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Abstract: Urban agglomerations have become the core areas for carbon reduction in China since
they account for around 75% of its total emissions. Beijing-Tianjin-Hebei (BTH), Yangtze River Delta
(YRD), and the Pearl River Delta (PRD), which are its most important poles of regional development
and technological innovation, are key to achieving China’s carbon peak emissions target. Based on
the panel data of these three major urban agglomerations from 2003 to 2017, this study estimated
the carbon emission efficiency (CEE) by the super-efficiency slacks-based measure (super-SBM)
model and analyzed its spatiotemporal distribution pattern. The Dagum Gini coefficient was used to
evaluate the difference in CEE between the three major agglomerations, while panel data models
were established to analyze the impact of technological innovation on the three agglomerations. The
overall CEE showed an upward trend during the study period, with significant spatial and temporal
variations. Additionally, the main source of urban agglomeration difference in CEE evolved from
inter-regional net differences to intensity of transvariation. While technological innovations are
expected to significantly improve CEE, their effect varies among urban agglomerations. These results
provide policymakers with insights on the collaborative planning of urban agglomerations and the
low-carbon economy.

Keywords: carbon emission efficiency; super-SBM model; spatiotemporal pattern; technological
innovation; panel data models; urban agglomerations

1. Introduction

Climate change is widely recognized as a grave threat to humanity [1,2]. The increase
of greenhouse gases caused by anthropogenic activities such as the consumption of fossil
fuels, deforestation, fertilization, and industrial processes has led to climate change, espe-
cially global warming [3]. Recent years have shown increasing temperatures and a high
frequency of extreme weather events in various regions [4], which threaten the survival
and development of mankind [5]. Therefore, mitigating global warming is a common
responsibility of both developed and developing countries.

China has entered a key stage of transition from a low-income to a middle-income
country through the process of industrialization, which requires a large amount of en-
ergy [6]. Due to the long-term dependence on the high input, high emission, and low
output of its development patterns, large consumption of resources is inevitably behind
the growth of economic prosperity, which hinders the high-quality development and green
transformation of China’s economy. China surpassed the US as the largest carbon emitter
in 2007 [7] and accounted for around 30% of the world’s CO2 emissions in 2019. To seek a
sustainable development pattern and deal with climate change, the Chinese government
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actively undertakes the responsibility of emission reduction and formulates emission re-
duction plans. At the Paris Climate conference in 2015, the Chinese government proposed
to decrease the country’s carbon intensity by 60–65% by 2030 compared to 2005. Moreover,
at the 75th Session of the UN, the Chinese government officially declared that it would
reach its carbon emissions peak by 2030 and carbon neutrality before 2060. This goal puts
forward higher requirements for improving energy-savings and carbon emissions.

Driven by the new normal and the new urbanization development strategy in China,
the construction and development of urban agglomerations have gradually been elevated
to an unprecedented height. In particular, Beijing-Tianjin-Hebei (BTH), the Yangtze River
Delta (YRD), and the Pearl River Delta (PRD), the three major urban agglomerations located
on the eastern coast of China, are regarded as important growth poles for promoting
regional economic growth. In 2018, these three economic zones accounted for 43.48%
of the national GDP, with 28.41% of the total population [8]. However, the three major
urban agglomerations are also responsible for China’s largest energy consumption and
most conspicuous environmental pollution [9]. Therefore, the contradiction between high
resource consumption, carbon emissions, and economic development of the three major
urban agglomerations needs to be urgently resolved.

Carbon emission efficiency (CEE) is an essential indicator for measuring green and
sustainable development, whose improvement can help achieve a “win-win” between car-
bon reduction and economic transition. Since innovations constantly change the external
environment people depend on [10], technological innovation has become a fundamental
variable in low-carbon development and sustainability performance enhancement. Tech-
nological innovation is one of the essential tools to improve energy productivity and it
reduces energy costs to a certain extent [11]. It can be divided into two categories: green
technological innovation and non-green technological innovation. Green technological
innovation is the new outcomes of pro-environmental innovations including carbon cap-
ture technology and low-carbon technology, which can simultaneously reduce emissions
and improve energy efficiency. In contrast, non-green technology innovation focuses on
generating economic benefits by increasing productivity, which ignores improving envi-
ronmental quality to some extent. Since CEE measures the relationship between carbon
emission and economic development from the perspective of input and output, the impact
of technological innovation on CEE is the result of the trade-off between the two types
of innovation. Although CEE and its driving factors in China have been discussed exten-
sively at the provincial [12,13] and the sectoral levels [14,15], there are still uncertainties
regarding the effects of technological innovation on urban CEE. Theoretically, technolog-
ical innovation can achieve clean production and reduce energy consumption through
equipment renewal, which promotes the high-polluting industries’ transition to low-carbon
sustainability. Conversely, enterprises may ignore environmental protection in the process
of pursuing technological innovation to increase production efficiency and economic value,
which will produce more carbon dioxide. This study attempts to analyze the CEE of China’s
three major urban agglomerations from a comparative perspective to answer the following
four questions: (1) Are the spatiotemporal distribution patterns of CEE of the three major
urban agglomerations consistent? (2) Where does their unbalance come from? (3) What
roles do different technological innovation indicators play in CEE? (4) Are there obvious
differences in the impact of technological innovation on different urban agglomerations?
To explore these questions, this study proceeded as follows. First, a total factor-based
framework was proposed to measure CEE using the super-efficiency slacks-based measure
(super-SBM) model considered with undesired output and comprehensively analyzed the
spatiotemporal distribution pattern in the three major urban agglomerations. Second, the
Dagum Gini coefficient was introduced to estimate CEE differences in the three major
urban agglomerations, which better reveals the composition and source of spatial disequi-
librium of CEE. Third, the influencing drivers of technological innovation on CEE and their
heterogeneous impact on different urban agglomerations were identified by panel data



Int. J. Environ. Res. Public Health 2022, 19, 9111 3 of 22

models. Practical strategies are provided to enhance the CEE of each urban agglomeration
adapting to local conditions.

In response to the shortcomings of previous studies, this paper aims to make a con-
tribution in two ways: (1) enrich the research framework of urban CEE by considering
regional differences from the perspective of urban agglomerations and (2) further clarify
the impact of different technological innovation indicators on CEE and their spatial hetero-
geneity. The remaining content of this study is structured as follows: Section 2 provides a
review of the existing literature, Section 3 describes the research methods and selection of
indicators, Section 4 presents the empirical results, Section 5 presents conclusions and the
last section provides some policy implications.

