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ABSTRACT: Background: Manual widthmeasurements
of the middle cerebellar peduncle on MRI were shown to
improve the accuracy of an imaging-guided diagnosis of
multiple systematrophy (MSA). Recently, automated volume
segmentation algorithms were able to reliably differentiate
patients with Parkinson’s disease (PD) and the parkinsonian
variant of MSA. The objective of the current study was to
integrate probabilistic information of the middle cerebellar
peduncle into an existing MRI atlas for automated subcorti-
cal segmentation and to evaluate the diagnostic properties
of the novel atlas for the differential diagnosis of MSA (par-
kinsonian and cerebellar variant) versus PD.
Methods: Three Tesla MRI scans of 48 healthy individuals
were used to establish an automatedwhole-brain segmenta-
tion procedure that includes the volumes of the putamen,
cerebellar gray and white matter, and the middle cerebellar
peduncles. Classification accuracy of segmented volumes
were tested in early-stageMSA patients (18MSA-parkinson-
ism, 13 MSA-cerebellar) and 19 PD patients using a C4.5
classifier.

Results: Putaminal and infratentorial atrophy were present
in 77.8% and 61.1% of MSA-parkinsonian patients, respec-
tively. Four of 18 MSA-parkinsonian patients (22.2%) had
infratentorial atrophy without evidence of putaminal atrophy.
Infratentorial atrophy was present in all MSA-cerebellar
patients, with concomitant putaminal atrophy in 46.2% of
these cases. The diagnostic algorithm using putaminal and
infratentorial volumetric information correctly classified all PD
patients and 96.8% of MSA patients.
Conclusions: The middle cerebellar peduncle was suc-
cessfully integrated into a subcortical segmentation atlas,
and its excellent diagnostic accuracy outperformed exis-
ting volumetric MRI processing strategies in differentiat-
ing MSA patients with variable atrophy patterns from PD
patients. © 2019 The Authors. Movement Disorders pub-
lished by Wiley Periodicals, Inc. on behalf of International
Parkinson and Movement Disorder Society.
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Multiple system atrophy (MSA) is a sporadic, adult-
onset α-synucleinopathy with a rapidly progressive dis-
ease course and widespread neurodegeneration.1 Clinico-
pathological studies identified 2 motor phenotypes—a
parkinsonian variant (MSA-P) and a cerebellar variant
(MSA-C) with predominant degeneration in striatonigral
and olivopontocerebellar nuclei and their projections,
respectively.2 The key pathological findings include dem-
onstration of neuronal cell loss and the appearance of
widespread oligodendroglial α-synuclein positive inclu-
sions.3 Neuropathological studies revealed considerable
variability in the severity and regional distribution of neu-
ropathological changes between individual patients. In
2 series, 42% to 49% ofMSA cases showed equally severe
striatonigral degeneration (SND) and olivopontocerebellar
atrophy (OPCA), whereas predominant SND or OPCA
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was seen in 34% and 17% of cases, respectively.4 Those
studies failed to find a correlation between the severity of
clinical symptoms and the extent of neuronal degeneration
or the intracellular load of glial cytoplasmatic inclusions.
Based on these observations, MR volumetry will likely
require measures of both SND and OPCA to adequately
capture MSA pathology. Within the olivopontocerebellar
system, the middle cerebellar peduncle (MCP) was shown
to be one of the most prominently affected brain regions,
and imaging studies in patients with MSA and PD have
shown that MSA is associated with a greater pontine and
MCP atrophy comparedwith PD.5-12

