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The common human pathogen Group A Streptococcus (GAS) causes superficial as well

as invasive, life-threatening diseases. An increase in the occurrence of invasive GAS

infection by strains of the M1 and M89 serotypes has been correlated with increased

expression of the genetically and functionally linked virulence factors streptolysin O (SLO)

and β-NAD+-glycohydrolase (NADase). NADase affects host cells differently depending

on its location: its SLO-dependent translocation into the cytosol can lead to cell death

through β-NAD+ depletion, while extracellularly located NADase inhibits IL-1β release

downstream of Nlrp3 inflammasome activation. In this study, we use a macrophage

infection model to investigate the NADase-dependent inhibition of IL-1β release. We

show that bacteria expressing a functional NADase evade P2X7 activation, while infection

with a NADase-deficient GAS strain leads to a P2X7-mediated increase in IL-1β. Further,

our data indicate that in the absence of NADase, IL-1β is released through both

P2X7-dependent and -independent pathways, although the precise mechanisms of how

this occur are still unclear. This study adds information about the mechanism by which

NADase regulates inflammasome-dependent IL-1β release, which may in part explain

why increased NADase expression correlates with bacterial virulence.
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INTRODUCTION

The human pathogen Group A Streptococcus (GAS; Streptococcus pyogenes) causes diseases ranging
in severity from mild pharyngitis and impetigo to life-threatening streptococcal toxic shock
syndrome and necrotizing fasciitis (NF), and is estimated to cause about 700 million superficial and
650,000 invasive infections yearly (1). Here, we investigate how this pathogen modifies the release
of the pro-inflammatory cytokine interleukin (IL)-1β, and which role the purinergic receptor P2X7
plays in this regulation.

The pore-forming protein streptolysin O (SLO) and its co-toxin, the enzyme β-NAD+-
glycohydrolase (NADase, also called SPN), are two secreted proteins that are part of an impressive
arsenal of virulence factors employed by GAS (1, 2). SLO inserts into host cell membranes,
creating large pores that may result in cell death (3) or activation of the Nlrp3 inflammasome
(4, 5). In addition, SLO can confer translocation of NADase into the cell cytosol (6), where this
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NAD+-hydrolyzing enzyme may deplete cellular energy stores
leading to cell death (7). SLO and NADase have been assigned a
number of functionally linked roles in streptococcal pathogenesis
(8–11), and their importance was further highlighted as their
increased expression in specific clones of the M1 and M89
serotypes was linked to a rapid surge in invasive disease and the
global dissemination of these strains (12).

As part of our first line of defense against pathogens, innate
immune cells utilize pattern-recognition receptors (PRRs) to
recognize conserved bacterial and viral structures, or molecules
that signal cellular distress (13). This can lead to production
of proinflammatory cytokines such as IL-1β, a potent mediator
of inflammation and a factor involved in the host protection
response (14). IL-1β is synthesized as an inactive pro-form (pro-
IL-1β) that can be cleaved to generate active IL-1β, e.g., by the
cysteine protease caspase-1 within the so-called inflammasomes
(15). An inflammasome commonly contains caspase-1, the
adaptor molecule ASC and a sensor protein such as Nlrp3. In
murine macrophages, activation of the Nlrp3 inflammasome
requires two sequential signals. Signal one (“priming”) mediates
production of the Nlrp3 and pro-IL-1β proteins and induces
essential post-translational protein modifications, often after
PRR sensing of microbial ligands or endogenous danger signals.
In vivo, priming likely occurs through multiple receptors; in
vitro however signal one is most commonly mediated by LPS
through TLR4 to allow isolated studies of signal two. Signal two
(“activation”) leads to assembly of the inflammasome complex,
activation of caspase-1 and subsequent cleavage and release of
IL-1β (16). Although it has been shown that many triggers of the
Nlrp3 inflammasome, including SLO, induce efflux of cytosolic
K+ (17), the exact mechanisms leading to Nlrp3 activation are
not known.

Unlike most secreted proteins, IL-1β lacks a conventional
N-terminal signal peptide and is instead secreted through
unconventional release mechanisms. There are currently a
number of suggested pathways for IL-1β release, roughly divided
into vesicular and non-vesicular routes (18), some of which
have been linked to the P2X7 receptor (19). Notably, little is
known about the IL-1β release pathways involved in situations
where several stimuli may be present, such as in response to
bacterial infections.