2. Literature Review

Despite CEE having attracted much attention in recent years, there is still no clear
and unified definition in academia. From the single-factor perspective, Sun (2005) argued
that using CO2 emissions per unit of GDP to measure CEE is an important criterion for
evaluating a country’s energy conservation and emission reduction [16]. Mielnik and
Goldemberg (1999) proposed the concept of a carbon index, which is defined as the car-
bon emissions per unit of energy consumption [17]. Other single-factor indicators, such
as carbon intensity [18] and carbon productivity [19], have also been widely regarded
as measures of CEE. However, these definitions only consider the proportion of carbon
emissions to GDP (or energy consumption) and ignore the multi-dimensional input factors
in the actual production process. Recently, most studies estimated CEE from the total factor
perspective [20,21]. Common input–output methods include data envelopment analysis
(DEA) and stochastic frontier analysis (SFA). For instance, Yu and Zhang (2021) adapted a
non-convex meta-frontier DEA model to calculate CEE from 251 Chinese cities over the pe-
riod of 2003 to 2018 [22]. Jiang et al. (2020) used the super-SBM model and Malmquist index
to evaluate the CEE of the logistics industry from a transportation strategy perspective [23].
This typical input–output relationship can measure CEE more comprehensively.

To further understand CEE changes at different times in different regions, many
scholars have focused on their spatiotemporal patterns and evolution characteristics. For
example, Wei et al. (2019) applied non-parametric kernel density estimation to analyze
the dynamic evolution of CEE in 97 countries and found that the changes in distribution
were relatively stable during the study period [24]. Moreover, spatial autocorrelation
analysis [25], spatial Markov probability transfer matrix [26], Theil index [27], and K-means
clustering [28] have also been extensively used in exploring the spatial-temporal pattern
of CEE. However, existing studies analyzed the temporal and spatial distribution of CEE
in China, mainly concentrating on provincial and regional scales. Moreover, there is still
a huge research gap regarding urban agglomerations. Especially given the rapid rise of
China’s urban agglomeration, relevant research needs to be urgently carried out at this
scale. Sources of spatiotemporal differences also need to be recognized.

The drivers of CEE have been passionately discussed [29,30]. In the study of Quan
et al. (2020), factors such as economic output, energy consumption structure, government
intervention, and population size are inversely proportional to CEE [31]. Liu et al. (2018)
analyzed the influencing process on urban agglomeration’s CEE from four effects of urban-
ization and found that different effects significantly impact on CEE in different ways [32].
However, existing studies show that the correlation between technological innovation and
carbon emissions is controversial. One view states that green technological innovation can
reduce CO2 emissions in the shorter term, further strengthening environmental sustainabil-
ity [33]. Wang et al. (2019) pointed out that technological progress is the main driver to
promote CEE [34]. Another view is that technological innovation increases carbon emis-
sions, while it will reduce pollution and carbon emissions with economic development [35].
Additionally, the relationship between technological innovation and CEE is heterogeneous
in different regions and sectors. Li and Cheng (2020) measured the total factor CEE of 31
manufacturing industries in China from 2012 to 2016 and found significant differences
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across technology-intensive industries [36]. Regression models are widely used for explor-
ing driving mechanisms, such as the spatial regression model [37], the Tobit model [38], and
the Global Vector Autoregressive approach [39]. Although there has been a lot of research
on the correlation between technology and CEE, the jury is still out on how technological
innovation influences CEE from the perspective of different urban agglomerations.

3. Methodology
3.1. Study Area

As urban agglomeration has become the dominant mode of new-type urbanization
construction in China, the BTH, YRD, and PRD are regarded as the core regions for pro-
moting the high-quality development of China’s economy. Geographically, the three major
urban agglomerations are located on the most bustling east coast of China. The BTH plays a
crucial role in the Bohai Economic Rim and Northeast Asia, which includes 2 municipalities,
Beijing and Tianjin, as well as 11 cities in Hebei province. In 2019, its GDP reached about
8.46 trillion yuan, accounting for 8.5% of the national total. The YRD is situated on the
middle and lower reaches of the Yangtze River, forming a vibrant cluster with Shanghai as
the economic center, which consists of 26 cities (i.e., Shanghai, Nanjing, Wuxi, Hangzhou,
Ningbo, Hefei, etc.). The PRD possesses flourishing manufacturing and foreign trade,
including nine cities in Guangdong province. In 2018, the urbanization rate of the PRD
reached 85.3%, which is the highest among China’s urban agglomerations. This study
selected the three major urban agglomerations as the research area and the panel data were
collected from 2003 to 2017 (Figure 1).
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3.2. Super-SBM Model

The DEA method, firstly proposed by Charnes et al. (1978), evaluates the efficiency
of decision-making units (DMUs) with multiple inputs and outputs [40]. However, the
traditional DEA model ignores the measurement error caused by slack variables. To
overcome this limitation, Tone (2001) introduced the non-radial and non-oriented slack-
based measure (SBM) model [41]. However, the efficiency value of DMUs is often equal
to 1 in both the traditional DEA and SBM models, which fails to compare and distinguish
effective DMUs. Andersen and Petersen (1993) proposed a super-efficiency DEA model
which allows effective DMU values greater than 1 [42]. Tone (2002) further defined the
super-SBM mode, combining the SBM and super-DEA model advantages, and the SBM
model was modified to consider undesirable outputs in the production process [43]. The
super-SBM model deals with undesirable outputs and compares each DMU efficiency value,
which is widely used to measure total factor productivity, ecological efficiency, energy
efficiency, etc. This study used the super-SBM model with undesirable outputs to estimate
the CEE at the city level. The model involves the following steps:

First, assume that a production system has n DMUs, and each DMU utilizes m inputs
(x) to create S1 desirable outputs (ya) and S2 undesirable outputs (yb). Those three vectors
are defined as: x ∈ Rm, ya ∈ RS1 , and yb ∈ RS2 . The matrix of X, Ya, and Yb can be
expressed as follows:

X = [x1, x2 · · · xn] ∈ Rm×n (1)

Ya = [ya
1, ya

2 · · · ya
n] ∈ RS1×n (2)

Yb =
[
yb

1, yb
2 · · · yb

n

]
∈ RS2×n (3)

Presuming X > 0, Ya > 0 and Yb > 0, the production possibility set (P) is defined
as follows:

P =
{(

x, ya, yb
)∣∣∣x ≥ λX, ya ≤ λYa, yb ≥ λYb, λ ≥ 0

}
(4)

where P indicates that the actual desirable outputs are lower than the frontier desirable
outputs, and the actual undesirable outputs are higher than the frontier undesirable outputs.

