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Abstract

Given sufficient large protein families, and using a global statistical inference approach, it is possible to obtain sufficient
accuracy in protein residue contact predictions to predict the structure of many proteins. However, these approaches do
not consider the fact that the contacts in a protein are neither randomly, nor independently distributed, but actually follow
precise rules governed by the structure of the protein and thus are interdependent. Here, we present PconsC2, a novel
method that uses a deep learning approach to identify protein-like contact patterns to improve contact predictions. A
substantial enhancement can be seen for all contacts independently on the number of aligned sequences, residue
separation or secondary structure type, but is largest for b-sheet containing proteins. In addition to being superior to earlier
methods based on statistical inferences, in comparison to state of the art methods using machine learning, PconsC2 is
superior for families with more than 100 effective sequence homologs. The improved contact prediction enables improved
structure prediction.
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Introduction

De novo protein structure prediction is a long-standing problem

in protein bioinformatics. For many years the focus was to develop

methods that accurately describe the free energy landscape of a

protein and then use a search strategy to identify the conformation

with the lowest free energy. Using this strategy, methods based on

fragment-based assembly of proteins can sometimes produce

surprisingly accurate models, in particular for small a-helical

proteins [1-3]. In addition, molecular dynamics simulations can

also accurately predict the structure of small fast folding proteins

[4]. However, it is also clear that these methods are still not

generally applicable to large-scale prediction of protein structures

at high accuracy [5,6]. An alternative approach is to first predict

which residues interact and then use these interactions to predict

the structure of the protein [7].

Knowing which residues in a protein interact with each other

provides sufficient information to predict the structure of a protein

[8,9]. However, until recently, contact predictions were not

sufficiently accurate to significantly aid protein structure predic-

tions [10]. The most successful methods for contact predictions are

based on identifying correlated mutations between pairs of

residues [11]. The introduction of predictors using global models,

inferring couplings between residues from the observed correla-

tions, significantly increases the accuracy of co-variation based

methods [12-16]. For accurate prediction these global contact

prediction methods depend on accurate multiple sequence

alignments of thousand or even more homologous protein

sequences, using alignments from methods such as HHblits [17]

and jackhmmer [18]. It has been shown that these global contact

prediction methods actually provide sufficient information for

predicting the structure of proteins belonging to large protein

families [7,19,20].

In addition to utilising correlated mutations, earlier contact

prediction methods used various machine learning approaches to

improve the predictions [21]. In the first generation of these

predictors every residue pair was considered independent from all

other pairs. Here, features such as the amino acid type and

conservation provided some improvement over only using the

correlated mutations. In recent studies more complex machine

learning algorithms have been used. These algorithms try to fully
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utilize the information, that can be inferred from the structure of a

contact map using advanced machine learning methods including

deep learning approaches [22-26] or constraint satisfaction of rules

describing protein like contacts maps using linear programming

[27].

Deep learning is a sub-field of machine learning in which

multiple layers of non-linear processing are used to learn

nonlinear mappings and abstract complex features through the

subsequent layers of the deep architecture, thereby obtaining a

hierarchical abstraction of the input data [28]. The techniques

falling under the collective name of deep learning, thanks to

their ability to define higher-level concepts by learning a feature

hierarchy, can efficiently handle some typical artificial intelli-

gence problems including image and object recognition, natural

language processing and computer vision [29]. In general, deep

learning is very useful in structured learning problems including

protein contact predictions [30]. To our knowledge, deep

learning has not earlier been combined with the improved

contact prediction obtained from statistical inference contact

prediction methods. Furthermore, the method described here is

different from earlier deep-learning approaches: our implemen-

tation is based on a feed-forward stack of random forests

learners and not layers of Neural Networks, as in earlier

implementations. Further higher-level abstraction of the data is

geared towards the recognition of secondary structure visual

patterns in contact maps and to iteratively refine the initial

predictions.

The method is based on the fact that in proteins residue-residue

contacts are often found in proximity of other contacts, while a

non-contact is often found next to other non-contacts. In a 363

contact matrix with either a contact or a non-contact in the central

position the frequency of contacts in the other positions differs

significantly, see Figure 1. When a non-contact is present, the

most frequent contact maps are the ones with none or only one

contact present in the matrix. In contrast when a contact is present

in the central position already the fifth most common contact map

has three additional contacts and contacts maps with many

contacts are more frequent, see Figure 1. Further, 98% of long-

range contacting residues, compared to 30% for non-contacting

pairs, are not isolated, i.e. contacts are found in the proximity of

other contacts [26].

Moreover, the distribution of contacts follows characteristic

patterns and recurring ones can be visually recognised and therefore

used for constraining the prediction of nearby contacts. For instance

if residues i and j in two a-helices are in contact, residues iz2 and

jz2 most likely will not be in contact. Contrary, a contact between

residues i and j in two parallel b-strands implies strongly that the

neighbouring residues, iz2 and jz2, also are in contact.

Here, we show that a deep learning pattern recognition-based

approach improves the accuracy significantly for all types of

proteins, residue separations and numbers of homologous

sequences. The obtained improvement is largest for b-sheet

containing proteins, but exist for all type of proteins. Further, in

comparison to state of the art other machine learning based

methods contact prediction methods PconsC2 is superior for

proteins with more than 100 effective sequence homologs.

Results

We recently developed PconsC, an ensemble method reconciling

predictions across different contact inference methods and a range

of multiple sequence alignments [31]. PconsC as well as PconsC2

are based on in total 16 contact predictions using a combination of

HHblits [17] and jackhmmer [18] alignments with contact

predictions from PSICOV [32] and plmDCA [33], see Figure 2.

