
RESEARCH ARTICLE

Derivation and validation of 10-year all-cause

and cardiovascular disease mortality

prediction model for middle-aged and elderly

community-dwelling adults in Taiwan

Tsai-Chung Li1,2, Chia-Ing Li3,4, Chiu-Shong Liu3,4,5, Wen-Yuan Lin3,5, Chih-Hsueh Lin3,5,

Shing-Yu Yang1, Cheng-Chieh LinID
3,4,5*

1 Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan,

2 Department of Healthcare Administration, College of Medical and Health Science, Asia University,

Taichung, Taiwan, 3 School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan,

4 Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, 5 Department of

Family Medicine, China Medical University Hospital, Taichung, Taiwan

* cclin@mail.cmuh.org.tw

Abstract

Prediction model mainly focused on specific diseases, such as diabetes, hypertension, car-

diovascular disease, or patients with cancer, or populations of Europe and America, thereby

limiting its generalization. This study aimed to develop and validate a 10-year mortality risk

score by using data from a population-representative sample of adults. Data were collected

from 2,221 Taichung Community Health study participants aged�40 years. The baseline

period of the study was 2004, and all participants were followed up until death or in 2016.

Cox’s proportional hazards regression analyses were used to develop the prediction model.

A total of 262 deaths were ascertained during the 10-year follow-up. The all-cause mortality

prediction model calculated the significant risk factors, namely, age, sex, marital status,

physical activity, tobacco use, estimated glomerular filtration rate, and albumin-to-creatinine

ratio, among the baseline risk factors. The expanded cardiovascular disease (CVD) mortal-

ity prediction model consisted of six variables: age, sex, body mass index, heart disease

plus heart disease medication use, stroke plus medication use, and ankle–brachial index.

The areas under receiver operating curves of the 3-, 5- and 10-year predictive models varied

between 0.97, 0.96, and 0.88 for all-cause mortality, and between 0.97, 0.98, and 0.84 for

expanded CVD mortality. These mortality prediction models are valid and can be used as

tools to identify the increased risk for mortality.

Introduction

During the past two decades, public health and medical care have been improved to reduce

infant mortality and low-age mortality [1]. The mortality risk of middle-aged and elderly

adults of the general population is greater than that of young adults, especially due to cancers,
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cerebrovascular disease (CVA), diabetes, cardiovascular heart disease (CHD), and kidney dis-

ease [2]. Among these chronic diseases, CHD, CVA, diabetes, and kidney disease are consid-

ered as expanded cardiovascular diseases and are the primary causes of death worldwide [3].

CHD, CVA, diabetes, and kidney disease were the 2nd, 4th, 5th, and 9th leading causes of

death in 2017, respectively, and accounted for more than 27% of total deaths in Taiwan [2].

Similar to many countries, Taiwan has progressively increased number of people aged 40 or

above [4]. When the age structures of populations become less youthful, a tool to predict mor-

tality risk for middle-aged and elderly adults becomes increasingly important for research, pol-

icy, and clinical practice. In addition, this rapid demographic change increases the costs on

medical care and health systems [5]. We should focus on patients who would benefit the most

from the preventive and therapeutic services to decrease costs and improve the efficiency. Pre-

diction model shows the potential to support the evaluations of health economics for the allo-

cation of healthcare resources and to provide insights into public health policy.

An easy-to-use risk-point system may be suitable in clinical practice and could easily calcu-

late individual own mortality risk and monitor this risk over time. Mortality risk score can be

applied broadly to help people and their primary physicians in making informed decisions by

using the remaining life expectancy estimations [6–8]. Applying these risk-point systems pro-

vides better risk or prognostic reclassification value than clinical risk factors alone. However,

most risk score systems for predicting overall mortality have been developed to focus in West-

ern general population [9–17], and few studies in non-Western general population [18–21].

Three works explored the 5-year mortality risk by focusing on middle-aged or elderly adults

residing in a community in Taiwan [18–20]. Two of these studies considered frailty markers

[19, 20], and one considered cardiovascular/metabolic, inflammatory, and neuroendocrine

markers [18]. None of them considered arterial stiffness, developed a prediction model for

expanded cardiovascular mortality, and/or adopted the derived risk-score system. Two nonin-

vasive measures of arterial stiffness, brachial–ankle pulse wave velocity (baPWV) and ankle–

brachial index (ABI), were used frequently in community studies [22, 23]. The baPWV, reflect-

ing arterial stiffness, arteriosclerosis, and atherosclerosis, is a marker of the severity of vascular

damage [22]. ABI test is a quick, noninvasive way to examine the risk of peripheral artery dis-

ease (PAD), a chronic condition with narrowed or blocked arteries in the legs or arms. Arterial

stiffness is an important predictor of mortality [24], and people with PAD are associated with

an increased risk of CHD. Therefore, the present study aimed to develop and validate a risk-

point system to predict long-term all-cause and expanded cardiovascular mortality in a com-

munity setting. In addition to traditional risk factors, arterial stiffness is included in this

system.