So far, diagnostic imaging studies in MSA have focused
on the validation of either 2-dimensional distance mea-
sures, calculation of indices, or whole-brain voxel-based
analysis to identify disease characteristic patterns of atro-
phy.13,14 Although such approaches have the potential to
reveal disease-related signal alterations, efforts to rank pat-
terns of atrophy by their severity at the single-subject level
and hence disentangle the dimensions’ “signal distribution”
and “signal quantity” are sparse.15,16 Advances in MRI
postprocessing algorithms including automated compart-
mentalization of the brain into multiple anatomic regions,
volume calculation, and z transformation have provided an
opportunity to localize and grade disease-specific brain
atrophy patterns in relation to age- and sex-matched healthy
control cohorts.17,18 Recently, such an approach was shown
to reliably differentiate progressive supranuclear palsy
Richardson type and MSA-P from Parkinson’s disease.19

However, there is still room for improvement because cur-
rent atlases lack probabilistic information on infratentorial
brain structures that are relevant toMSAneuropathology. In
particular, cerebellar volume, the MCP width, increased
apparent diffusion coefficient within the MCP as well as the
cerebellar hemispheres, and pons atrophy were shown to
improve diagnostic accuracy in the differential diagnosis of
MSA.9,20-22

In the present study, we sought to further refine the cur-
rently available FreeSurfer-based subcortical segmentation
atlas by adding probabilistic information on the location of
the MCP. The morphometric profile was determined in
patients with clinically definedMSA-P or MSA-C to evalu-
ate the relative contribution ofMCPmeasurements to diag-
nostic accuracy and to estimate the added diagnostic yield
of MCP measurements for the differential diagnosis of
MSA and PD.

Materials and Methods
Participants

Forty-eight healthy individuals (HCs) without evidence
of any neurological disorder on careful clinical examina-
tion underwent conventional 3 T MRI and were used for
the development of the novel atlas. Twenty-six of these
48 healthy individuals were selected by investigator-

independent case-controlmatching (see below) as a sex- and
age-matched healthy control group in our cross-sectional
study. MSA and PD patients were identified from the MRI
database of the Movement Disorders outpatient clinic of
the Department of Neurology at the Medical University
of Innsbruck. Inclusion criteria were defined as: (1) a clini-
cal diagnosis of probable MSA (either parkinsonian or
cerebellar variant) or PD at the last visit according to con-
sensus operational criteria,23,24 and (2) a clinical follow-
up of at least 24 months. Exclusion criteria were dementia
according to the Diagnostic and Statistical Manual IV
criteria, white-matter lesions grades 2 and 3, vascular or
space-occupying lesions within the cerebrum, or motion
artifacts on MRI.
The study was approved by the Ethics Committee of

the Medical University of Innsbruck.

MR Sequence
All MRI measurements were performed on a 3.0 Tesla

whole-body MR scanner (Magnetom Verio, Siemens,
Erlangen, Germany) equipped with a 12-channel head coil.
All participants underwent the same MRI protocol, includ-
ing whole-brain T1-weighted, fluid-attenuated inversion-
recovery, T2-, and proton density-weighted as well as
diffusion tensor imaging. The MRI parameters for the
coronal T1-weighted 3-dimensional (3-D) magnetization-
prepared rapid gradient echo were TR, 1800 milliseconds;
TE, 2.18milliseconds; inversion time, 900milliseconds; slice
thickness, 1.2 mm; matrix, 256 × 204 pixels; number of
excitations, 1; flip angle, 9�; field of view, 220 × 165 mm.
Segmentation of subcortical regions from T1-weighted

3-D structural MRI data and estimation of structure vol-
umes were performed using the FreeSurfer tool kit (version
6.0, available at http://surfer.nmr.mgh.harvard.edu/). The
procedure automatically segments and labels brain struc-
tures based on (1) the prior probabilities of anatomical clas-
ses throughout an atlas space, (2) the prior probability
obtained from frequency histograms within the atlas space
providing the likelihood that a given anatomical class
occurs at a given atlas location, and (3) the modeling of
local spatial relationships between labeled structures as
anisotropic nonstationary Markov random fields.18 The
processing of T1-weighted 3-D structural MRIs included
correction of motion artifacts, removal of nonbrain tissue,
transformation into the Talairach reference space, segmen-
tation of the subcortical white matter and deep gray-matter
volumetric structures, intensity normalization, tessellation
of the gray matter, white-matter boundary, automated
topology correction, and surface deformation following
intensity gradients.17,18,25-27 The procedure generated the
intracranial volume as well as the volumes of the putamen,
caudate, globus pallidum, thalamus, hippocampus, amyg-
dala, brain stem, cerebellar white and gray matter, MCP,
and the third and fourth ventricles. The preprocessing steps
were visually inspected to ensure that no misalignment
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of brain structures had occurred. All MRI scans were
included in the study. All imaging data were processed on
an HP DL360p server with a total of 48 CPUs. Time
needed to perform the automated volume calculation was
approximately 8 hours for each subject, and 48 subjects
were processed in parallel.