Second, based on the production possibility set, the SBM with undesirable outputs
can be formed as follows:

ρ = min
1− 1

m

m
∑

i=1

S−i
xik

1 + 1
S1+S2

(
S1
∑

r=1

Sa
r

ya
rk
+

S2
∑

r=1

Sb
r

yb
rk

) , s.t.


xk = λX + S−

ya
k = λYa − Sa

yb
k = λYb + Sb

S− ≥ 0, Sa ≥ 0, Sb ≥ 0, θ ≥ 0

(5)

where ρ stands for objective efficiency in the rage [0, 1], S =
(

S−, Sa, Sb
)

denotes the slack
variables of inputs, desirable outputs, and undesirable outputs, respectively, and λ is
the weighted vector. Only when ρ = 1 (i.e., S− = Sa = Sb = 0) can the specific DMUk
(xk, ya

k, yb
k) be efficient. Otherwise, if 0 ≤ ρ < 1, the evaluation of DMUk is inefficient in

the SBM model, which needs to be improved in inputs and outputs. To calculate more
reasonable efficiency values, the corresponding super-SBM model can be written as follows:

ρ∗ = min

1
m

m
∑

i=1

xi
xik

1
S1+S2

(
S1
∑

r=1

ya
r

ya
rk
+

S2
∑

r=1

yb
r

yb
rk

) , s.t.



x ≥
n
∑

j=1, 6=k
λjxj

ya ≤
n
∑

j=1, 6=k
λjya

j

yb ≥
n
∑

j=1, 6=k
λjyb

j

x ≥ xk, yd ≤ yd
k , yu ≥ yu

k , λj > 0

(6)
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where the value of ρ∗ can be greater than 1, which effectively deals with the problem of
ranking the SBM-efficient DMUs.

According to previous studies [44,45], three perspectives of capital inputs, labor
input, and energy input are considered into the system of the CEE input–output index.
Fully considering the data collection and availability, fixed assets investment, number of
employees, and electricity consumption are selected as the input indicators. As the fixed
capital stock cannot be directly obtained, this study adopted the approach of Liu et al.
(2016) for calculation [46]. Based on the study of Zhang and Liu (2022) [47], the GDP and
carbon emissions of each city were selected as the desired output and undesirable output,
respectively. The CEE input–output indexes are listed in Table 1.

Table 1. Socio-demographic profile of the respondents.

Variables Primary Indicators Secondary Indicators Units

Input
Capital investment Fixed capital stock 108 yuan

Labor input Number of employees 104 people
Energy input Electricity consumption 104 KWH

Output Desirable output GDP 108 yuan
Undesirable output CO2 emissions 10 kt

3.3. Dagum Gini Coefficient

The traditional Gini coefficient is a statistical measure of economic inequality, also
commonly used to estimate the geographic distribution of inequality. The Dagum Gini
coefficient decomposes the regional differences into three parts, effectively identifying the
source of spatial disequilibrium. Based on the research by Dagum (1997) [48] and Han et al.
(2020) [49], the Dagum Gini coefficient is defined as:

G =

K
∑

j=1

K
∑

f=1

nj

∑
i=1

n f

∑
h=1

∣∣∣yji − y f h

∣∣∣
2n2µ

(7)

where G denotes the total Gini coefficient, which stands for the total difference of CEE
between cities in China. K is the number of urban agglomerations, including BHT, YRD,
and PRD, and j = 1, 2, · · · , K; f = 1, 2, · · · , K. µ is the mean value of all cities and n
is the number of cities in the delineated urban agglomeration. yji and y f h are the CEE of
cities in the j-th and the f -th urban agglomerations, respectively. Before decomposition
of the total Gini coefficient, the average CEE of each urban agglomeration is ranked first,
Yf ≤ · · ·Yj ≤ · · · ≤ Yk.

The Dagum Gini coefficient can be decomposed into three contributions: intra-regional
differences (Gw), inter-regional net differences (Gnb), and intensity of transvariation (Gt).
The relationship among contributions satisfies the following formula:

G = Gw + Gnb + Gt (8)

Each part is calculated as follows:

Gw =
K

∑
j=1

Gjj pjsj (9)

Gjj =

nj

∑
i=1

nj

∑
r=1

∣∣∣yji − y f h

∣∣∣
2Y jn2

j
(10)
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Gjh =

nj

∑
i=1

n f

∑
r=1

∣∣∣yji − y f r

∣∣∣
njn f (Y jY f )

(11)

Gnb =
K

∑
j=2

j−1

∑
f=1

Gj f (pjs f + p f sj)Dj f (12)

Gt =
K

∑
j=2

j−1

∑
f=1

Gj f (pjs f + p f sj)(1− Dj f ) (13)

Equation (10) measures the Gini coefficient of the j-th urban agglomeration, which de-
notes the distribution difference of CEE among cities in an urban agglomeration. Equation (11)
measures the Gini coefficient between the j-th and f -th urban agglomerations. In Formulas
(12) and (13), Gj f stands for the distribution difference between urban agglomeration to the

total Gini coefficient. pj = nj/n, sj = njYj/
(

nY
)

, j = 1, 2, · · · , K. Dj f is the relative impact
of the CEE between the j-th and f -th urban agglomerations, and the specific formulas are:

Dj f =
dj f − pj f

dj f + pj f
(14)

dj f =
∫ ∞

0
dFj(y)

∫ y

0
(y− x)dFf (x) (15)

pj f =
∫ ∞

0
dFf (y)

∫ y

0
(y− x)dFj(x) (16)

where dj f is the D-value of the CEE between the j-th and f -th urban agglomerations, which
can also be interpreted as the weighted average of all yji − y f h > 0 samples in the j-th
and f -th urban agglomerations. pj f represents the first moment of transvariation, which
is interpreted as the weighted average of all y f h − yji > 0 samples in the j-th and f -th

urban agglomerations. Fj

(
Ff

)
is the cumulative density distribution function. According

to the above formulas, we measured and decomposed the Dagum Gini coefficients of the
distribution difference of CEE among the three urban agglomerations.

3.4. Variables’ Explanation

The purpose of this study was to explore how technological innovation affects the
CEE at the city level. Except for the technological innovation level, this study preliminarily
focused on the driving factors of the CEE from four perspectives: urbanization level,
industrial structure, economic development level, and foreign trade. We also selected
six secondary indicators that may affect the CEE to quantitatively analyze the driving
mechanism (Table 2).

Table 2. The indicator system of influencing factors on CEE.

Type Primary Indicators Secondary Indicators Units

Explained variable Carbon emission efficiency - -

Core explanatory variable
(Technological innovation level)

Technological innovation resources
The proportion of government

technology expenditure in
total expenditure

%

Technological innovation capacity Patent applications PCS

Control variates

Urbanization level Population urbanization rate %

Industrial structure The ratio of secondary industry output
value to GDP %

Economic development level GDP per capita Yuan
Foreign trade Foreign direct investment 104 USD
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(1) Technological innovation level: Technological innovation plays an important role
in saving energy and enhancing CEE. According to the study by Xie et al. (2021) [50],
technological progress reduces carbon emissions and facilitates energy-saving by urging
the industrial sector to improve production methods. It also promotes the efficiency of
production and economy. This study explores the impact of technological innovation on
CEE from two dimensions: technological innovation resources (TIR) and technological inno-
vation capacity (TIC), which can be measured by the proportion of government technology
expenditure in total expenditure and patent applications, respectively.