Materials and methods

Study design and subjects

The Taichung Community Health study (TCHS), a community-based prospective cohort

study, has been conducted among 2359 residents aged 40 years and above in Taichung City,

Taiwan in October 2004. The sampling approach was a two-stage sampling design with a sam-

pling rate proportional to the size within each stage. The sampling units for the first and sec-

ond stages were Li (blocks of household units) and individual. The first stage had a selection

probability of 0.125 for eight city districts, and 39 Lis were selected. Finally, 4280 individuals

were selected at the second stage. We found 750 ineligible persons who were excluded at

household visits and the number of study subjects for the listed reasons of ineligibility was

shown in S1 Table. A total of 2359 individuals participated, and the overall response rate was

66.83%. All participants of the TCHS were invited to partake in the study by letter and phone
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and to provide fasting blood sample. Data were collected using a standardized questionnaire

via face-to-face interview and health checkup. By linking the National Registry of Death data-

set, we obtained information on the individual’s death or survival and survival times. We fur-

ther excluded 138 individuals with missing values of baseline variables. A total of 2,221

participants were randomly allocated into the derivation and validation sets in a 2:1 ratio. This

study was conducted after obtaining approval from the Institutional Review Board of China

Medical University Hospital (DMR92-IRB-144, DMR93-IRB-138 & CMUH106-REC2-143)

and all methods were performed in accordance with the relevant guidelines and regulations.

Each participant provided his/her written informed consent.

Measurements

Questionnaire. A standardized questionnaire providing sociodemographic characteris-

tics, lifestyle behaviors, history of diseases, and medication use was utilized to collect data. The

questionnaire included items about marital status, educational attainment level, income level,

personal history of established hypertension, the presence of diabetes, heart diseases, stroke,

hyperlipidemia, gout and cancer, current medications of anti-diabetes, hypertension, heart dis-

eases, stroke and hyperlipidemia, smoking habits, alcohol intake, and leisure-time physical

activity.

Anthropometric measurement. The anthropometric measurements consisted of body

weight, height, body mass index (BMI), and blood pressure measurements. We measured

weight in kilograms to the nearest 0.5 kg with an electronic medical scale (SECA, Hamburg,

Germany) and height in meters to the nearest 0.5 cm with a fixed stadiometer (SECA). We

derived BMI as weight in kilograms divided by the square of height in meters (kg/m2). We

classified persons with BMI�25 kg/m2 as overweight and BMI�30 kg/m2 as obese. An elec-

tronic device in a seated position (Colin, VP-1000, Japan) was used to measure the blood

pressure.

Laboratory examination. Following a 12 h overnight fast, a blood sample was drawn

from an antecubital vein in the morning and was sent for analysis within 4 h. Blood was tested

by a biochemical autoanalyzer (Beckman Coluter, Lx-20, USA) with focus on low-density lipo-

protein-cholesterol, high-density lipoprotein-cholesterol, triglyceride, uric acid, urine albu-

min, and creatinine at the Clinical Laboratory Department of China Medical University

Hospital. We measured the serum insulin level by a commercial ELISA kit (Diagnostic Prod-

ucts Corp., Los Angeles, CA, USA) and the fasting plasma glucose level by a glucose oxidase

method (Astra-8, Beckman, CA, USA). The inter-assay and intra-assay coefficients of variation

(CV) for insulin were 8.7% and 3.4%, respectively. We estimated insulin sensitivity by a

homeostasis model assessment (HOMA-IR) equation. The inter-assay precision CV of urinary

creatinine (Jaffe’s kinetic method) and albumin (colorimetyl BCP) were both<3.0%. The low-

est detection limits of urinary creatinine and albumin were <884 μmol/L and<10 g/L, respec-

tively. We measured high sensitive C-reactive protein (hs-CRP) by a latex particle-enhanced

immunoassay (TBA-200FR, Tokyo, Japan) with the inter-assay and intra-assay CVs of<2.0%

and 1.9%, respectively, and a low detection limit of the assay of 0.1 mg/L.