One limitation of PconsC, as well as all other global contact

prediction methods, is that the processing of contacts is performed

in isolation without considering nearby contacts. However, it was

recently shown that such information could be utilised to improve

contact predictions [30,34]. Here, we present PconsC2 a deep

learning based approach that considers nearby contacts and

iteratively improves the contact predictions used in PconsC.

The development of PconsC2 was performed using five-fold

cross-validation on 150 proteins reported in the PSICOV paper

[32]. Further testing and analysis performance was performed

using 383 proteins not related to the training set and on all

proteins from CASP10 [35]. The general features of the three sets

are described in Table 1. Two notable differences between the

training set and the other sets are that some protein families in the

test set have fewer homologous sequences and they neither are all

strictly single domain non-interacting proteins.

PconsC can be improved by using deep learning
First, we examined if a deep learning approach improves

predictions using identical inputs as in PconsC [31]. PconsC and

PconsC2 both use in total 16 predictions from PSICOV [32] and

plmDCA [33] created from 8 different alignments. In the first

layer, L0, the prediction yields basically the same performances as

PconsC, but is substantially better than the individual predictions

from PSICOV or plmDCA, see Figure 3a. The small difference in

performance to PconsC is due to the fact that PconsC was trained

on the closest distance between any two atoms in a residue and not

the Cb-Cb contacts used here, and due to differences in the

training, as well as inherent noise in the training of the underlying

machine learning method.

In layers Lkw0 the predictions performed in the previous layer

are taken into consideration in the receptive field, providing

information about the neighbourhood of predicted contacts

around each residue pair. Already using a receptive field of the

size 363 provides some improvement, see Figure 3b, but the

improvement is more substantial for window sizes up to 11611,

which is therefore used below. It is notable, that the major

Author Summary

Here, we introduce a novel protein contact prediction
method PconsC2 that, to the best of our knowledge,
outperforms earlier methods. PconsC2 is based on our
earlier method, PconsC, as it utilizes the same set of
contact predictions from plmDCA and PSICOV. However, in
contrast to PconsC, where each residue pair is analysed
independently, the initial predictions are analysed in
context of neighbouring residue pairs using a deep
learning approach, inspired by earlier work. We find that
for each layer the deep learning procedure improves the
predictions. At the end, after five layers of deep learning
and inclusion of a few extra features provides the best
performance. An improvement can be seen for all types of
proteins, independent on length, number of homologous
sequences and structural class. However, the improvement
is largest for b-sheet containing proteins. Most importantly
the improvement brings for the first time sufficiently
accurate predictions to some protein families with less
than 1000 homologous sequences. PconsC2 outperforms
as well state of the art machine learning based predictors
for protein families larger than 100 effective sequences.
PconsC2 is licensed under the GNU General Public License
v3 and freely available from http://c2.pcons.net/.

Improved Contact Predictions Using PconsC2
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improvements in the prediction accuracy appears already on the

first two layers of deep learning, gradually levelling off at the

subsequent ones, see Figure 3a. Using too many layers, the

architecture becomes over-trained and starts to recognise and

reconstruct the visual patterns of secondary structures, exagger-

ating the clustering of the predicted contacts, obtaining predictions

without biological or structural meaning.

Using a window of 11611 and five layers of deep learning and

evaluating the predictions at one prediction per residue (L = 1), a

common cutoff used in earlier studies, the relative improvement

between first and last layer in PPV is 54% (18% in terms of

absolute PPV), see Table 2. In Figure 2 it can be seen that the

deep learning procedure efficiently filters out sporadic isolated

predictions, while increasing the amount of predicted contacts

between secondary structure elements.

Further improvement using additional features
Next, we examined if it was possible to further improve the

accuracy by including additional features. Inspired by current

literature, we included four different features: Separation of

contacting residues in the sequence (Separation), predicted

secondary structures of residues surrounding the potentially

contacting residues (SS), predicted solvent accessible surface area

(RSA) and sequence profiles in the form of PSSMs (PSSM). All

features improve the accuracy with a few percentage points both at

the first and final layer, see Table 2. An additional small

improvement can be obtained when combining all features. In

total the improvement is 7–8% at the last layer in the deep

learning procedure, see Table 2. The final version of PconsC2 uses

all features and the predictions are further analysed below using

the independent dataset of 383 proteins.

Discussion

To further evaluate the performance of PconsC2 to other

methods we have used three different datasets, see Table 1; First

the 150 proteins from the PSICOV set used for training, secondly

a completely independent dataset of 383 proteins not homologous

to any protein in the training set and finally all proteins from

CASP10. In the independent set the average number of

homologous sequences is lower and therefore the average

performance is lower as well, but the relative increase in

performance from the training set is maintained. The performance

analysis is done using predictions of one long-range contact per

residue (L = 1, with sequence separation of at least 5 amino acids)

for each protein in the test set. This is a common way to evaluate

contact prediction methods and it has been shown that the relative

performance differences are quite independent on the number of

contacts tested [10]. At L~1 the positive predictive values, PPV,

precision, increases from 0.25 for the best single methods

(plmDCA) to 0.29 for PconsC and to 0.44 for PconsC2.

PconsC2 improves predictions at all sequence
separations

Contacts at different separation provide different types of

information and the underlying contact prediction methods;

plmDCA and PSICOV, behave quite differently in this aspect.