(2) Urbanization level (URL): In existing studies, the ratio of the urban population to
the total regional population is widely used to characterize the level of urbanization [51–53].
With the growth of the urban population, a large amount of public infrastructure is needed
to meet increasing resource demands, which increase urban energy consumption and
carbon emissions. Some scholars take a positive view on urbanization [54], holding that
the impact of urbanization on CEE presents a U-curve relation. The improvement of
urbanization can implement energy use efficiency and further restrains carbon emissions
and improves eco-environmental quality [55]. The population urbanization rate was
selected to represent the extent of urbanization in this study.

(3) Industrial structure (IS) is an essential influencing component of CEE [56]. As a pil-
lar industry for the national economy, the secondary industry based on the energy-intensive
industry promotes carbon emissions, thereby reducing CEE. The industrial structure is
represented by the secondary industry output value ratio to GDP.

(4) Economic development level (EDL): Economic growth directly affects carbon
emissions [57]. Economic development generates a continuous increase in carbon emissions
through resource consumption while leading to energy-saving with the advancement of
the development process [58]. Developing countries and regions still have a relatively
high demand for resources and energy, implying that economic development is negatively
related to CEE. The level of economic development is measured by the GDP per capita.

(5) Foreign trade (FT): Foreign trade has been a crucial factor influencing carbon emis-
sions. Previous studies indicated that environmental pollution transferred from developed
countries to developing countries through foreign direct investment (FDI) forms a “pol-
lution refuge” and accelerates the growth of carbon emissions [59]. On the other hand,
importing some high-energy products instead of regional production can reduce energy
consumption and improve the CEE. FDI represents foreign trade.

3.5. Panel Data Models

This empirical analysis used panel data models to further explore the interaction
between technological innovation and CEE. All the variables discussed in this study are in
natural logarithms. The panel data model was established as follows [60,61]:

lnCEEit = α0 + β1lnTIRit + θ1lnURLit + θ2lnISit + θ3lnEDLit + θ4lnFTit + µi + εit (17)

lnCEEit = α0 + β2lnTICit + θ1lnURLit + θ2lnISit + θ3lnEDLit + θ4lnFTit + µi + εit (18)

where βk and θm are the coefficients of kernel explanatory variables and control variables,
respectively. µi can be interpreted as the random heterogeneity specific to the i-th obser-
vation and is constant over time. εit represents the random error term, explaining other
uncaptured variables in the model that affect carbon emissions’ efficiency. α0 is a constant.

3.6. Data Sources

The panel data of 48 cities in 3 urban agglomerations were collected for empirical
analysis from 2003 to 2017. All the data in this study were retrieved from official open data.
The carbon emissions data of China’s cities were obtained from China Emission Accounts
and Datasets (CEADs) (https://www.ceads.net/ (accessed on 12 November 2020)). Fixed
assets investment, the number of employees, electricity consumption, GDP, the proportion
of government technology expenditure in total expenditure, patent applications, population

https://www.ceads.net/
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urbanization rate, the ratio of secondary industry output value to GDP, GDP per capita,
and FDI were extracted and measured from the China city statistical yearbook (2004–2018),
statistical yearbooks from each city (2004–2018). The descriptive statistics of the driving
factors’ data are shown in Table 3.

Table 3. Descriptive statistics of driving variables of CEE.

Region Variable Symbol Mean St. Dev. Min Max

Total

Carbon emission efficiency CEE 0.4161 0.1868 0.0904 1.2303
Technology innovation resources TIR 2.36 2.06 0.04 12.65
Technology innovation capacity TIC 12,910 20,986 17 161,619

Urbanization level URL 58.41 17.79 16.05 100
Industrial structure IS 50.46 8.58 19.01 74.73

Economic development level EDL 53,189 35,262 4876 199,017
Foreign trade FT 1,190,808 295,610 1110 2,433,000

BTH

Carbon emission efficiency CEE 0.365 0.167 0.139 1.23
Technology innovation resources TIR 1.163 1.327 0.118 6.584
Technology innovation capacity TIC 5911.282 15,239.714 69 99,167

Urbanization level URL 50.438 15.008 28.17 86.5
Industrial structure IS 47.998 9.056 19.01 60.08

Economic development level EDL 35,922.908 25,482.697 6555 128,994
Foreign trade FT 173,566.26 384,191.55 1110 2,433,000

YRD

Carbon emission efficiency CEE 0.402 0.167 0.09 1.033
Technology innovation resources TIR 2.691 2.041 0.045 12.648
Technology innovation capacity TIC 14,728.321 20,870.649 17 121,496

Urbanization level URL 56.549 14.344 16.05 89.6
Industrial structure IS 51.643 7.88 29.83 74.73

Economic development level EDL 56,403.364 35,291.689 4876 199,017
Foreign trade FT 194,105.36 280,460.02 1338 1,851,378

PRD

Carbon emission efficiency CEE 0.528 0.22 0.214 1.185
Technology innovation resources TIR 3.139 2.275 0.167 9.686
Technology innovation capacity TIC 17,765.267 25,646.189 212 161,619

Urbanization level URL 75.3 19.632 26.78 100
Industrial structure IS 50.607 9.099 23.48 64.33

Economic development level EDL 68,845 37,483.959 11,907 189,993
Foreign trade FT 206,185.91 161,679.63 18,135 740,126