Pulse wave velocity and ABI. baPWV and ABI were measured using pressure cuffs

wrapped around the participant’s brachium and ankle [25]. The results of validation studies by

using Pearson’s correlation coefficients and Bland–Altman plots revealed that this device has

good validity and reproducibility [25–27], and the automatic non-invasive device could be a

good screening tool for subclinical vascular pathology [28]. We obtained baPWV and ABI

measurements using an automatic volume-plethysmographic device from PWV/ABI (PWV/

ABI; Colin Co. Ltd., Komaki, Japan) while simultaneously recording the blood pressure, PWV,
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an electrocardiogram, and hear sounds [25, 29]. The device reproducibility has been docu-

mented (CV = 8.4% and reproducibility coefficient = 0.98) [25]. The subjects were examined

in the supine position after at least 5 min of rest. Pneumatic cuffs were placed on both the bra-

chia and ankles with a sensor that analyzes the volume pulse form. An oscillometric pressure

sensor was also used to measure the blood pressure. The electrodes of the electrocardiograph

were placed on both wrists, and the cuffs were connected. The baPWV was calculated from the

maximum of right PWV (right upper arm to right ankle) and left PWV (left upper arm to left

ankle). High values of baPWV indicate high arteriosclerosis severity. The high baPWV value

was selected as the representative baPWV for indexing atherosclerosis. ABI was derived by

dividing the systolic blood pressure at the arteries near the ankle by the systolic blood pressure

in the arms. Low ABI values indicate great arteriosclerosis severity. The representative ABI

value for indexing atherosclerosis was examined by the low value between the right and left

ABIs.

Outcome ascertainment

The primary outcome measure was all-cause and expanded cardiovascular death status,

derived from record linkage with cause of death data in the Health and Welfare Data Science

Center database. The time of follow-up began at entry date (index date) and ended up at the

time of death, or on December 31, 2016. Expanded cardiovascular disease mortality was

defined as cardiovascular disease (ICD-9-CM codes 390–459, ICD-10-CM codes I00–I99) plus

diabetes (ICD-9-CM code 250, ICD-10-CM codes E10–E14) plus kidney diseases (ICD-9-CM

580–589; ICD-10-CM N00–N29) [3].

Statistical analysis

The participants’ baseline characteristics were presented as frequency (percentage) and means

±standard deviations (SDs) when appropriate. We calculated the standardized effect sizes to

assess the comparability of the baseline characteristics between the derivation and validation

sets. Standardized effect sizes less than 0.1 indicated that the differences between the derivation

and validation sets were trivial [30]. To build the prediction models, we used the multivariate

Cox’s proportional hazards models. The variables with P-values from age adjustment analysis

less than 0.05 were entered in multivariate analysis simultaneously. And then backward elimi-

nation approach was used to delete those variables with P-values >0.05 one by one. Only vari-

ables with P<0.05 could be retained in the final multivariate model. The proportionality of

hazard assumption was confirmed in the final model by examining a bunch of the product

terms of each independent variable with log follow-up time. This proportionality assumption

was held for both all-cause and expanded CVD mortality (P-values: 0.2556 and 0.2710, respec-

tively). We developed the 10-year mortality prediction models by using the derivation set and

assessed the models’ predictive accuracy via the validation set. The survival curves were esti-

mated by Kaplan–Meier method. The steps in the development of the predictive models are

based on the Framingham heart study [31]. Mortality probabilities were estimated by the equa-

tion: p̂ ¼ 1 � S0ðtÞ
expð
P

bi�Xi � bi��XiÞ, where S0(t) is the baseline disease-free probability; βi is the

regression coefficient for Xi; and �Xi is the mean level of Xi. Discriminatory power was assessed

by the receiver operating characteristic (ROC) curve analysis. For considering the effect of

individuals who are alive may die later due to longer study follow-up, the estimate of area

under curve by time-dependent ROC curve analysis was also reported. Hosmer–Lemeshow x2

tests were used to evaluate the goodness-of-fit by comparing the observed and predicted events

of death. We performed 5000 times bootstrap resampling to assess the internal validation for

the potential for overfitting or “optimism” [32]. We also assessed the model calibration for the
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agreement between the model-predicted and observed probabilities. We calculated the inter-

cept to evaluate whether or not the predictions are systematically too low or too high. Intercept

value close to zero implies no systematic deviation in estimation of predicted probabilities.

