynamics, the probability of failing
to detect a case was high during the early phase of infection
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Figure 1. Process of computing the probability of failing to detect a case. The parameter distributions are estimated by fitting the viral dynamics model to the viral
load data extracted from clinical studies of SARS-CoV-2 (a—d). The parameter values are resampled from the estimated parameter distributions, and 1000 expected
viral loads are computed by running the viral dynamics model (e,f). The green lines correspond to the computed expected viral load. The dashed grey line is the
detection limit. The red and blue dots are the measured viral load, which is calculated by adding measurement error to the expected viral load. Then, we calculated
the probability of failing to detect a case on day t, which is the number of negative measurements (red dots) among all the measurements on day ¢ (g).

because of the low viral load, which is consistent with previous
studies [4,15]. Before symptom onset, the probability of failing to
detect a case was over 20% (60.2% (95%CI: 57.2% to 63.2%) at 2
days before symptom onset), suggesting it is difficult to identify
all presymptomatic cases with viral testing. The probability of
failing to detect a case is minimized at 2 days after symptom
onset: 0.1% (95%CI: 0% to 0.3%), which corresponds to the
timing of peak viral load. After that, the probability of failing
to detect a case increases as the viral load declines or as a
virus is eliminated from patients. As a sensitivity analysis, we
also computed the probability of failing to detect a case for
different detection limits (figure 2b,c: detection limit = 10 copies
ml~! and 1000 copies ml™?, respectively) and confirmed similar
trends. The probability of failing to detect a case was high with a
higher detection limit: the rate was over 40% before symptom
onset with the detection limit of 1000 copies ml™".

3. Discussion

We computed the probability of failing to detect a case of
PCR test over time using a viral dynamics model. The prob-
ability of failing to detect a case was substantially high (over
20%) before symptom onset. The lowest probability of failing

to detect a case appeared 2 days after symptom onset. After
that, the probability of failing to detect a case declined as
the virus was gradually washed out from the host. A similar
time trend was observed for different detection limits; how-
ever, a higher detection limit yielded a higher probability of
failing to detect a case.

We need to be careful in interpreting the probability of fail-
ing to detect a case before symptom onset as computed based
on our approach. We simply hindcasted the model without con-
sidering the timing of infection. Therefore, the viral load we
computed may not exist if it is before infection. This becomes
a serious issue when we compute the probability of failing to
detect a case way before symptom onset. For this reason, we
decided to show the probability of failing to detect a case
from 2 days before symptom onset, because the 2.5%ile of the
incubation period was 2.2 days [15]. In other words, most of
the simulated patients are infected and shedding virus 2.2
days before symptom onset. Further study may be needed to
consider the timing of infection for a more accurate estimation
of the probability of failing to detect a case.

Providing an accurate probability of failing to detect a
case is of importance in understanding the epidemiology of
COVID-19 as well as its clinical characteristics. For example,
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Figure 2. The probability of failing to detect a case over time with different DLs. (a) DL = 100 copies mi~", (b)) DL=10 copies mli~", (&) DL= 1000 copies mli~".
The dots are the estimated probability of failing to detect a case at each time point and the bars correspond to the 95%Cls. The vertical dashed lines show the day

of symptom onset.

the detected prevalence of COVID-19 in the general popu-
lation based on PCR testing was recently reported from
England [24]. The data provide a baseline for monitoring
prevalence prospectively and will be useful in, for example,
assessing the impact of countermeasures against the
COVID-19 pandemic. However, the detected prevalence
could be influenced by the probability of failing to detect a
case. Given that the probability of failing to detect a case is
dependent on the time of specimen collection, recording the
timing of the test (days since symptom onset) might be help-
ful in estimating the true prevalence by accounting for the
probability of failing to detect a case. Our estimated prob-
ability of failing to detect a case before symptom onset is
also suggestive for contact tracing or quarantine, in which
cases before symptom onset would be tested; we do not rec-
ommend using PCR testing to rule out infected cases in those
situations. Further, we do not recommend fully depending on
the results of the PCR test in diagnosis, given its non-
negligible probability of failing to detect a case depending
on the timing of the test. Comprehensive medical tests such

as chest X-ray and interviewing for contact history would
complement the PCR test for acute cases.