4. Results
4.1. Spatiotemporal Distribution Pattern Analysis of CEE

Based on the super-SBM model considering the undesirable output, we estimated
the CEE of 48 cities in the three major urban agglomerations. According to previous
studies [62,63], the average value is used to represent the overall level of CEE in a re-
gion. The temporal trends of CEE and carbon emissions (CE) of the three major urban
agglomerations in China are described in Figure 2. In general, the CEE of the three urban
agglomerations showed a slow growing trend during the studied period, hinting at a trend
of significant carbon emissions reduction and energy-saving. Nevertheless, increases of
CEE in each urban agglomeration differed, with PRD fluctuating more than others over
time. From 2003 to 2017, the total value of the average CEE of BTH, YRD, and PRD were
0.2585, 0.3156, and 0.1218, respectively. Except for the average CEE in 2007 and 2008, which
were highest in PRD, followed in order by BTH and PRD, CEE of the three major urban
agglomerations followed the pattern of “PRD > YRD > BTH”. Overall, PRD played a
greater role in sustainable economic development and energy improvement than BTH
and YRD. The total carbon emissions of the three major urban agglomerations showed
a year-to-year growth until 2012, when they peaked at 25.1271 metric tons. After that,
the emissions reversed the increasing trend by setting and adjusting reduction targets
at five-year intervals. During the study period, carbon emissions followed the pattern
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of “YRD > BTH > PRD”, indicating that YRD was still the largest contributor to carbon
emissions in the three major urban agglomerations. Totally, relying on its geographical
proximity to Hong Kong and Macao and the advantages of previous national policies,
PRD has strong capabilities of innovation research and development with rapid economic
growth, resulting in inputting capital and energy that can increase desired outputs to a
greater extent and reduce undesired outputs. YRD has relatively high carbon emissions
due to a large number of cities and massive industrial agglomeration. However, benefiting
from its profound economic basis, the CEE is steadily improving in YRD. The energy
consumption structure of BTH is mainly dominated by fossil energy and the contradiction
between economic development and environmental pollution is most extruded in the three
main agglomerations. With the practice of low-carbon development in recent years, the
CEE in BTH has been effectively improved, while the green development patterns still need
to be explored.
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Figure 2. Evolution of China’s carbon emissions (CE) and CEE in the three major urban agglomera-
tions from 2003 to 2017.

To further analyze the changes in carbon emissions and CEE of each city within
the three major urban agglomerations, we established a four-quadrant scatter plot with
carbon emissions as the abscissa and CEE as the ordinate for two years, 2003 and 2017
(Figure 3). Taking the average value of carbon emissions and CEE of the total sample as the
origin coordinate (42.8679, 0.4157), the quadrants corresponded to: “high-emission, high-
efficiency” (H-H), “low-emission, high-efficiency” (L-H), “low-emission, low-efficiency”
(L-L), and “high-emission, low-efficiency” (H-L). Most cities shifted from L-L in 2003 to
L-H and H-H in 2017, which reflected a decline in the number of cities with lower CEE
and a transition to cities with higher CEE. Specifically, in 2003, the number of H-L, L-L,
L-H, and H-H cities were 5, 37, 6, and 0, respectively, with the vast majority of the cities in
the three major urban agglomerations being of type L-L. Cities in the three major urban
agglomerations underwent tremendous changes over time. In 2017, the number of H-L,
L-L, L-H, and H-H cities were 6, 10, 17, and 15, respectively, where H-H cities accounted for
the majority in BTH, and L-H cities accounted for the majority in YRD and PRD. Overall,
the transformation of BTH underwent a decline in CEE, gathering to a higher CEE with the
increase in carbon emissions over time. YRD and PRD shifted from low efficiency to high
efficiency while paying more attention to controlling the growth of carbon emissions.
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Three years (2003, 2010, 2017) were selected to map the spatial distribution of CEE in
the three major urban agglomerations using ArcGIS 10.8 software (Figure 4). Total CEE in
the three major urban agglomerations shows an upward trend. While in 2003 there were
28 cities with an efficiency of less than 0.3, there were only 4 in 2017. Moreover, the spa-
tiotemporal patterns of CEE had different evolution characteristics. In BTH, low-efficiency
cities formed a C-structure surrounding Langfang, Cangzhou, and Hengshui, which had
relatively high efficiencies in 2003. In 2010, CEE was significantly enhanced, and the origi-
nal higher-efficiency cities expanded into an I-shape along the north–south direction. In
2017, the higher-efficiency cities in BTH were concentrated in the northeast and developed
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a high-efficiency city cluster with the dual-core of “Beijing-Tangshan”. Since the economic
development of the BTH region mainly radiates from Beijing and Tianjin to surrounding
cities, the Beijing-Tianjin region benefits from the concentration of talents, capital, and
technology, which can more effectively promote the transformation of energy-intensive
industries into green and low-carbon industries. However, other regions are constrained
by economic factors, which fail to achieve rapid industrial transformation, resulting in
significant differences in the spatial distribution of CEE in BTH. The higher CEE cities in
YRD were distributed with a scattered pattern and the high-value cluster in Yancheng,
Taizhou, and Nantong formed a cluster in blocks from 2003 to 2017. This shows that the
overall improvement of CEE was significant during this period and gradually spread to
southwestern cities. After more than ten years of economic development, especially with
the promotion of the integrated development of the Yangtze River Delta region as a national
strategy, the quality of low-carbon development in YRD has been continuously improved.
The relative value of CEE in PRD changed from “high at the edge and low at the middle” in
2003 to “high at the middle and low at the edge” in 2017, and the average CEE was at a high
level. In general, the ecology and economy of each city in PRD can develop simultaneously
due to the positive role played by the central cities, such as Guangzhou and Shenzhen.
From an evolution perspective, the efficiency of the three major urban agglomerations
presented a spatial pattern of “PRD > YRD > BTH”, which is consistent with the above
results of spatiotemporal distribution. This indicated that the difference in CEE between
the cities was still the focus of the development of the three major urban agglomerations.
At the same time, it was also indispensable to seize the opportunity for the timing of the
collaborative governance of BTH.
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4.2. Spatiotemporal Difference Analysis of CEE

To further reveal the differences in CEE distribution, the Dagum Gini coefficient
was used to calculate and decompose CEE disparity in each of the three major urban
agglomerations from 2003 to 2017. The total Gini coefficient ranged from 0.1745 to 0.2718
and decreased from 0.2718 in 2003 to 0.2334 in 2017, with a drop of 14.13%. It derives from
the fact that the Chinese government advocates putting energy conservation, emission
reduction, and green development ahead of economic growth in recent years, thereby
optimizing the ecological environment and alleviating the uncoordinated development
among cities. Specifically, the total difference in CEE had a fluctuating and downward trend
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during the study period, which implies that the differences of CEE within cities became
smaller. The overall Gini coefficient showed a strong reduction of 26.30% from 2004 to 2006.
Subsequently, the overall Gini coefficient fluctuated between 0.1745 and 0.2086 from 2006
to 2016, while this unbalanced status started to collapse and increased to 0.2334 in 2017.