Moreover, calibration slope was estimated for extremeness of the predicted probabilities. Slope

value close to one indicated no overfitting or “optimism” of a model. Statistical analysis was

performed in SAS version 9.4 (SAS Institute Inc., Cary, NC). All statistical significance tests

used two-tailed with P-value <0.05.

Results

A total of 262 deaths occurred during follow-up over 10 years, and more than 29% showed

expanded CVD deaths. The event rates for death and expanded CVD death as per 1000 person

years were 6.04 to 7.12, 9.84, and 1.81, 1.92, 2.95 in the 3-, 5-, and 10-year periods, respectively.

Distributions of the baseline characteristics in the derivation and validation sets were generally

similar as shown in Table 1. Mean age was 56 years (SD of 11 years) in both sets, and the num-

ber of men was approximately 50% in the derivation and validation sets. All standardized dif-

ferences of less than 0.1 indicated negligible differences between the derivation and validation

sets [33].

Table 2 shows the univariate and multivariate analyses of the significant factors related to

all-cause and expanded CVD mortality. In the multivariate Cox analysis, the significant factors

of all-cause mortality were age (hazard ratio [HR]:1.10, 95% confidence intervals [CIs]:1.08–

1.12), men (1.79, 1.24–2.60), single or widow (1.70, 1.20–2.41), smoking (1.84, 1.28–2.67), no

leisure-time physical activity (1.61, 1.16–2.25), eGFR<30 (mL/min/1.73m2) (3.26, 1.55–6.87),

and ACR�300 (mg/g Cr) (4.44, 2.54–7.77). Significant factors for expanded CVD mortality

were age (1.12, 1.09–1.16), BMI<18.5 (kg/m2) (6.27, 2.47–15.81), heart disease plus heart dis-

ease medication use (2.57, 1.38–4.76), stroke plus medication use (2.45, 1.15–5.23), and

ABI�0.9 (mm) (2.66, 1.23–5.76). Sex wasn’t significant but we entered it into final model due

because sex was an important factor in literature [34]. The final risk scores based on the

parameter estimates of regression coefficients are represented in Table 3. The risk predicting

scores for all-cause mortality consisted of seven variables from 37 possible variables with the

total score ranging from 0 to 18. The expanded CVD mortality risk score set consisted of six

variables with a possible total score of 0–19. The predicted mortalities from all-causes were

0.1% to 99.9%, 0.3% to 100.0%, and 0.7% to 100.0% in the 3-, 5-, and 10-year periods, respec-

tively. The mortalities from the expanded CVD were 0.1% to 100.0%, 0.1% to 100.0%, and

0.3% to 100.0% in the 3-, 5-, and 10-year periods, respectively, as shown in S2 Table.

The areas under receiver operating curves (AUCs) and their 95% CIs for all-cause mortality

were 0.97 (0.94–0.99), 0.96 (0.94–0.98), and 0.88 (0.83–0.93) within the 3-, 5-, and 10-year

periods, respectively. The AUCs for expanded CVD mortality were 0.97 (0.91–1.00), 0.98

(0.95–1.00), and 0.84 (0.75–0.93), respectively (S1 Fig). The similar results of AUCs were

found by using time-dependent ROC curve analysis. They were 0.97, 0.96, and 0.90 for all-

cause mortality, and 0.98, 0.98, and 0.88 for expanded CVD mortality in the 3-, 5-, and 10-year

periods, respectively. In the validation set, the fitness indices for two mortality models exhib-

ited excellent performance in the 3- and 5-year periods (AUC�0.9). The results for comparing

predicted deaths with observed deaths in the validation sets were similar using the Hosmer–

Lemeshow test (all P>0.3) (S2 Fig). The 5000 bootstrap sampling was used to assess the inter-

nal validity of the mortality models and to estimate its performance in the validation set. The

intercept and slope values were −0.01 and 0.94 for the calibration of the 10-year all-cause mor-

tality, respectively, and 0.01 and 0.22 for the 10-year expanded CVD mortality, respectively.
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Table 1. Baseline characteristics of the study subjects in the derivation and validation sets.