Atlas Development
The MCP was identified in all subjects by exploiting a

validated probabilistic 3-D atlas of cerebellar white-matter
structure.28 The observer independently segmented brain
volume of theMCPwas transformed to the individual sub-
ject’s space using the deformation parameters obtained
from the normalization procedure into Montreal Neuro-
logical Institute space by the software package SPM12 in
Matlab 9.2. A subject’s MCP volumes were reviewed and
manually corrected if required in native space. Subse-
quently, the individual MCP maps were integrated into the
default subcortical segmentation atlas as described previ-
ously.18 Three-dimensional models of automatically seg-
mentedMCP in PD andMSA-C are presented in the online
supplement (Supplementary Fig. 1)

Statistical Analysis
Data analysiswas performedusing SPSS 24.0 and STATA

14.2. Case-control matching was performed through the
SPSS extension FUZZY with a fuzz of 0 for gender and
1.5 years for age.
Demographic data are presented as frequencies, means�

standard deviations, or median (interquartile range) accor-
ding to data distribution. Gaussian distribution was con-
firmed by visual analysis of the Q-Q plots and the
Kolmogorov-Smirnov test. Group differences of normally
distributed data were analyzed by parametric tests (analysis
of variance [ANOVA] or Student t test as applicable),
non-Gaussian distributed variables by nonparametric tests
(Kruskal-Wallis 1-way ANOVA by ranks or Mann-
Whitney U test as applicable). Distributional differences
were determined by the Pearson’s chi-square test for inde-
pendence. Bonferroni correction for multiple testing was
applied for post hoc testing.
For decision tree analysis, all volumetric measures were

normalized by each subject’s intracranial volume. Data
were further processed by z-transformation using mean
centering and unit-variance scaling of the sex- and age-
adjusted healthy control cohorts. Z scores ≥ -1.96 were
omitted to prevent inclusion of insignificant cutoff values
in the decision tree. AMRI-based decision tree attempting
to classify clinically diagnosed PD and MSA patients was
developed exploiting the C4.5 classifier algorithm29,30

implemented by the Waikato Environment of Knowledge
Analysis machine learning software (WEKA 3.8.1). The
following brain regionswith potential discriminative value
were considered: cerebellar white matter, cerebellar cortex,
superior and middle cerebellar peduncle, putamen, caudate

nucleus, pons, and midbrain. A 20-fold cross-validation was
employed to estimate the classification performance of the
decision tree.

Results
Demographics and Basic Clinical Information
Twenty-six age-matched healthy individuals, 31 MSA

patients (18 MSA-P, 13 MSA-C), and 19 PD patients were
included in the validation study. There was no significant
difference between the study groups with regard to sex dis-
tribution (P = 0.882), age (P = 0.118), and disease dura-
tion (P = 0.787). Motor impairment was greater in MSA
patients than in PD patients, as measured by Hoehn &
Yahr staging (P < 0.001) and the UPDRS (P < 0.001).
Detailed information on demographics and basic clinical
information are provided in Table 1.