Figure 5 demonstrates the variation of the total and intra-regional Gini coefficient of
CEE from 2003 to 2017. The Gini coefficient within urban agglomerations increased in
PRD but decreased in BTH and YRD. From the perspective of its evolution, the difference
within PRD showed first a downward trend and then an upward trend during the study
period, with 2014 as the turning point with the coefficient of 0.1153. The gap in YRD
changed significantly and its evolution process can be divided into three stages: the
first stage was from 2003 to 2006, when the intra-regional Gini coefficient presented an
approximately linear decrease with a slope of −0.0237, the second stage experienced an
inverted V-shaped polyline from 2006 to 2009, and the third stage was from 2009 to 2017,
when the intra-regional Gini coefficient fluctuated steadily, ranging from 0.1654 to 0.2048.
The 12th Five-Year Plan attaches great importance to the development of the ocean and
economic development, thereby promoting the ecological and economic improvement of
YRD in coastal areas. Under the guidance of the coordinated development strategy of urban
agglomerations, the upgrading of industrial structure in BTH has driven the emergence and
development of low-carbon industries and narrowed the gap among cities. Setting 2003 as
the base period, PRD was the only urban agglomeration with an increasing internal gap
compared to 2017. The intra-regional Gini coefficient fluctuated and declined until 2014,
followed by a sharp increase to 0.2810 in 2017, which indicated a serious expansion in the
unequal distribution of CEE. According to the analysis of the spatiotemporal distribution
pattern above, although the average CEE of PRD is at a high level, the internal development
is extremely uneven. The advantages of central cities in geographical location, resource
endowment, and economic quality make them farther apart from low-level development
cities such as Zhongshan and Zhaoqing. This single-center urban agglomeration structure
eventually leads to the irrational allocation of regional resources, thus hindering the low-
carbon development of each city in PRD [64]. As a result, the hierarchical differentiation
of city development has become increasingly solidified, which has led to the imbalance of
low-carbon development among cities in recent years.
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Figure 5. Total and intra-regional Gini coefficient of CEE in China’s three major urban agglomerations
from 2003 to 2017.

Figure 6 depicts the gap between the urban agglomerations and the variation trend
of CEE. The inter-regional Gini coefficient evolution trends for BTH-YRD and BTH-PRD
indicate a fluctuating downward trend, while the inter-regional Gini coefficient for YRD-
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PRD shows a gentle downward trend until 2015, followed by a drastic rise between 2015
and 2017. The differences between the maximum and minimum of BTH-YRD, BTH-PRD,
and YRD-PRD are 0.1555, 0.1589, and 0.1117, respectively. The results show that the gap
of CEE was gradually narrowed between BTH and the other two urban agglomerations,
while the gap between YRD and PRD presented a falling–rising evolution until 2017 when
it surpassed the gap in 2003. Since the coordinated development of urban agglomerations
has become an important national development strategy, there is still a scope for improving
CEE for many cities.
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Figure 6. Inter-regional Gini coefficients of CEE in China’s three major urban agglomerations. From
2003 to 2017.

The sources of the differences in CEE and the trends of their contributions are pre-
sented in Figure 7. During the study period, the contribution rate of the inter-regional
net differences generally showed a downward trend, while the contribution rate of the
intensity of transvariation was the opposite, showing an upward trend of fluctuation. The
contribution rate of the intra-regional differences did not change significantly. From the
dynamic evolution processes, the contribution rate of the intra-regional differences was rel-
atively stable, between 32.30% and 38.07%, and exhibited an overall increasing trend. From
2003 to 2017, the contribution rate of the inter-regional net differences and the intensity of
transvariation underwent repeated increases and decreases. The contribution rate of the
inter-regional net differences fluctuated more strongly. Specifically, we can identify three
stages. From 2003 to 2007, the contribution of the inter-regional net differences showed a
decreasing trend, reaching 25.23% in 2007. The second stage was from 2007 to 2014, which
experienced repeated fluctuations. The contribution of the inter-regional net differences
increased from 25.23% in 2007 to 62.85% in 2012, and then decreased to 36.61% in 2013,
finally reaching its highest rate of 43.34% in 2014. From 2014 onwards, the contribution of
the inter-regional net differences showed a sharp decline in 2016, when it reached the lowest
value of 12.57%, after which it slightly increased in 2017. The variation of the intensity
of transvariation was roughly opposite to the contribution rate of the inter-regional net
differences. The intensity of transvariation reveals the impact of cross-term statistics among
the three major urban agglomerations on the overall CEE difference. The contribution rate
of the intensity of transvariation showed an increasing trend until 2007 and decreased to
26.27% in 2012. Subsequently, the rate experienced a falling–rising–falling evolution and
reached the highest of three contribution rates in 2016 and continued to 2017, indicating
that inter-regional and intra-regional interactions gradually increased.
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Figure 7. The sources of the differences in CEE and the trends of their contributions.

4.3. Impact of Technological Innovation on CEE in the Three Major Urban Agglomerations

Before performing the panel data regression, it is necessary to test whether the core
explanatory variables lnTIR and lnTIC and control variables lnURL, lnIS, lnENL, and lnFT
were stationary during 2003–2017. Specifically, we adopted two types of panel unit root
tests: the LLC test [65] and the Fisher-ADF test [66]. The results all rejected the unit root
null hypothesis at the 1% significance level, indicating that the test data were stationary
without a unit root, which avoids the possibility of spurious regression (Table 4).

Table 4. Results of panel unit root tests.

Variable
LLC Test ADF-Fisher Test

Result
Stat. p-Value Stat. p-Value

lnTIR −7.8394 0.0000 16.7540 0.0000 Stationary
lnTIC −4.7003 0.0000 2.4501 0.0071 Stationary
lnURL −40.8640 0.0000 8.4049 0.0000 Stationary

lnIS −5.5402 0.0000 3.4236 0.0003 Stationary
lnENL −8.5315 0.0000 9.2944 0.0000 Stationary
lnFT −7.9233 0.0000 5.0507 0.0000 Stationary

To determine the optimal regression model suitable for comprehensively evaluating
the impact of technological innovation on CEE, two steps are required to test whether
the random effect model and the fixed effect model need to be used. The Lagrange
multiplier (LM) test was first calculated to decide the random effect. The rejection of the
null hypothesis indicated that the panel effect existed between cities, suggesting that the
random effect model was appropriate. Subsequently, the Hausman test was performed to
verify whether the fixed effect was superior to the random effect. A rejection of the null
hypothesis indicates that the fixed effect model should be adopted for regression estimation.
Due to the diverse impacts of different indicators representing technological innovation on
CEE, two core explanatory variables were separated and regressed with CEE to explore
the influence. Both results of the LM test significantly rejected the null hypothesis at the
1% level and the random effect model was accepted. Similarly, the Hausman test values of
21.94 and 32.39 (both p < 0.000) revealed the evidence to embrace the fixed effect model
(Table 5).
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Table 5. Panel regression results for the three major urban agglomerations.