Variables Derivation set (n = 1,480) Standardized effect size

MEAN±SD† or n (%) MEAN±SD† or n (%)

Socio-demographic factors
Age (years) 56.70±11.79 56.48±11.09 0.02

Sex

Male 741 (50.07) 352 (47.50) 0.05

Female 739 (49.93) 389 (52.50) -0.05

Marital status

Single, widow 246 (16.62) 124 (16.73) 0.00

Married 1234 (83.38) 617 (83.27) 0.00

Educational attainment level

�6 years 340 (22.97) 184 (24.83) -0.04

7–12 years 621 (41.96) 291 (39.27) 0.05

�13 years 519 (35.07) 266 (35.90) -0.02

Income level (NT$)

�20,000 320 (21.62) 145 (19.57) 0.05

20,001–40,000 386 (26.08) 205 (27.67) -0.04

40,001–70,000 424 (28.65) 198 (26.72) 0.04

>70,000 350 (23.65) 193 (26.05) -0.06

Waist circumference (cm)† 81.35±10.11 81.27±9.88 0.01

Body mass index (kg/m2)† 24.29±3.36 24.30±3.24 0.00

Lifestyle behaviors
Smoking 241 (16.28) 115 (15.52) 0.02

Alcohol drinking 357 (24.12) 161 (21.73) 0.06

Physical activity 1007 (68.04) 489 (65.99) 0.04

Biomarker†
Systolic blood pressure (mm Hg) 135.55±21.84 135.19±22.08 0.02

Diastolic blood pressure (mm Hg) 78.9±12.53 78.92±12.57 0.00

Fasting plasma glucose (mg/dL) 102.58±27.96 104.84±29.71 -0.08

Insulin (uIU/ml) 8.55±6.97 8.27±6.26 0.04

Total cholesterol (mg/dL) 202.44±36.92 204.15±37.56 -0.05

Triglyceride (mg/dL) 120.15±98.02 122.94±88.55 -0.03

High-density lipoprotein (mg/dL) 46.22±12.61 45.39±12.61 0.07

Low-density lipoprotein (mg/dL) 126.85±33.33 128.3±33.43 -0.04

hsCRP (mg/dL) 0.25±0.59 0.22±0.28 0.06

Creatinine (mg/dL) 0.91±0.32 0.89±0.28 0.07

eGFR (mL/min/1.73m2) 85.37±19.02 86.24±17.66 -0.05

ACR (mg/g Cr) 33.73±170.65 25.65±134.45 0.05

Uric acid (mg/dL) 5.67±1.39 5.70±1.48 -0.02

Ankle-brachial index 1.04±0.10 1.04±0.09 0.00

baPWV 1639.41±448.62 1644.47±439.43 -0.01

History of disease
Hypertension 385 (26.01) 203 (27.40) -0.03

Diabetes Mellitus 125 (8.45) 80 (10.80) -0.08

Heart disease 208 (14.05) 97 (13.09) 0.03

Stroke 64 (4.32) 18 (2.43) 0.10

Hyperlipidemia 192 (12.97) 108 (14.57) -0.05

Gout 137 (9.26) 57 (7.69) 0.06

(Continued)
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This result indicated that our prediction model had good prediction for 10-year all-cause mor-

tality, but underestimated the 10-year CVD mortality.

As shown in Fig 1, the Kaplan–Meier survival curves for all-cause and expanded CVD mor-

tality were plotted by the different tertile risk groups (all log-rank test, P<0.001). Compared

with the low-risk group, the medium and high-risk groups had HR of 2.43 (95% CI 1.41–4.16)

and 17.53 (11.39–26.98) for all-cause mortality and 2.03 (0.59–7.00) and 26.26 (10.58–65.15)

for expanded CVD mortality, respectively.

Discussion

Our study developed novel prediction models consisting of renal function and arterial stiffness

for all-cause mortality and expanded CVD mortality among middle-aged and elderly commu-

nity-dwelling adults in Taiwan. These two mortality prediction models indicated excellent dis-

crimination and good calibration for all-cause mortality in the validation sets. In addition, the

two models are parsimony and reliable in computing an individual’s risks of overall mortality

and expanded cardiovascular mortality based on the traditional risk factors and novel bio-

markers of atherosclerosis. In addition, the strength of the present study is to provide a rela-

tively long-term 10-year all-cause and expanded-cardiovascular mortality model in the form

of risk-point system.

The all-cause mortality prediction models have been developed in previous studies [9–21].