Morphometric MR Profile of MSA Variants
A detailed presentation of group differences is given in

Table 2, and the frequency of atrophy of selected brain
regions is presented in Table 3. In clinically classifiedMSA-P
patients putaminal and infratentorial atrophy were present
in 77.8% and 61.1%, respectively. Isolated putaminal atro-
phy was seen in 38.8% of MSA-P patients, whereas 22.2%
showed isolated infratentorial atrophy without evidence of
putaminal atrophy (Table 3, Fig. 1). Infratentorial atrophy
was present in allMSA-C patients, and 46.2%had concom-
itant putaminal atrophy. One PD patient (5.3%) who was
clinically classified as having PD after 2 years of clinical
follow-up showed brain atrophy of the cerebellarwhitemat-
ter and the cerebellar cortexwith volume reductions ofmore
than 2 standard deviations compared with the mean of the
sex- and age-matched HC population. Automated brain
volumetry of candidate brain regions was correlated with
measures of disease severity (ie,UPDRSscores andHoehn&
Yahr staging; Supplementary Table 1). No correlation was
found between disease duration and brain volumetry in can-
didate brain regions.

Implications for the Differential Diagnosis
of MSA Versus PD

Based on a C4.5 decision tree algorithm, atrophy mea-
sures of the putamen and theMCPwere selected as themost
useful parameters in differentiating MSA from PD. All PD
patients and 93.5% of MSA patients (ie, sensitivity and
specificity of 93.5% and 100%, respectively) were classified
correctly (Fig. 2a). Cross-validation of this model yields a
weighted average F measure and a Cohen’s kappa of 0.94
and 0.87, respectively. When the obtained cutoff values
were exploited for the differential diagnosis of MSA-P ver-
sus PD, a slightly lower sensitivity of 88.9% was observed
while the specificity remained at 100% (overall correct clas-
sification, 94.6%). The algorithm unambiguously discrimi-
natedMSA-C patients from PDpatients with corresponding
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sensitivity and specificity rates of 100% each. The omission
of the MCP volume resulted in a reduced weighted average
F measure on cross-validation of 0.90. In contrast, pooling
of infratentorial atrophy measures (ie, selecting the most
severely affected Z score of the MCP, cerebellar white mat-
ter, and cerebellar cortex) resulted in improved classification
with 1 additional MSA patient being classified correctly
(96.8% of MSA patients and all PD patients were classified
correctly; Fig. 2b). Cross-validation of this model yielded a
weighted average Fmeasure andCohen’s kappa of 0.94 and
0.87, respectively.

Discussion

In the present study, probabilistic information on the rel-
ative location of the MCP was integrated into the currently
available standard atlas of FreeSurfer-based subcortical seg-
mentation. Automated volumetry in MSA patients showed
that both putaminal and infratentorial atrophy is present in
both MSA variants (ie, MSA-P and MSA-C). Intriguingly,
22.2% of MSA-P patients revealed isolated infratentorial
atrophy without evidence of putaminal atrophy. Based on
these findings, we were able to develop an automated MRI
decision support algorithm that includes volumetric infor-
mation of infratentorial (ie, volumetry of theMCP, cerebel-
lar gray and white matter) and putaminal atrophy, and this
approach proved to be superior compared with existing
volumetric MRI processing strategies in differentiating
patients withMSA fromPDon an individual subject level.
Gross anatomy examinations commonly distinguish

2 major patterns of neurodegeneration in MSA—OPCA
and SND. Clinicopathological studies found that 42% to
49% of MSA cases showed equally severe striatonigral

degeneration and olivopontocerebellar atrophy, whereas
atrophy patterns with either predominant SND or OPCA
were evident in 34%and 17%of cases, respectively.4 In the
present study, infratentorial atrophy was present in all
MSA-C patients and 61.1% of MSA-P patients, whereas
putaminal atrophy was found in 77.8% ofMSA-P patients
and 46.2% ofMSA-C patients. In addition, 4 of 18MSA-P
patients showed isolated infratentorial atrophy. Although
the observed frequency of cerebellar white-matter atrophy
was in the range of that obtained by theMCP volumetry in
the entire MSA cohort, among MSA patients with normal
putaminal volume, MCP atrophy yielded the largest area
under the receiver operating characteristics curve when
comparing MCP, cerebellar white matter, and cerebellar
cortex volume (Supplementary Fig. 2).
These observations suggest that both SND and OPCA