Variable
Random Effect Fixed Effect

Model 1 Model 2 Model 3 Model 4

lnTIR 0.124 *** 0.0806 ***
(0.0192) (0.0201)

lnTIC 0.158 *** 0.153 ***
(0.0176) (0.0172)

lnURL −0.426 *** −0.428 *** −0.545 *** −0.559 ***
(0.0756) (0.0737) (0.0776) (0.0738)

lnIS −0.239 *** −0.187 *** −0.239 *** −0.262 ***
(0.0720) (0.0705) (0.0715) (0.0689)

lnEDL 0.208 *** 0.139 ** 0.224 *** 0.114 **
(0.0440) (0.0437) (0.0446) (0.0430)

lnFT 0.0144 −0.0696 *** 0.0091 −0.0459 *
(0.0152) (0.0174) (0.0164) (0.0182)

_cons −0.717 −0.502 −0.251 0.347
(0.423) (0.394) (0.424) (0.388)

R2 0.1949 0.2013 0.1908 0.1790
F-Statistics 195.38 193.64

Hausman test
(Prob.)

21.94
(0.0000)

32.39
(0.0000)

Note: ***, **, and * denote significance levels of 1%, 5%, and 10%, respectively.

The results indicate that both TIR and TIC exerted significant positive effects on CEE
at the 1% significance level with coefficients of 0.0806 and 0.153, respectively. The indicators
of technological innovation were found to profoundly affect CEE in the three urban agglom-
erations. This confirms that the government can scale up the input funding in technological
innovation to promote CEE. Additionally, new technologies can be directly applied to
develop clean energy and establish clean production modes that reduce carbon emissions.
Furthermore, among the technological innovation indicators, patent applications seem
to have the largest impact on CEE, of which the estimated coefficient is comparatively
higher than the proportion of government technology expenditure in total expenditure.
This indicates that the promotion of new technological applications has a large effect on
CEE. Every 1% increase in patent applications would enhance CEE by 0.153%. Patent
applications can effectively characterize the level of knowledge output in technological
innovation and evaluate the innovation capacity of a region. Patents play a unique role
in developing innovative products in specific sectors, including high carbon emission
sectors as well. They act as a bridge for gathering huge investments and R&D research
from governments, companies, and private organizations to create green technologies for
fossil energy-saving. Meanwhile, every 1% increase in the proportion of total government
technology expenditure causes CEE to increase by 0.0806%. Investments in technology are
necessary to advance the energy transition from fossil fuel to clean energy sources and
optimize the industrial structure by combining advanced elements with environmental pro-
tection. As one of the major sources of investment in technological innovation, government
expenditure integrates government guidance and economic market operations to attract
companies to develop low-carbon and high-efficiency technology equipment, reducing the
consumption of fossil energy resources directly and indirectly.

Regarding control variables, the level of economic development had a significant
positive effect in Model 3 and Model 4, with coefficients of 0.224 and 0.114 at the 1% and 5%
significance levels, respectively. The three major urban agglomerations are the economically
developed regions with the largest economies, which is conducive to improving emission
efficiency by attracting capital and high-tech talents. Moreover, economic growth triggers
technological change and economic structure evolution, thereby curbing the increase in
carbon emissions in this stage. Urbanization and industrial structure variables have a
significant negative effect on CEE at the 1% level. In the process of urbanization, rapid
population concentration and industrial activities accelerate energy consumption to meet
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the need for massive infrastructure and energy-intensive products. Meanwhile, it can
be observed that FDI is negative at the 10% level in Model 4, suggesting that every 1%
increase in per capita FDI caused CEE to reduce by 0.0459%. However, the coefficient is not
significant in Model 3.

4.4. Heterogeneity Analysis of the Impact of Technological Innovation on CEE

To further analyze the heterogeneous influence of technological innovation, we es-
timated the impact of TIR and TIC in BTH, YRD, and PRD. The results of panel data
regression are reported in Table 6.

Table 6. Panel regression results of TIR and TIC in each urban agglomeration.

Variable
BTH YRD PRD

Random Effect Fixed Effect Random Effect Fixed Effect Random Effect Fixed Effect

lnTIR 0.116 * 0.107 * 0.165 *** 0.128 *** 0.0739 * −0.0146
(0.0467) (0.0484) (0.0231) (0.0286) (0.0322) (0.0450)

lnTIC 0.236 *** 0.250 *** 0.243 *** 0.230 *** 0.132 *** 0.122 **
(0.0431) (0.0492) (0.0210) (0.0223) (0.0347) (0.0417)

Control Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
_cons −1.909 −2.931 *** −1.120 −2.663 ** 0.833 0.627 0.408 0.506 −0.649 −0.847 −0.964 *** −0.914

(0.990) (0.832) (1.032) (0.862) (0.594) (0.508) (0.638) (0.513) (0.766) (0.891) (0.822) (0.971)
R2 0.3498 0.4205 0.3195 0.4015 0.2979 0.4100 0.2861 0.4003 0.5000 0.5322 0.4622 0.5314

F-Statistics 12.59 17.61 21.36 42.77 22.72 26.22
Hausman

test (Prob.)
25.89

(0.0001)
23.72

(0.0002)
8.29

(0.1411)
8.79

(0.1176)
0.68

(0.9840)

Note: ***, **, and * denote significance levels of 1%, 5%, and 10%, respectively.

The results of the Hausman test support the fixed effect model in BTH and the random
effect model in YRD and PRD. The TIR coefficients were 0.107, 0.165, and 0.0739, signifi-
cantly positive at the 10%, 1%, and 10% levels, showing that the government’s technology
expenditure as a proportion of total expenditure improved CEE in BTH, YRD, and PRD
by various degrees. The effect was greatest in YRD. Every 1% increase in the proportion
caused CEE in YRD to increase by 0.165%. YRD, including Shanghai, Nanjing, Suzhou,
and Hangzhou, is located in one of the most economically developed zones, with the
highest degree of openness and the strongest innovation potential on the eastern coast of
China. It is at an important intersection between the “Belt and Road” and the Yangtze
River Economic Belt, with a pivotal strategic position in driving China’s high-quality and
regional coordinated development. Due to the higher similarity of industries in YRD with
low resource allocation efficiency and fierce competition in the region, the government
expands science and technology financing to achieve innovation breakthroughs, thereby
promoting industrial coordination. The emergence of new technologies creates an envi-
ronment that promotes productivity as well as the opportunity for energy conservation
and carbon emission reduction. The influence coefficient of TIR in the BHT is second only
to that in YRD, where every 1% increase would cause CEE to increase by 0.107%. As the
political center of China, the central government works in close collaboration with local
governments to guide the coordinated development of BTH. The high concentration of
heavy industry and utilization of coal-based energy have long made BTH one of China’s
most polluted urban agglomerations, which attracts great attention from the government.
The proposed target of peak carbon dioxide emissions and carbon neutrality promotes the
flow of the government’s technological investment to high-tech and cultural innovation
industries, strongly impacting CEE. The impact coefficient of PRD is lowest in the three
major urban agglomerations, indicating that every 1% increase causes CEE to increase by
0.0739%. This may be because pollution in PRD is not considered the most urgent issue
in the process of economic development yet. Therefore, the government’s financing of
technology is preferably used to improve the market competitiveness of products and
promote the upgrading of traditional manufacturing industries.