However, these models reported lower C-values compared with those in our models. Our find-

ings were consistent with some previous studies stating that both eGFR and proteinuria are

key predictors for the all-cause mortality in general Chinese population [35, 36]. These two

renal measures have contributed to their independent effect on mortality [35, 36] and to the

leading risk factors of premature death, such as diabetes, hypertension, dyslipidemia, and obe-

sity [37–39]. This condition results in the high ability on explaining most cases of premature

death. Similarly, our predictive model also revealed that strong, independent, and graded asso-

ciations were observed between all-cause mortality and two important renal function-related

markers, namely, decreased GFR and increased urinary albumin excretion. These two vari-

ables were not considered simultaneously in the general population in the previous models [9–

21].

Table 1. (Continued)

Variables Derivation set (n = 1,480) Standardized effect size

MEAN±SD† or n (%) MEAN±SD† or n (%)

Cancer 46 (3.11) 24 (3.24) -0.01

Medication use
Hypertension medications 293 (19.8) 156 (21.05) -0.03

Anti-diabetes medications 94 (6.35) 65 (8.77) -0.09

Heart medications 128 (8.65) 58 (7.83) 0.03

Stroke medications 46 (3.11) 15 (2.02) 0.07

Hyperlipidemia medications 71 (4.80) 45 (6.07) -0.06

Outcome
All-cause mortality 179 (12.09) 83 (11.20) 0.03

Expanded CVD mortality 52 (3.51) 26 (3.51) 0.00

†: SD = standard deviation; hsCRP: high sensitivity C-Reactive Protein; eGFR: estimated Glomerular filtration rate; ACR: albumin-to-creatinine ratio; baPWV: brachial-

ankle Pulse Wave Velocity.

https://doi.org/10.1371/journal.pone.0239063.t001
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Table 2. Cox model measured hazard ratio and 95% confidence intervals of all-cause and expanded CVD mortality.

HR (95% CI)

All-cause mortality Expanded CVD mortality

Variables Age-adjusted Multivariate-adjusted Age-adjusted Multivariate-adjusted

Socio-demographic factors
Age (years) 1.11 (1.10, 1.13)��� 1.10 (1.08, 1.12)��� 1.15 (1.12, 1.18)��� 1.12 (1.09, 1.16)���

Sex

Female 1.00 1.00 1.00 1.00

Male 1.53 (1.09, 2.14)� 1.79 (1.24, 2.60)�� 1.74 (0.89, 3.37)� 1.93 (0.99, 3.74)

Marital status

Married 1.00 1.00 1.00

Single, widow 1.42 (1.02, 1.98)� 1.70 (1.20, 2.41)�� 1.10 (0.59, 2.07)

BMI (kg/m2)

<18.5 1.96 (1.05, 3.65)� 4.06 (1.66, 9.93)�� 6.27 (2.49, 15.81)���

18.5–24.9 1.00 1.00 1.00

25–29.9 1.09 (0.79, 1.50) 1.52 (0.83, 2.80) 1.38 (0.75, 2.57)

�30 0.88 (0.43, 1.82) 1.46 (0.44, 4.85) 1.41 (0.42, 4.74)

Lifestyle behaviors
Smoking

No 1.00 1.00 1.00

Yes 2.43 (1.72, 3.44)��� 1.84 (1.28, 2.67)�� 1.73 (0.84, 3.56)

Physical activity

Yes 1.00 1.00 1.00

No 1.77 (1.29, 2.44)��� 1.61 (1.16, 2.25)�� 1.98 (1.11, 3.56)�

Biomarker†
Blood pressure (mmHg)

SBP<120 and DBP<80 1.00 1.00

SBP�120 or DBP�80 0.84 (0.52, 1.35) 2.21 (0.53, 9.29)

Total cholesterol (mg/dL)

<200 1.00 1.00

�200 0.89 (0.66, 1.20) 0.84 (0.48, 1.47)

Triglyceride (mg/dL)

<150 1.00 1.00

�150 1.19 (0.85, 1.66) 0.90 (0.46, 1.74)

HDL (mg/dL)

Male: >40; female:>50 1.00 1.00

Male:�40; female:�50 0.92 (0.68, 1.23) 1.25 (0.72, 2.18)

LDL (mg/dL)

<110 1.00 1.00

�110 0.64 (0.46, 0.90)� 0.85 (0.44, 1.65)

eGFR (mL/min/1.73m2)

�60 1.00 1.00 1.00

30–59 1.75 (1.22, 2.50)�� 1.39 (0.97, 2.01) 1.72 (0.92, 3.22)

<30 5.37 (2.63, 10.95)��� 3.26 (1.55, 6.87)�� 1.70 (0.22, 13.05)