Both methods predict a lower fraction of long-range contacts than

observed in proteins, but PSICOV predicts more long-range

contacts among its top-ranked predictions than plmDCA, see

Figure 4. However, the accuracy of these long-range predictions

is lower. And the reverse is true for short-range contacts

(separated by less than 10 residues), here PSICOV predicts fewer

but more accurate contacts. The distribution of predictions from

PconsC is quite similar to the distribution from plmDCA, just

with a higher accuracy.

The separation distribution for the top ranked contacts for

PconsC2 resembles the distribution of contacts from PSICOV.

However, the accuracy for contacts predicted by PconsC2 is

higher and not strongly dependent on residue separation, see

Figure 4. Both the increased accuracy of short-range contacts and

in particular the increased number of long-range contacts should

Figure 1. a) Relative frequencies of the number of contacts found in a 363contact map. Solid line represents the cases where a contact is
present in the central position and the dashed line where the central position is a non-contact. The X-axis shows the number of contacts within the
window, while the Y-axis shows the frequency of all contact maps with this number of contacts. b) Illustration of the twelve most frequent 363
contact maps when the central pair is a contact (marked with a circle) or a non-contact. In both figures the data is derived from a randomly selected
subset of PDB and contacts are defined as elsewhere in the paper, that is C-b-C-b distance less than 8 Å.
doi:10.1371/journal.pcbi.1003889.g001

Improved Contact Predictions Using PconsC2
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Figure 2. a) Overview of the PconsC and PconsC2 pipelines. For a query sequence; HHblits and jackhmmer are used to produce in total 8
multiple sequence alignments. In total 16 different contact maps are then produced using PSICOV and plmDCA. These are then fed into two different
machine learning protocols, PconsC and PconsC2. In PconsC2 additional features are added and five layers of deep learning is applied. Predictions
from PconsC and PconsC2 are shown to the right. b–d) An example on how the deep learning procedure used in PconsC2 improves predictions for
the protein 1pcf:A. Each upper or lower triangle depicts the top L long-range predictions in a contact map predicted at one layer. Green dots
represent correct predictions and red wrong predictions, while grey depicts true contacts. The values in the corners of the contact maps represent
the fraction of correctly predicted contacts (PPV) within the top L long-range predictions. In this example the number of correct predictions doubles
from the first to the last layer.
doi:10.1371/journal.pcbi.1003889.g002

Table 1. Properties of the three datasets.

PSICOV New CASP10

Entries 150 383 114

Median Neff 1029 165 1224

Median length 143 AA 161 AA 216 AA

Part of complex 9% 70% 50%

Multi-domain 0% 10% 22%

Median Neff is the median number of effective sequences, computed by clustering sequences with identity above a pre-computed threshold. Part of complex is the
fraction of proteins that are part of a complex according to PISA [49]. Multi-domain is the fraction of proteins containing more than one Pfam domain [50]. Median
resolution is the median resolution of crystal structures, where numbers in brackets indicate fraction of structures from NMR.
doi:10.1371/journal.pcbi.1003889.t001

Improved Contact Predictions Using PconsC2
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be useful for structure prediction, as accurately predicted long-

range contacts contain more structural information.

In a comparison to other contact prediction methods PconsC2

exhibits greater accuracy at all sequence separations, but the

performance improvement is most prominent for the contacts with

sequence separation of 12 amino acids or more, see Table 3. The

improved accuracy is evident independent on the number of

residues analysed, while the remaining results are consistent with

performances reported previously in the literature [27].

PconsC2 improvement is largest for b-sheets
The interaction patterns between different secondary structure

elements vary significantly. In particular, parallel and anti-parallel

b-sheets are easily recognisable in a contact map because of their

dense visual patterns. On the other hand contacts between b-

sheets are primarily mediated through backbone hydrogen bonds,

suggesting that these might not be under the same co-evolutionary

pressure as contacts mediated by sidechains, that is they might be

harder to identify using methods based on co-variation of the

sidechains. To analyse the effect of secondary structure, all

proteins in the independent dataset were classified into their fold

classes according to CATH [36].

In Table 4 and Figure 5 it can be seen that the improvement

obtained by PconsC2 is largest for all b proteins and least for all a
proteins. The overall performance is highest for the mixed a/b
proteins followed by all b proteins.

In Table 5 individual contacts between residues in different

secondary structure elements are analysed. For all types of

secondary structures PconsC2 produces more correct predictions

than the other methods. However, due to its design, PconsC2

tends to over-emphasise contacts between secondary structures in

comparison to the contacts involving loop regions. While the

dataset contains only 22% of b{b long-range contacts, PconsC2

assigns 34% of its top-ranked predictions to this type of

interaction. PconsC2 predicts more than twice as many b{b
contacts than any other method, while still maintaining a slightly

higher accuracy. A similar but less pronounced effect can be

observed for the a{a contacts, where PconsC2 assigns 15% of its

top ranked contacts to this class, although contacts comprise only

11% of the observed contacts. In contrast, contacts involving loop

Figure 3. a) ROC plot depicting the PPV values for different predictors. The x-axis represents the number of contact predictions in
relationship to the length of the protein. At L~1 one prediction is included for each residue in each protein. The baselines are predictions from
PSICOV (black), plmDCA (green) and PconsC (blue). Predictions from different layers in the deep learning procedure during training of PconsC2 are
shown in red. The prediction at the first layer overlaps almost perfectly with prediction from PconsC. b) Impact of different sizes of the receptive field
on prediction precision, measured at L~1 contacts. The X-axis represents each layer in the deep learning procedure.
doi:10.1371/journal.pcbi.1003889.g003

Table 2. PPV using different inputs features.