Referring to impact analysis of TIC in each urban agglomeration, the results of the
Hausman test support the fixed effect model in BTH and YRD and the random effect
model in PRD. The coefficients of TIC are all significantly positive at the 1% level in the
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three urban agglomerations, with the rank of “BTH > YRD > PRD”. Compared with
PRD, there is a small difference in the coefficients of BTH and YRD. Every 1% increase
in the number of patent applications would improve CEE in BTH and YRD by 0.25%
and 0.23%, respectively. BTH and YRD are home to many top universities and research
institutes, with strong knowledge spillover effects and remarkable innovation achievements.
High innovation capability plays an important role in adjusting industrial structure and
improving the utilization of energy efficiency, which is conducive to building a low-carbon
energy consumption system. Although TIC exerts a positive impact on CEE of PRD, the
coefficient is only 0.132, indicating that a point increase in patent applications causes CEE
to grow by 0.132%. The emissions control by the improvement of innovation capability may
shift to focus on the growth and productivity of the economy, thereby reducing the impact
of innovation output on emissions reductions. In summary, technological innovation
contributes positively to the improvement of CEE. Still, its influence is affected differently
by factors such as resource advantages, government policies, and the opening-up level of
different urban agglomerations.

5. Conclusions

Technological innovation is the driving force for establishing a low-carbon economic
system, thereby promoting an overall green transformation of economic and social devel-
opment. To explore how technological innovation affects CEE, the super-SBM approach
combined with undesired outputs was applied to estimate the CEE of 48 cities in China’s
three major urban agglomerations from 2003 to 2017. The Dagum Gini coefficient was
used to analyze CEE’s distribution difference. Moreover, we applied the panel regression
model to analyze the effects of technological innovation on CEE. Given the large efficiency
differences of the three urban agglomerations, we regressed the influencing factors of BTH,
YRD, and PRD to explore the heterogeneity of technological innovation. The conclusions
were obtained as follows.

First, from 2003 to 2017, the overall CEE increased steadily and the growth in carbon
emissions shifted from rapid to gradual in the three major urban agglomerations, moving
from the “low-emission, low-efficiency” areas to the “low-emission, high-efficiency” and
“high-emission, high-efficiency” areas. Specifically, the CEE of PRD was the highest,
followed by that of YRD, and that of PRD was the lowest, except in some years. The spatial
distribution pattern of “PRD > YRD > PRD” showed that high-value efficiency cities were
largely concentrated in YRD and PRD within the study period. The CEE of BTH gradually
improved, while its overall efficiency was still relatively low.

Second, the development of CEE was spatially heterogeneous in the three major
urban agglomerations. The total Dagum Gini coefficient indicated that the gap of CEE in
the three major urban agglomerations fluctuated less over time. From 2003 to 2017, the
decomposition of the Dagum Gini coefficient showed that the PRD gap increased while
BTH and YRD decreased. Driven by the coordinated development of BTH, the gap between
BTH and the other two urban agglomerations became smaller. However, there was still a
large gap among cities. Besides, the main source of urban agglomeration difference in CEE
shifted from inter-regional net differences to intensity of transvariation. The contribution
of the intra-regional differences was relatively stable during the study period.

Third, the impact of technological innovation was found to have a significantly positive
effect on CEE in these three urban agglomerations. Specifically, the influence coefficient of
the proportion of government technology expenditure as a function of total expenditure
(0.124) was lower than that of the number of patent applications (0.0806). Moreover,
different control variables had different effects on CEE. Industrial structure, urbanization
level, and foreign trade had an inhibitory effect on CEE, while the economic development
level significantly improved CEE.

Fourth, the influence of technological innovation is heterogeneous in the three major
urban agglomerations. In general, technological innovation is found to significantly affect
CEE in each urban agglomeration. In terms of technological innovation resources, the
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influence coefficients of the proportion of government technology expenditure in total
expenditure presented the order of “YRD > BTH > PRD”. The influence coefficient of patent
applications in BTH is the highest, followed by YRD, and PRD is the lowest. Influenced by
the characteristics and scale of urban agglomerations, there are significant differences in
the degree of impact of technological innovation on CEE.

This study responds to the long-standing controversy over the impact of technological
innovation on CEE and confirms that technological innovation is generally beneficial for
reducing urban carbon emissions and improving productivity. It provides a reference
for predicting the effect of technological innovation and formulating government policy.
Notably, the research framework of this study can be applied to other regions and extended
to explore other influencing factors on environmental pollution.

6. Policy Suggestions

In view of the differences in CEE of the three major urban agglomerations, policies
and measures should be formulated according to local conditions. Based on the above
empirical findings and discussions, we make the following suggestions for policymakers.

First, government financial support for technological innovation should be increased.
On the one hand, the government should compensate for enterprises’ insufficient funds
by expanding technical financial expenditures, directly promoting enterprises to actively
create clean products, and adjusting internal unreasonable structures. On the other hand,
the government should make full use of innovative financial investment to facilitate inno-
vative talents and social capital flowing into the economic market, thereby accelerating the
research on low-carbon and decarbonization technology development. Moreover, the gov-
ernment should also strengthen cooperation with social institutions to form a low-carbon
technology investment and financing system.

Second, the transformation of green and low-carbon technologies should be promoted
to inject strong technological momentum into green development. It is necessary to give full
play to the positive role of the market in the direction and path selection of technology re-
search, thereby enhancing the effective connection of low-carbon technologies, innovation
capital, and high-efficiency industries. The government should reinforce the introduc-
tion and implementation of technological innovation protection policies. It should also
build a platform for optimal allocation and information sharing of technological research
and development resources to accelerate the transformation of technological innovation
achievements into real productivity.

Third, the construction and development of the three major urban agglomerations
of China should be coordinated. BTH, YRH, and PRD should establish low-carbon pilot
demonstration areas in their key cities and replicate these experiences. Based on its charac-
teristics, each urban agglomeration should formulate appropriate strategies to strengthen
the low-carbon emission reduction mechanism. Specifically, cities in YRD should promote
the free exchange of innovation elements between regions and form a sound inter-regional
innovation network, which is conducive to knowledge spillover, technology progress, and
the generation of new technologies. Cities in BTH should adopt coordinated emission
reductions of urban agglomerations rather than individual emission reduction plans. The
government should propel the emergence of a coordinated carbon emission reduction
mechanism for BTH by formulating regulatory policies. PRD should promote regional
integrated development and maintain the effect of coordinated emission reduction. On
this basis, industry-driven technological innovation should continue to be strengthened to
support regional carbon emission reduction and high-quality economic development.
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