ACR (mg/g Cr)

<30 1.00 1.00 1.00

30–299 1.64 (1.16, 2.31)�� 1.42 (0.99, 2.03) 1.40 (0.73, 2.68)

�300 6.27 (3.7, 10.63)��� 4.44 (2.54, 7.77)��� 9.12 (3.75, 22.19)���

History of disease

(Continued)
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ABI measurement is recognized as a simple to perform, accurate, noninvasive, and inex-

pensive test; the test of ABI�0.90 (mm) is a sensitive index to detect either symptomatic or

asymptomatic peripheral arterial disease [40]. Notably, asymptomatic PAD is prevalent in

5.4% among Taiwanese individuals [41]. One systematic review described that low ABI has

increased by more than three-fold risk of CVD death and also identified individuals at high

risk of CVD mortality to allow for early interventions [23]. Our expanded CVD mortality pre-

diction model included the generally accepted CVD risk factors and a novel predictor of ABI

to improve the predictive ability of the models. However, the well-established risk factors such

as cholesterol and hypertension, included to predict 10-year CVD mortality in the Framing-

ham Score, are not included in our model [42]. The possible reason for this difference may be

our study considered baPWV and histories of heart disease and stroke that may explain the

effect of cholesterol and hypertension.

Table 2. (Continued)

HR (95% CI)

All-cause mortality Expanded CVD mortality

Variables Age-adjusted Multivariate-adjusted Age-adjusted Multivariate-adjusted

Hypertension

No 1.00 1.00

Yes

Hypertension medications

No 1.05 (0.59, 1.87) 2.76 (1.17, 6.53)�

Yes 1.04 (0.76, 1.44) 1.79 (0.99, 3.26)

Diabetes Mellitus

No 1.00 1.00

Yes

DM medications

No 1.22 (0.57, 2.61) 1.11 (0.27, 4.61)

Yes 1.48 (1.00, 2.21) 1.41 (0.68, 2.91)

Heart disease

No 1.00 1.00 1.00

Yes

Heart medications

No 1.36 (0.79, 2.33) 1.15 (0.35, 3.81) 1.59 (0.47, 5.32)

Yes 1.31 (0.91, 1.89) 2.70 (1.49, 4.90)�� 2.57 (1.38, 4.76)��

Stroke

No 1.00 1.00 1.00

Stroke medications

No 1.51 (0.62, 3.68) 1.10 (0.15, 7.99) 1.33 (0.18, 9.93)

Yes 1.49 (0.90, 2.46) 2.75 (1.34, 5.65)�� 2.45 (1.15, 5.23)�

Ankle-brachial index

>0.9 1.00 1.00 1.00

�0.9 1.61 (0.98, 2.62) 2.55 (1.19, 5.48)� 2.66 (1.23, 5.76)�

HR: hazard ratio; CI: confidence interval; SBP: systolic blood pressure; DBP: diastolic blood pressure; HDL: high-density lipoprotein; LDL: low-density lipoprotein;

eGFR: estimated Glomerular filtration rate; ACR: albumin-to-creatinine ratio.

�:p<0.05

��:p<0.01

���:p<0.001.

https://doi.org/10.1371/journal.pone.0239063.t002
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The expanded cardiovascular diseases mortality was a composite measure of cardiovascu-

lar-related mortality, i.e. measurements based on multiple items for cause of death that are car-

diovascular-related. CKD has become recognized as a key independent risk factor for

cardiovascular disease (CVD) [43]. It is now increasingly apparent that individuals with CKD

are more likely to die from CVD than to develop end stage renal disease (ESRD). Thus, the

death of cause due to renal diseases has been considered as CVD-related death. The advantage

of a composite measure is that it typically results in an increase in the incidence rates of the

composite endpoint, thus it increases its statistical power. Many prior studies had adopted the

expanded cardiovascular diseases mortality as one of their outcome measures [39, 44–49]. In

prior studies reporting prediction models in general population, only two studies provided

risk function for CVD mortality [13, 19]. One had been conducted in Western population

focusing on dietary quality score [13] for predicting 10-year CVD mortality with a highest c-

statistic value of 0.805, and the other had been conducted in Chinese population focusing on

Table 3. Parameter estimates of regression coefficient and risk score of predictors for all-cause and expanded CVD mortality from the final multivariate Cox’s pro-

portional hazards model.