atrophy patterns need to be scrutinized by including the
MCP to the cerebellar and putaminal assessment to obtain
a reliable imaging-supported diagnosis ofMSA.
Early quantitativeMRI studies primarily focused on plani-

metric measurements of infratentorial brain regions, and
these studies suggested thatMSA is associatedwith relatively
greater pontine and MCP atrophy compared with PSP and
PDpatients.14 The latter observations led to the development
of 2-dimensional planimetric measurements including the
MCP width and the MR Parkinson index that were shown
to support the differential diagnosis of neurodegenerative
parkinsonian disorders.10,12,31-34 Attempts to reduce visual
inspection biases of manual measurement methods and the
requirement to establish 3-dimensional volume measure-
ments gave rise to the development of automated, atlas-
based analysis tools. Such 3-dimensional and automated
imaging efforts improved diagnostic accuracy rates for the
differential diagnosis of degenerative parkinsonian disorders

TABLE 1. Demographics and basic clinical information

HC sample MSA MSA-P MSA-C PD P (post hoc testsa)

Sample size 26 31 18 13 19 -
Age at scan (years), mean � SD 60.2 � 5.9 61.8 � 8.0 63.2 � 7.0 59.7 � 9.1 64.2 � 5.3 0.118
Disease duration to scan (years),
mean � SD

- 2.6 � 1.7 2.4 � 1.8 2.8 � 1.5 2.7 � 1.4 0.787

Sex (female/male) 11 / 15 14/17 9/9 5/8 7/12 0.882
Hoehn & Yahr staging, median
(IQR)

- 3 (1) 3 (1) 3 (1) 2 (1) <0.001
PD vs MSA-P, <0.001
PD vs MSA-C, 0.005

MSA-C, 0.844
UPDRS III, mean � SD - 38.8 � 13.3 40.9 � 7.0 35.8 � 19 25.5 � 6.7 <0.001

PD vs MSA-P, <0.001
PD vs MSA-C, 0.041

MSA-P vs MSA-C, 0.659
UPDRS sum score, mean � SD - 62.0 � 20.1 65.2 � 10.5 57.6 � 28.6 36.2 � 9.8 <0.001

PD vs MSA-P, <0.001
PD vs MSA-C, 0.003

MSA-P vs MSA-C, 0.675
MMSE, mean � SD - 27.9 � 2.2 28.2 � 2.0 27.5 � 2.4 29.0 � 1.4 0.104

aP values derived from group comparison between healthy controls (if applicable) and MSA-P, MSA-C, and PD patients. For post hoc testing Bonferroni correc-
tion for multiple testing was applied.
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in recent years. By applying a support vectormachine to clas-
sify regional volumetric MRI data, a multicenter study
achieved sensitivity ranging from 79% to 87% and specific-
ity from 87% to 96% for the diagnosis of PD, PSP, and
MSA (combining MSA-P and MSA-C into 1 group).16

Another approach used mean values of gray-mater density,
diffusion tensor, and r2* signal within voxel-clusters
obtained from previous group analysis of patients with PD
andMSA (including patients withMSA-P andMSA-C) and
reported >95%discrimination accuracy of fractional anisot-
ropy clusters of the cerebellum, brain stem, andwhite-matter
bilateral superior corona radiate combined with another
mean diffusivity cluster of the right superior frontal gyrus.15