Features Layer0 Layer5

16 Predictions 0.57 0.67

16 Predictions + Separation 0.59 0.68

16 Predictions + SS 0.57 0.70

16 Predictions + PSSM 0.59 0.70

16 Predictions + RSA 0.59 0.71

16 Predictions + all features 0.61 0.73

Impact of different feature combinations on PPV values for first and fifth layer of deep learning.
doi:10.1371/journal.pcbi.1003889.t002

Improved Contact Predictions Using PconsC2
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residues are less frequent among top ranked contacts. In particular

contacts between loops and another secondary structure are only

rarely predicted. However, thanks to the increased accuracy the

number of correctly identified contacts is actually similar, or

higher, for PconsC2 also for loop-loop contacts, highlighting the

ability of PconsC2 to filter out false predictions.

PconsC2 produce accurate contact predictions for
smaller families

The success of statistical inference contact prediction methods,

such as PSICOV and plmDCA, depends strongly on the

availability of thousands of aligned sequences. Today the genome

projects have already provided a sufficient number of homologous

sequences for more than one hundred protein domain families

[37]. In the future increased sequencing efforts will eventually

expand the range of proteins for which these methods are

applicable, thus increasing the number of potential prediction

targets. However, as protein domain family sizes follow a power-

law distribution [38], the vast majority of protein families may

never reach the thousands of members that are needed for

successful predictions. Therefore, it is of great importance to

increase the accuracy of contact predictions for smaller protein

families.

We examined to what extent PconsC2 could increase the

performance for smaller families. Due to the way the input

alignments are constructed, the total count of sequences in the

alignment is not the most suitable metric for the information

content, as a high number of close homologs do not provide as

much co-variation as comparable number of more distantly related

proteins. As suggested before a better measure is to use the number

of efficient sequences to take redundancy into account [32].

In Figure 5 it can be seen that PconsC2 maintains the superior

predictive performance throughout the whole set of alignments,

independently on the size of the protein families. It attains an

average prediction precision of 0.40 for alignments as small as 100

efficient sequences. This is on par with the PPV values obtained

for protein families with thousands of sequences using the other

methods. In particular for all b-proteins the plateau performance is

reached at a lower number of sequences than for earlier methods.

Although the average PPV for PconsC2, as well as earlier

statistical inference methods, depend strongly on the number of

efficient sequences in the alignment it is clear that PPV values of

0.5 or even higher are reached even for protein families with fewer

than 100 effective sequences, see Figure 5. If this performance

could be pushed to all protein families of this size the usefulness of

contact prediction methods for structure prediction would increase

significantly.

PconsC2 performs better than earlier predictors
In addition we compare PconsC2 to a set of alternative contact

prediction methods, including mutual information (MI) and MI

with phylogenetic correction (CMIr), and two recent machine

learning based methods, PhyCMAP and CMAPpro.

In all three datasets PconsC2 shows a higher performance than

all the other methods, see Figure 6a-c and S1. At one prediction

per residue, L~1, the PPV values of PconsC2 ranges from 0.75, in

the PSICOV set to 0.5 in the independent dataset. In comparison

plmDCA PPV values range from 0.5 to 0.25 and CMAPpro has

PPV values of approximately 0.45 to 0.3. In all sets the PPV values

are at least 0.1 units higher for PconsC2 than for the best of the

other methods. The improvement exist for all sequence separa-

tions, see Table 3.

Next, we compared the performance of the different methods

given the number of effective sequences in the alignments. For

PconsC and PconsC2, which use several multiple alignments, we

used HHblits with an E-value cutoff E~10{4 as an estimation of

the number of sequences. As has been reported before methods

that use statistical inference show a strong dependency on family

size with a strong increase in performance between 100 and 1000

effective sequences [39]. In contrast the performance of the

machine learning methods is rather unaffected by the family size.

As a consequence of this machine learning methods outperform all

methods for families up to 100 effective sequences, and all methods

except PconsC2 for families up to a few hundred effective

sequences. However, these methods are clearly outperformed by

all statistical inferences methods for large families.

Figure 4. a) Performance of PconsC2 at different sequence separations compared to PconsC, plmDCA and PSICOV, considering top
L contacts per protein. Curves are smoothed with a rolling average window of 5 residues. b) Number of contacts predicted at different sequence
separations. The read line represent the distribution of observed contacts in the dataset, normalised in so that the total number of contacts is
identical to the number of predicted contacts.
doi:10.1371/journal.pcbi.1003889.g004

Improved Contact Predictions Using PconsC2
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There is a difference in performance on the PSICOV set versus

the other two dataset given the same the number of effective, see

Figure 6d-f and S1. This difference is smaller for the machine

learning based methods than for the correlated mutation based

methods. In addition to having on average larger families the

PSICOV dataset contains strictly single domain proteins, while the

other sets contain both single and multi-domain proteins and

proteins that are parts of large complexes, see Table 1. The drop

in performance is most likely caused by non-conserved domain-

domain or protein-protein interactions. Further, accurate multiple

sequence alignments of large multi-domain protein families is

difficult.

Good and bad examples
To highlight the behaviour of PconsC2 in comparison to

PconsC we selected a few examples to highlight when PconsC2

significantly improves the predictions, see Figure 7.

The first example, P. furiosus DNA polymerase sliding clamp

(1iz4A), contains two DNA clamp domains, which are in a

predominantly b conformation. In comparison to PconsC,

PconsC2 filters out spurious short- and medium-range predictions,

located at the domain termini. In addition, PconsC2 increases the

predicted contact density in the b-sheet regions of both domains.