PCR tests have been extensively used in SARS-CoV-2
research because of their high sensitivity and specificity com-
pared with other tests such as antibody and antigen tests.
However, this does not undermine the value of other tests,
and appropriate tests should be chosen depending not only
on their sensitivity and specificity but also on the purposes
of testing and the cost [25-27]. For example, frequency has
been suggested to be more important than sensitivity for
screening purposes [27]. For influenza, rapid molecular
assays (i.e. nucleic acid amplification tests) and rapid influ-
enza diagnostic tests (RIDTs) have been extensively used
for diagnosis purposes for outpatients [28]. A meta-analysis
reported the sensitivity of the RIDT to be 62.3%, which was
assessed by using the PCR test as a gold standard (thus
100% sensitivity is assumed for the PCR test) [29]. The sensi-
tivity peaks around 2 to 3 days after symptom onset [29,30],
which corresponds to the viral load peak [31] and is in line
with our finding for SARS-CoV-2.
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The strength of our approach is that we used viral dynamics
rather than the observed probability of failing to detect a case,
which enabled us to assess the probability of failing to detect
a case at time points for which available data were scarce,
especially before symptom onset. One of the reasons for the lim-
ited data before symptom onset is that people are rarely tested
before symptom onset, as the test is more commonly used for
diagnosis rather than for screening or surveillance. Although
Kucirka et al. and Zhen et al. estimated the probability of failing
to detect a case over time using observed test results, the esti-
mation for before symptom onset was dependent on a single
set of data, which we do not believe is a reliable estimation
[15,32]. Another strength of our approach is that we can esti-
mate the probability of failing to detect a case for different
detection limits because we estimated the distribution of viral
load at each time point. Further, although we specifically com-
puted the probability of failing to detect a case for SARS-CoV-2,
the framework is applicable to other viruses causing acute
respiratory infection, including influenza.

A few points need to be addressed in future studies. We used
the viral load measured in upper respiratory specimens because
such specimens are prevalently used for the PCR test. However,
using saliva may also be considered because the collection of
saliva specimens is easy and safe for healthcare practitioners,
and the viralload is high enough compared with that from naso-
pharyngeal specimens, which is a gold standard approach
[5,9,11,33]. It might be worth computing the probability of fail-
ing to detect a case for saliva specimens if the viral dynamics are
not the same as in upper respiratory specimens. Further, the
probability of failing to detect a case might be computed for sub-
groups of the population. In our previous study, we found that
viral load dynamics is highly variable among cases [17]. Virus
shedding continued for 10 days after symptom onset in some
patients but continued for more than 30 days after symptom
onset in others. Therefore, the probability of failing to detect a
case should differ between those patient groups. If any bio-
markers or demographics (i.e. age, sex, race/ethnicity)
differentiating the viral dynamics are identified, they should
be considered in computing the probability of failing to detect
a case. We used only symptomatic cases in this study because
data from asymptomatic cases were not available. However,
the probability of failing to detect a case could differ between
symptomatic and asymptomatic cases. Although the difference
in duration of virus shedding between symptomatic and
asymptomatic cases is still controversial from the literature
[34,35], viral load dynamics and the corresponding probability
of failing to detect a case might be dependent on the presence
or absence of symptoms. Similarly, the probability of failing to
detect a case was nearly zero in the first week since symptom
onset, which might be because the data included only hospital-
ized patients. Indeed, the viral load is known to be positively
associated with disease severity [36-38]. Lastly, we need to
update the viral dynamics model accounting for new findings
once available. For example, if a complex immunologic response
is important and measured over time, such mechanisms should
be incorporated in the model. As such data are still limited, we
used the simplest model.

We computed the probability of failing to detect a case of
the PCR test over the time course of infection using a viral
dynamics model. The computed probability of failing to
detect a case needs to be considered in the context of catching
cases (such as screening, test and trace, and epidemiological
surveillance).
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4. Methods
4.1. Data

The longitudinal viral load data were extracted from four
COVID-19 clinical studies [21,39-41]. The data include only
symptomatic and hospitalized cases. The viral load was
measured continuously within the interval of a few days since
hospitalization. For some studies, the viral load was measured
from different specimens (i.e. sputum, stool, blood); however,
we used the data from upper respiratory specimens because (1)
the upper respiratory tract is the primary target of infection, (2)
these specimens are commonly used for diagnosis and (3) for
consistency of the data. Data from patients under antiviral treat-
ment and data with less than two data points were excluded
from the analysis. Ethics approval was obtained from the ethics
committee of each medical/research institute for each study.
Written informed consent was obtained from patients or
their next of kin, as was described in the original papers. We
summarize the data in table 1.

4.2. A mathematical model for virus dynamics and
parameter estimation by nonlinear mixed-effect
model

Following is the mathematical model describing viral dynamics,
previously proposed in [18,42,43]:

a0
ar BfHV(t)
and % =yfV(H) — 8V (),

where f(t) is the relative fraction of uninfected target cell population at
day f to that at day 0 (i.e. f(0) = 1), and V(¢#) is the amount of virus at
day f. This two-dimensional model was derived from the three-
dimensional model composed of viruses, uninfected cells and
infected cells by assuming a quasi-steady state of the number of
viruses [42]. This assumption is reasonable for most of the viruses
causing acute infectious disease because the clearance rate of the
virus is typically much larger than the death rate of the infected
cells as evidenced in vivo [42,44,45]. Note that time O corresponds
to the day of symptom onset for practical purposes. The parameters
B, y and § are the rate constant for virus infection, the maximum rate
constant for viral replication and the death rate of infected cells,
respectively. The viral load data from the five different papers were
fitted using a nonlinear mixed-effect model accounting for inter-indi-
vidual variability in each parameter. Specifically, the parameter for
individual k is presented by 6 x e™, where 6 is the fixed effect and
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