In the present study, monomodal volumetric measurements
were harmonized by z transformation to rank affected brain
areas according to their volume loss in individual patients.
Furthermore, in an attempt to avoid the inclusion of volumes
from brain areas within the normal range into the diagnostic
algorithm, only measurements that showed a reduction of
more than 2 standard deviations from the mean of the
healthy control sample were considered. Finally, the
3-dimensionally measured volume of the MCP, a brain
region known to be frequently affected in patients with
MSA, was added to the list of assessed brain volumes. The
diagnostic algorithmwas then generated bymeans of a C4.5
decision tree algorithm. This hierarchical stepwise classifier
identified the volume of the putamen and the MCP as the
most discriminative parameters to separate PD and MSA.
Diagnostic accuracy was further improved by the introduc-
tion of a pooled infratentorial atrophy measure that repre-
sents the most severely affected z score of the middle
cerebellar peduncle, cerebellar white matter, and cerebellar

cortex. Only 1 patient with a diagnosis of MSA was incor-
rectly assigned to the PD group. This patient already had a
substantial infratentorial atrophy (z score, -2.1) at a very
early disease stage (symptom duration, 1.25 years), which is
highly suspicious for a diagnosis of MSA; however, in this
proof-of-concept design, the classifier C4.5 selected a more
stringent cutoff to improve specificity at the expense of sensi-
tivity. In addition, the pooled infratentorial atrophymeasure
was superior to single parameters to classify patients with
MSA-P from PD. Cross-validation suggested a good fit of
themodel to an independent data set. The currentmodel also
extends previous work following a similar approach by
introducing more accurate characterization of infratentorial
atrophy and by applying the automatedmorphometric anal-
ysis onMSA-Cpatients.19

The lack of postmortem confirmation is a potential
limitation of the present study. However, we stringently
applied validated clinical criteria, with consensus on the
diagnosis from 2 experts in movement disorders being
required. The final clinical classification was anchored on
the last visit after an extended follow-up period of at least
24 months. In addition, ancillary investigations including
radiotracer imaging confirming nigrostriatal dopaminergic
deficit and structural imaging excluding secondary causes
were supportive of the degenerative nature of the move-
ment disorder. The cross-sectional design of the present
study impedes a detailed characterization of the temporal
evolution of MSA atrophy patterns; hence, future longi-
tudinal MRI studies exploitingMRI volumetry should be
performed in cases with early MSA to better characterize
progression of brain atrophy over the course of the dis-
ease inMSA patients more precisely.

FIG. 1. Scatterplot of brain atrophy patterns in MSA-P compared with MSA-C and PD patients. Atrophy of the putamen and the most affected region
among the olivo-ponto-cerebellar trajectory (ie, middle cerebellar peduncle, cerebellar white matter, cerebellar cortex, pons, labeled “infratentorial atro-
phy”) are scattered to illustrate the predominant atrophy pattern in any individual patient. [Color figure can be viewed at wileyonlinelibrary.com]
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Despite the known benefits of decision tree algorithms like
simplicity in constructing, robustness, and interpretability for
clinicians, some potential limitationsmust also be considered.

Decision trees often exhibit low diagnostic precision because
of the strictly horizontal and vertical decision boundaries cre-
ated by decision trees. Readers should also be aware that the

TABLE 2. Total intracranial volume-corrected volumes of different brain regions

HC PD MSA-P MSA-C Pa

Cerebellar white matter 9.71 � 1.09 9.68 � 1.24 8.28 � 2.18 5.51 � 1.26 <0.001
HC vs IPD, 1.000

HC vs MSA-P, 0.015
HC vs MSA-C, <0.001
PD vs MSA-P, 0.032
PD vs MSA-C, <0.001

MSA-P vs MSA-C, <0.001
Cerebellar cortex 36.78 � 2.7 36.38 � 2.78 33.38 � 4.69 29.74 � 2.38 <0.001

HC vs PD, 1.000
HC vs MSA-P, 0.006
HC vs MSA-C, <0.001
PD vs MSA-P, 0.039
PD vs MSA-C, <0.001
MSA-P vs. MSA-C 0.018