The second example, R. opacus 1CP chloromuconolactone

dehalogenase ClcF (3znuG), is a homo-10-meric protein. Here, we

only predict contacts within one chain and the prediction

performance of PconsC is poorer (PPV = 0.18) than of the

constituting methods (plmDCA, PPV = 0.39 and PSICOV

PPV = 0.29). This is due to a limited overlap between the

individual predictions, resulting in a nearly random distribution

of predicted contacts. However, the use of additional information,

as well as pattern recognition in PconsC2 allows for reconciling the

conflicting predictions and attaining a better prediction than any

of the individual methods (PPV = 0.56).

Obviously, there also exist proteins for which the PconsC2

methodology does not work and occasionally PconsC2 performs

worse than PconsC. In general these cases can be divided into two

categories. PconsC2 tends to perform badly, when the underlying

predictors provide conflicting or low quality information. PconsC2

also sometimes fails when the deep learning methodology

introduces artefacts into the contact map. We have paid close

attention to reducing the amount of artefacts introduced by deep

learning, which is one of the main reasons behind limiting the

number of prediction layers.

The first example of PconsC2 failing with respect to PconsC is

the LIM domain of RSGI RUH-019 (1wigA), which is a relatively

short (73 amino acids) protein that contains few secondary

structures. Here, PconsC2 produces a spurious cluster of

predictions between the N- and C-termini, reducing the PPV

from 0.49 to 0.40, see see Figure 7c.

The second example is the human insulin-like growth factor 1A

(1imxA), for which neither PconsC nor PconsC2 make usable

predictions. It is worth noting, that the contact patterns predicted

by both approaches are quite different, with PconsC predicted

contacts being more uniformly distributed along the sequence,

while the PconsC2 attempts to create incorrect interactions

between secondary structure elements, see Figure 7d.

Using PconsC2 improves protein modelling
One of the ultimate goals of contact prediction is to facilitate ab-

initio protein structure prediction. To test if the improved contact

predictions from PconsC2 indeed are more useful for protein

modelling, we built models for all proteins in the independent test

set using both PconsC and PconsC2 predicted contacts, using the

PconsFold pipeline [40]. Models constructed using contacts

predicted by PconsC2 are on average 9% better in terms of

TM-score [41], than those using contacts predicted by PconsC, see

Table 6. As expected from the PPV analysis the improvement is

largest for b-sheet containing proteins, see Table 6.

The average quality increases with the effective number of

sequences in the protein family, see Figure 8. However, the

variation is also rather large, that is for some small families good

models are generated, while for some large families the models are

not optimal. The average improvement obtained by PconsC2 is

quite constant for families with more than 50 effective sequences.

One likely reason why the improvement of model qualities not is

larger might be that our folding protocol cannot fully utilize the

improved contacts. In Figure 8b it can be seen that for many of

the proteins with best PPV values the predicted contacts are much

better fulfilled by the native structure than by the top ranked

model, that is the contact information is not fully utilised in our

folding protocol, i.e. there is room for improvement.

Final summary
Earlier statistical inference co-evolution based contact predic-

tion methods assume independence between the couplings

calculated among pairs of residues, but contacts in a protein

contact map are neither randomly, nor independently distributed.

Their distribution clearly follows characteristic patterns for

certain types of interactions, e.g. hydrogen bonding ladders

between b-sheets, which can be recognised. When a hypothetical

contact is predicted between residue i and j it is intrinsically

conditioned that the contact likelihood of – at least – the pairs of

residues close to i, j are affected. Such rules have been used in

other contact prediction methods, not using the statistical

inference approach, either by satisfying specific constraints [27]

or be using a deep learning approach [25,26]. Here, we have

developed a novel method, PconsC2, which uses a deep learning

approach taking this information into account to improve contact

predictions.

PconsC2 improves the prediction for all proteins and all types of

contacts, but the improvement is most significant for b-sheet

containing proteins. Perhaps most importantly, already at 100

effective sequence homologs the average prediction accuracy from

Table 3. PPV values for contacts at different separations.

Range PconsC2 PconsC PSICOV plmDCA MI CMIr CMAPpro PhyCMAP

Short (6–12) 0.53 0.34 0.30 0.31 0.08 0.16 0.49 0.50

Medium (12–24) 0.56 0.41 0.33 0.37 0.09 0.20 0.44 0.44

Long (24+) 0.55 0.46 0.37 0.41 0.09 0.19 0.37 0.35

Prediction accuracy at particular sequence separations taking into account L/10 predicted contacts in the class.
doi:10.1371/journal.pcbi.1003889.t003
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Figure 5. Positive predictive value plotted versus efficient number of sequences for predictions made by PSICOV, plmDCA, PconsC
and PconsC2, considering top L contacts per protein target. Line: running average with frame size 20. (a) All proteins, (b) all-a-helical proteins
(c) all- b-sheet proteins and (d) mixed a/b-proteins.
doi:10.1371/journal.pcbi.1003889.g005

Table 4. PPV values at L~1 for different protein structural classes.

Structural class No PSICOV plmDCA PconsC PconsC2

all a 119 0.18 0.20 0.24 0.33

a/b 159 0.27 0.31 0.36 0.53

all b 98 0.21 0.21 0.25 0.40

few sec.str. 7 0.24 0.29 0.35 0.47

All 383 0.23 0.25 0.29 0.44

doi:10.1371/journal.pcbi.1003889.t004
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PconsC2 rivals the maximum accuracies obtained from earlier

methods and for larger families PconsC2 outperforms all methods.

However, other machine learning approaches outperform

PconsC2 for smaller families indicating room for improvement.