All-cause mortality Expanded CVD mortality

Variables β (SE) p-value Risk score β (SE) p-value Risk score

Socio-demographic factors
Age (years) 0.09 (0.01) <0.001 0–9 0.11 (0.02) <0.001 0–9

Sex (male) 0.58 (0.19) 0.002 1 0.66 (0.34) 0.05 1

Single, widow 0.53 (0.18) 0.003 1

BMI (kg/m2) (ref: 18.5–24.9)

<18.5 1.84 (0.47) <0.001 3

25–29.9 0.32 (0.32) 0.30 1

�30 0.34 (0.62) 0.58 1

Lifestyle behaviors
Smoking (ref: No) 0.61 (0.19) 0.001 1

Physical activity (ref: Yes) 0.48 (0.17) 0.005 1

Biomarker†
eGFR (mL/min/1.73m2) (ref:�60)

30–59 0.33 (0.19) 0.08 1

<30 1.18 (0.38) 0.002 2

ACR (mg/g Cr) (ref: <30)

30–299 0.35 (0.18) 0.06 1

�300 1.49 (0.29) <0.001 3

History of disease
Heart disease (ref: No)

Heart medications

No 0.29 (1.03) 0.78 1

Yes 0.90 (0.39) 0.02 2

Stroke (ref: No)

Stroke medications

No 0.46 (0.62) 0.46 1

Yes 0.94 (0.32) 0.003 2

Ankle-brachial index

�0.9 0.98 (0.39) 0.01 2

β: parameter estimate; SE: standard error; eGFR: estimated Glomerular filtration rate; ACR: albumin-to-creatinine ratio.

https://doi.org/10.1371/journal.pone.0239063.t003
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frailty markers for predicting 4-year CVD mortality with a c-statistic value of 0.80 [19]. Our

study provided the risk score for expand CVD mortality focusing on traditional CVD risk fac-

tors along with renal function and arterial stiffness with good discriminatory power reaching

as high as 0.98, 0.98, and 0.88 in the 3-, 5-, and 10-year periods.

Mortality predictive models have important implications for human and healthcare

resource management. Therefore, we improved the previous Taiwanese mortality prediction

models [18–21]. We also developed two novel models for all-cause and expanded CVD mortal-

ity by involving integrating new and novel biomarkers, considering long-term risk evaluation,

and validating and calibrating multivariate risk models. Bootstrap sampling approach was fur-

ther used to assess the internal validity of the present models based on 5000 samples. Our

results showed good calibration for the present model of all-cause mortality with a mean slope

close to 1.0.

Our study has several advantages. First, this study included one well-defined community-

based cohort of middle-aged and elderly adults and the inclusion of powerful predictors of

renal function and ABI. Second, the recruitment process followed built-in standardized proto-

cols and instruments to ensure the high-quality of data collection. Our study has six limita-

tions. First, the effects of time-varying predictors are not considered. Second, external

validation was not performed because no external sample was available. Third, our study only

considered expanded CVD mortality because TCHS was designed to explore the issues about

cardiovascular risk factors. Other cause-specific mortalities were not considered because our

study lacks the factors associated with other causes of death. Fourth, our study has a relatively

small sample size compared with previous studies [10–12, 16, 21]. In addition, the calibration

results indicated that our prediction for 10-year expanded CVD mortality was underestimated

due to the small sample size although it has good predictive ability. Fifth, the generalization of

this prediction model may vary with the medical care system. Our study was based on a popu-

lation under a universal national health care system. Such a selection bias may limit our find-

ings to be generalized to other medical care systems, but they may be generalizable to other

populations under similar medical care system. Finally, the study subjects of derivation and

Fig 1. Kaplan-Meier survival curves for (A) all-cause and (B) expanded CVD mortality according to the low, medium, and high-risk groups.

https://doi.org/10.1371/journal.pone.0239063.g001
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validation sets are both of Chinese. Thus, our study findings may not be generalized to other

ethnic ancestries.

In conclusion, using Taiwan community survey and survival data, we have created two sim-

ple and applicable prediction score systems with excellent calibration and high discrimination

and compared these systems with other existing models. These two risk score systems exhibit

good ability to predict all-cause and expanded cardiovascular mortality risk factors in the gen-

eral community population and reveal the relative importance of predictors. For individuals,

hospitals, or healthcare providers, these systems could be used to obtain the estimates of 3-, 5-,

and 10-year probabilities of death for planning lifestyle intervention or treatment on mortality

reduction or patients’ quality of life improvement.
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