Thalamus 4.41 � 0.27 4.52 � 0.3 4.41 � 0.31 4.30 � 0.35 0.257
Caudate 2.11 � 0.24 2.14 � 0.23 1.9 � 0.32 2.11 � 0.20 0.019

HC vs PD, 1.000
HC vs MSA-P, 0.048
HC vs MSA-C, 1.000
PD vs MSA-P, 0.034
PD vs MSA-C, 1.000

MSA-P vs MSA-C, 0.138
Putamen 3.1 � 0.23 3.06 � 0.15 2.39 � 0.43 2.72 � 0.38 <0.001

HC vs PD, 1.000
HC vs MSA-P, <0.001
HC vs MSA-C, 0.003
PD vs MSA-P, <0.001
PD vs MSA-C, 0.015

MSA-P vs MSA-C, 0.025
Hippocampus 2.6 � 0.29 2.69 � 0.23 2.54 � 0.32 2.62 � 0.22 0.453
Amygdala 0.97 � 0.11 0.99 � 0.09 0.96 � 0.12 1.03 � 0.10 0.266
Pons 9.7 � 0.8 9.85 � 1.02 9.01 � 1.65 6.23 � 1.18 <0.001

HC vs IPD, 1.000
HC vs MSA-P, 0.345
HC vs MSA-C, <0.001
PD vs MSA-P, 0.182
PD vs MSA-C, <0.001

MSA-P vs MSA-C, <0.001
Midbrain 3.94 � 0.29 3.97 � 0.29 3.86 � 0.35 3.47 � 0.23 <0.001

HC vs IPD, 1.000
HC vs MSA-P, 1.000
HC vs MSA-C, <0.001

PD vs HC, 1.000
PD vs MSA-P, 1.000
PD vs MSA-C, <0.001
MSA-P vs MSA-C, 0.003

Superior cerebellar peduncle 0.84 � 0.08 0.95 � 0.14 0.87 � 0.17 0.74 � 0.14 <0.001
HC vs PD, 0.035

HC vs MSA-P, 1.000
HC vs MSA-C, 0.189
PD vs MSA-P, 0.346
PD vs MSA-C, <0.001
MSA-P vs MSA-C, 0.058

Middle cerebellar peduncle 6.56 � 0.69 6.78 � 0.86 5.75 � 1.29 4.36 � 0.70 <0.001
HC vs IPD, 1.000

HC vs MSA-P, 0.027
HC vs MSA-C, <0.001
PD vs MSA-P, 0.006
PD vs MSA-C, <0.001

MSA-P vs MSA-C, <0.001

Values represent the ratio between the volume of the region divided by the subject-specific total intracranial volume. In case of the bihemispheric pres-
ence of the region, the more affected side is presented. All numerical data are written as m × 10-3.
aP values derived from group comparison between healthy controls and MSA-P, MSA-C, and PD patients.
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decision trees, like any other statistical model, may change in
structure if important variables are added or removed. There-
fore, the decision trees should be viewed as descriptive explor-
ative analysis explaining the data, but they are not confirming
predictors.35,36

In summary, the inclusion of the MCP in the automa-
tized morphometric analysis corroborates previous neuro-
pathological studies that showed that most MSA patients
have a mixed SND and OPCA pathology and that brain
atrophy patterns do not necessarily correspond to the
clinical impression of predominant motor deficits. The
combination of automated subcortical and supra- and
infratentorial segmentation that included the volumetric
measure of the MCP further improved the existing volu-
metric MRI decision support strategies on the diagnostic
accuracy in separating MSA from PD. This approach will
improve appropriate patient counseling and recruitment of
homogenous patient cohorts into clinical studies. In addi-
tion, a more detailed automated brain segmentation based
on anatomical MR sequences will also facilitate future lon-
gitudinal as well asmultimodal imaging approaches.

Acknowledgments: The newly developed FreeSurfer-compatible atlas
for automated subcortical segmentation will be shared with interested
parties on formal request to the authors.
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