The fact that PconsC2 predicts a larger fraction of contacts

separated by many residues contributes to that models produced

using contacts from PconsC2 instead of PconsC are on average

9% better.

Methods

There exist different possible definitions for residue contacts.

The most commonly used are based on Ca-Ca, Cb-Cb or the

closest heavy atom distances in sidechains. The relative improve-

ment of PconsC2 is independent on the definition and therefore

we chose to present only the results using the same contact

definition as used in CASP (Critical Assessment of protein

Table 5. PPV values at L~1 for contacts between different secondary structure classes.

Structural category Real PSICOV plmDCA PconsC PconsC2

a - a 11% 0.23 (15%) 0.22 (17%) 0.28 (16%) 0.40 (15%)

a - b 8% 0.31 (9%) 0.46 (7%) 0.48 (8%) 0.54 (7%)

a - loop 16% 0.18 (21%) 0.22 (21%) 0.27 (21%) 0.37 (13%)

b - b 22% 0.41 (13%) 0.51 (12%) 0.52 (13%) 0.57 (34%)

b - loop 22% 0.20 (23%) 0.22 (21%) 0.26 (22%) 0.46 (16%)

loop -loop 21% 0.19 (18%) 0.17 (22%) 0.24 (19%) 0.30 (16%)

ALL 0.24 0.26 0.31 0.46

Accuracy in different structural categories considering top L contacts per protein. Percentage shows the relative fraction of predicted contacts in that category.
doi:10.1371/journal.pcbi.1003889.t005

Figure 6. (a–c) ROC plot depicting the PPV values for different predictors. The x-axis represents the number of contacts prediction in
relationship to the length of the protein. At L = 1 on average one prediction is included for each residue in a protein. (a) Performance on the PSICOV
set, (b) Performance on the new dataset, (c) Performance on the CASP10 dataset. (d–f) Positive predictive value plotted versus efficient number of
sequences for predictions considering top L~1 contacts per protein. The lines show a running average and the red dots individual predictions by
PconsC2.
doi:10.1371/journal.pcbi.1003889.g006
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Figure 7. Contact maps for four proteins; (a) 1z4A and (b) 3znuG, (c) 1wigA and (d) 1imxA. The upper-left triangle depicting the contact
map predicted by PconsC, and lower-right triangle by PconsC2. Grey dots indicate the real, observed contacts in PDB structures, while coloured ones
depict the contacts predicted by respective methods. Here red represent wrong predictions and green correct ones. The values in the corners of the
contact maps represent the fraction of correctly predicted contacts within the top L long-range predictions.
doi:10.1371/journal.pcbi.1003889.g007

Table 6. Average TM-score of models generated with contacts from PconsC or PconsC2.

Structural class No PconsC PconsC2

all a 119 0.36 0.39

a/b 159 0.38 0.41

all b 98 0.26 0.29

few sec.str. 7 0.33 0.35

All 383 0.34 0.37

doi:10.1371/journal.pcbi.1003889.t006
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Structure Prediction), that is Cb-Cb, Ca for Glycine, distance

between the amino-acids #8Å [42].

Dataset
PconsC2 has been trained on a set of 150 non-large, single-

domain proteins used for evaluation of PSICOV [32] and used for

evaluation of PconsC [31]. The intermediate results have been

obtained using this set, with 5-fold cross validation, with regard to

CATH superfamilies. The datasets are available from Table S1

and https://c2.pcons.net/.

The final evaluation was conducted on a set of 383 proteins,

which are not evolutionarily related to the proteins in the training

set. This set was constructed starting from approximately 650

proteins of known structure, including proteins representing the

most common folds. This set was then homology reduced to

ensure that no protein in this set has detectable hits with E-value

lower than 1023 to any of the proteins in the training set or the

proteins in testing set. Homology reduction was done by a

jackhmmer search against UniRef100. Finally proteins with very

few homologs and not compact were rejected. We considered

proteins to be not compact enough if they have a small amount of

long-range contacts, long intrinsic disordered regions, or large

unstructured termini.

For the CASP10 datasets all protein sequences were download-

ed from the CASP website. Comparisons were performed both

against the predictions submitted to CASP and by running all

predictors again, taking into account increases in databases’ size

etc. An overview of the three datasets is presented in Table 1.

Effective sequence. The number of sequences included in

an alignment can be used as a rough indicator of the expected

accuracy of the contact predictions. However, a better correlation

is obtained when effective number of aligned sequences is used, i.e

taking the redundancy into account. Here, we have used the same

definition as used in the PSICOV article [32], but other definitions

provide very similar results. The effective number of aligned

sequences is calculated as follows; First, the mean sequence

identity (MeanID) is calculated for all sequences and then a

similarity threshold is computed as:

IDth~ min (0:5,
0:38 � 0:32

MeanID
)

Then all sequences that have fewer than IDth � length
differences are counted as a single sequence for the purpose of

computing the number of sequences in the alignment.

Comparison to other methods. For benchmarking, predic-

tions from PconsC2 are compared with predictions from a number

of other methods. These can basically be divided into three

groups, mutual information methods that only use mutual

information, global information methods that infer the observed

mutual information from estimated direct interactions, and

machine learning based methods that use mutual information as

well as other information to predict contacts.

Here, Mutual Information (MI) and Corrected Mutual Infor-

mation (CMIr) are calculated using a freely available package

developed by Bahar [43,44]. Here, the alignment refinement

removes any rows that have more than 20% gaps. CMIr is

calculated using the average product correction [45], which has

been shown to improve residue contact predictions.

Further three statistical inference methods; plmDCA [33],

PSICOV [32] and PconsC [31] were also included in the

benchmark. Prediction for PSICOV and plmDCA were based

on the HHblits alignments with an E-value cutoff E~1, as this

provided the best performance. As described elsewhere PconsC

and PconsC2 use predictions from plmDCA and PSICOV as

inputs to their machine learning methods.

Finally, we also tested three machine learning based contact

predictors; PhyCMAP [27], CMAPpro [26] and DNcon [25].

PhyCMAP uses mutual information as well as other constrains to

construct an objective function [27]. In addition it utilizes linear

physical constraints describing how contacts can be related to each

other in a protein. The objective function is then optimised given

the constraints using integer linear programming. This results in a

Figure 8. (a) Comparison of the quality of models generated using the PconsFold pipeline [40] and contacts predicted by either
PconsC or PconsC2. In PconsFold, Rosetta [2] is used together with predicted contacts from PconsC (blue) or PconsC2 (red). Each dot represents
one model and the lines show the running average. The average TM-score for models generated with PconsC contacts is 0.34 vs. 0.37 for models
generated using PconsC2. (b) Comparison of agreement with predicted contacts for the native structure and the top-ranked model. The colours of
each dot represent the TM-score of the model. Dots below the diagonal line indicates that the model agrees worse with predicted contacts than the
native structure, that is it should be possible to obtain better models given a more efficient modelling procedure.
doi:10.1371/journal.pcbi.1003889.g008
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physically feasible contact map. In CMAPpro and DNcon mutual

information and other features are used to predict an initial

contact map, this is then refined using a deep learning approach

[6]. Unfortunately, we did not manage to run all queries through

DNcon website, but preliminary data for about 100 proteins did

not indicate that it would perform better than CMAPpro or

PhyCMAP. Therefore, at the end predictions were only compared

with PhyCMAP, which was run locally, and CMAPpro, which was

run through its website as a downloadable version is not available.

It can be noted that although the performance of PconsC2 is

superior to the other methods it is also significantly computation-

ally more expensive.

Deep learning
The machine learning architecture implemented in this paper

is inspired by deep learning literature in the sense that it is a

feed-forward stack of learners, in which each layer Lkw0 refines

the predictions provided by the previous layer. Deep learning

approaches are generally implemented through deep neural

networks architectures (with many hidden layers of neurons) and

are particularly useful in structured problems. It is because the

hidden layers can learn and store complex higher level feature

representations for the activation signals provided by the input

layer, thus mimicking in a certain sense, the concept of high-

level concepts. This behaviour can be extremely valuable for

solving structured problems in which some high-level structure

underlies the input data, such as image, speech and handwriting

recognition. Deep learning architectures based on neural

networks have some drawbacks: for example they are compu-

tationally demanding and require careful tuning [46]. In this

work we chose to lower the complexity of the machine learning

procedure and architecture while preserving the ability to

abstract higher level features from the data (the secondary

structure visual patterns in the contact maps). We implemented

a multilayer feed-forward stack of random forest learners, but in

principle any machine learning algorithm could be used in each

layer; for this reason, during the description of the architecture,

we refer with the generic term of ‘‘learner’’ to the algorithm

used in each layer.

Let xi,j be the feature vector representing the residue pair

(i,j). These features are taken in input by the first layer L0 of

the architecture, obtaining the predictions y0
i,j . In the subse-

quent learning layers Lkw0, for each residue pair (i,j) the input

consist of the feature vector xi,j plus a subset of the predictions

of the previous layer. This subset represents the probabilities of

contacts in the neighbourhood of (i,j), named the receptive
field [30].

The approach described here is conceptually different from the

one adopted by Di Lena et al. [30]. In particular, they used a 3-

dimensional stack in which each layer is composed by many

positional neural networks, one for each position (i,j) in the

contact map. Our method is computationally less demanding as

only one learner for each layer is used. In each layer the single

learner handles all of the prediction of the entire contact maps

regardless of the positions (i,j). The learner can still abstract

complex features, such as the secondary structure patterns, from

the receptive field.

The architecture can be described with the following recurrent

formalisation:

N Layer Lk~0: y0
i,j~predict(xi,j)

N Layers Lkw0: yk
i,j~predict(concat(f (Y k{1,wi,j),xi,j)))

where wi,j is the neighbourhood of xi,j and Y k{1 is the set

containing all predictions yk{1
i,j obtained from the layer Lk{1. The

function f selects the receptive field and is defined as:

f (Y k{1,wi,j)~(yk{1
a,b Va,b[wi,j) with yk{1

a,b [Y k{1.

Here, the receptive field is a square matrix of 2rz1 by 2rz1
pairs representing the predicted probability of a contact for the

neighbouring residue pairs.

PconsC2 is using Random Forests
During the development of PconsC2, we observed certain

inherent characteristics of input data and the contact prediction

problem, which can be summarised in the following three points:

1. The contact prediction problem requires the elaboration, for

each L-residue long protein, of a number of vectors in the order

of
L(L{1)

2
[O(L2), that is the machine learning method must

efficiently handle large sets of data.

2. The number of contacts increases almost linearly with protein

length, but since the number of possible contacts increases

quadratically, the contact density of a protein decreases with

the inverse of the protein length. This means that the set of

vectors for training is heavily unbalanced.

3. The dataset (consisting of predictions from the single

coevolution based methods) is quite noisy and might contain

artefacts, as certain strong couplings detected by these methods

may have arisen for reasons other than intra-chain spatial

proximity.

We found, in spirit of PconsC [31], that ensemble methods, in

particular Random Forests, tend to result in most robust and

accurate predictive models. This is likely due to the diversity

among the learners, which allows for correcting the misclassifica-

tions of certain predictions.

In PconsC2 each layer of the deep learning architecture uses a

Random Forest Classifier [47] with 100 trees and a minimum of

500 samples for any newly created leaf to avoid over fitting. These

constraints have been introduced in order to build a forest with the

greatest generalisation power possible.

Receptive field
As described above, each layer Lk (with kw0) takes as input two

different types of features, the ordinary features and the receptive

field, concatenated. The ordinary features are identical for each

residue pair in every layer, while the receptive field wi,j is a

squared set of predictions centered in each couple of residues (i,j),

with an area of (2rz1)2 predictions obtained from the previous

layer. As can be seen in Figure 3 the prediction performance

increases with increasing size of the receptive field. We chose r~5,

giving a field size of 11611, as the best compromise between

prediction precision and performance.

Feature encoding scheme
PconsC2 uses the same combination of predictions from

PSICOV [32] and plmDCA [33], as PconsC. The results have

been obtained, using four different E-value cut-offs (10240, 10210,

1024 and 1) to construct alignments by HHblits (from HHsuite

2.0.16) and jackhmmer from HMMER 3.0. The HHblits

alignments used the bundled uniprot20_2013_03 database.

Disabling both filtering the resulting MSA (-all parameter) and
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limiting the amount of sequences, that are allowed to pass the

second pre-filter, as well as allowing for realigning all the hits in

HHblits lead to the construction of the most information-rich and

accurate alignment at cost of slightly increased running time.

Jackhmmer alignments were constructed with UniRef100, based

on UniProt 2013_06 release, with at most 5 rounds of iterative

search and inclusion threshold (incE) set to the same value as the

E-value threshold.

Additional input features. In addition to the 16 contact

predictions we examined the possibility to use additional

information in the form of sequence separation, PSSMs as well

as predicted structural features.

Sequence separation is the distance between amino acids in

sequence space, or differently formulated, the absolute value of

difference between amino acid indices.

For each protein in the dataset, a sequence profile starting from

the MSA obtained with HHblits with E-value cut-off 1 was

calculated. In the feature vector we represent each position i of the

protein sequence with 21 real values, denoting the logarithm of

ratio of frequency of an amino acid at this position to the

background frequency of this amino acid in UniRef50. As the

predictions take into account two positions in the sequence at the

time, this results in 21|2~42 new dimensions in the feature

vector. This feature is referred to as ‘‘PSSM’’ in Table 2.

The secondary structure prediction was calculated feeding

PSIPRED with the alignment obtained by running HHblits with

E-value cut-off 1 and filtered down to diversity NEFFv~7 by

hhfilter, as implemented in addss.pl script of HHsuite. The

secondary structure prediction for each residue was encoded using

a vector of probabilities for each of the structural classes (Helix,

Strand, Coil). Here, we used a window of 9 residues (i-4, i+4)

providing 3|9|2~54 new dimensions, referring to this feature

as ‘‘SS’’.

Predicted relative solvent accessibility information calculated

with NetSurfP [48] was also used. Best performance was obtained

using window size of 9 residues, encoding relative surface

accessibility, Z-fit score (reliability value), plus probabilities for

three secondary structure classes as predicted by NetSurfP (Helix,

Strand and Coil). This results in 5|9|2 new dimensions in the

feature vector, denoted as ‘‘RSA’’ in Table 2.

The secondary structure features predicted by NetSurfP and

PSIPRED may seem redundant, though methods used are not the

same. Predictions by PSIPRED come at nearly negligible

computational cost, as they use pre-computed alignments, whereas

NetSurfP predictions come ‘‘free’’ with predicted RSA and the

inclusion of both provided a slight improvement.

In summary, the additional features are:

N PSICOV and plmDCA are, respectively, the 8 predictions

from PSICOV and from plmDCA (8z8~16 dimensions)

N Separation is 1 dimension denoting the distance between

amino acids in the sequence space

N SS are the 9|3|2~54 dimensions representing the predict-

ed Secondary Structure

N PSSM are the 2|2~42 dimensions containing the sequence

profiles calculated from HHblits alignment at E-value cut-off

equal to 1

N RSA are the 5|9|2~18 values used to represent the

predicted relative surface accessibility, its confidence and

predicted secondary structure.

Availability
PconsC2 is licensed under the Gnu Public License. The source

code is available from https://github.com/ElofssonLab/

PconsC2/. However, to run it a rather substantial set of other

programs are needed, including plmDCA, Matlab, PSICOV,

HHblits and jackhmmer. Therefore, we also provide iso-images

containing all necessary tools and databases. We do also provide a

web-server at http://c2.pcons.net/. Unfortunately given the

computational costs involved in running PconsC2 the capacity of

the web-server is somewhat limited.

Supporting Information

Figure S1 Figure analogous to Figure 6c and f, depicting

performance of discussed methods on CASP10 proteins, including

additional methods. (a) ROC plot depicting the PPV values for

different predictors on the CASP10 dataset. The x-axis represents

the number of contacts prediction in relationship to the length of

the protein. At L = 1 on average one prediction is included for

each residue in a protein. Performance. (b) Positive predictive

value plotted versus efficient number of sequences for predictions

considering top L~1 contacts per protein. The lines show a

running average and the red dots individual predictions by

PconsC2.

(EPS)

Table S1 PDB IDs and sequences of the training- and testsets

used in this study.

(TXT)
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