The role of IL-1β in GAS infection is complex: on one hand
the IL-1 receptor (IL-1R) antagonist Anakinra increases the
risk of acquiring NF (20), indicating a protective role for IL-
1β in this syndrome. On the other hand, tissue damage and
hyperinflammation due to uncontrolled IL-1β levels illustrates
its detrimental effects and indicates that both host and pathogen
benefit from a fine-tuned response (21). In a recent report we
describe a novel function for NADase present in the extracellular
compartment: inhibition of IL-1β release downstream of SLO-
mediated inflammasome activation. Using a wild type (wt)
GAS strain originating from the globally dispersed M1 clone,
and an isogenic mutant strain expressing enzymatically inactive
NADase (nga(G330D)), we could show that NADase inhibits
the release of Nlrp3 inflammasome-dependent mature IL-1β
(5). This novel role for NADase could be assigned to the
extracellularly located fraction of the toxin and represents the

first description of a function for non-translocated NADase.
Curiously, NADase-dependent suppression of IL-1β could not
be explained by differential transcriptional or translational
responses or alterations in activation of the inflammasome as
such, as intracellular pro-IL-1β levels and caspase-1 activation
were similar in macrophages infected with wt or nga(G330D)
streptococci (5). Here we explore this phenomenon further,
and although an exact mechanism is still lacking, our results
indicate that the expression of a functional NADase toxin
permits the bacteria to evade activation of the P2X7 receptor,
which explains the observed decrease in IL-1β secretion. Indeed,
a NADase deficient streptococcal strain activates P2X7 in
infected macrophages, leading to membrane permeabilization
and increased release of IL-1β.

RESULTS

A Group A Streptococcus Strain Lacking
NADase Activity Induces a
P2X7-Dependent IL-1β Release Pathway
The P2X7 receptor has been implicated in the regulation
of different secretory pathways governing the unconventional
release of IL-1β (19). To analyze the potential involvement
of P2X7 in IL-1β release during GAS infection, we infected
murine bone marrow derived macrophages (BMDMs) with
wt or nga(G330D) bacteria in the presence of the P2X7-
specific antagonist A-740003 (22). Of note, in all infection
experiments we use LPS to prime the BMDMs for inflammasome
activation. While P2X7 inhibition did not affect IL-1β release
from BMDMs infected with wt bacteria, the IL-1β released
upon nga(G330D)-infection was dose-dependently reduced,
plateauing at levels similar to those induced by wt bacteria
(Figure 1A). Correspondingly, P2X7 inhibition during infections
of the human monocytic cell line THP-1, differentiated into
adherent macrophages, exhibited similar IL-1β release patterns
as BMDMs (Figure 1B).

To further corroborate the involvement of P2X7, we
performed wt and nga(G330D) infections in BMDMs from
P2X7−/− mice that present a non-functional P2X7 protein
on their surface (23). In agreement with the experiments
using the P2X7 inhibitor, B6 and P2X7−/− BMDMs released
comparable levels of IL-1β after infection with the wt strain, while
nga(G330D) bacteria induced increased IL-1β secretion from B6
but not from P2X7−/− BMDMs. As expected, LPS-priming alone
did not support release of IL-1β (Figure 1C).

No IL-1β was released from either B6 or P2X7−/−

cells when infected with bacteria lacking SLO expression,
suggesting that inflammasome activation proceeds along the
same pathway in cells of both genotypes. In line with
our previously reported data (5), we detected no difference
in total caspase-1 activity when comparing cells infected
with wt or nga(G330D) bacteria (Figure 1D). Similarly we
measured comparable levels of caspase-1 activity in infected
B6 and P2X7−/− macrophages (Figure 1D), suggesting that
the observed alterations in released IL-1β cannot be explained
by differences in inflammasome activation per se. Importantly,
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FIGURE 1 | A Group A Streptococcus strain lacking NADase activity induces a P2X7-dependent IL-1β release pathway. (A) LPS-primed B6 BMDMs or (B)

differentiated THP-1 cells were infected with wt or nga(G330D) GAS in the presence of A-740003. (C) BMDMs of the indicated genotypes were LPS-primed and

infected with wt, nga(G330D) or 1slo GAS, or left uninfected as indicated (LPS). (D,E) BMDMs of the indicated genotypes were LPS-primed and infected with wt or

nga(G330D) GAS, or left untreated (medium). Supernatants were analyzed for (A–C) IL-1β levels, (D) caspase-1 activity or (E) IL-1α levels by ELISA, a

luminescence-based assay or cytometric bead array (CBA), respectively. (F,G) BMDMs of the indicated genotypes were LPS-primed and infected with wt or

nga(G330D) GAS, only LPS-primed, or left untreated and analyzed for (F) P2X7 receptor surface levels or (G) frequency of P2X7 expressing BMDMs by flow

cytometry (FACS). (H,I) LPS-primed BMDMs of the indicated genotypes were infected with wt or nga(G330D) GAS stained with Alexa Fluor 600nm and analyzed for

(H) intracellular or (I) surface-associated bacteria by FACS. ATP and Nigericin were used as controls for P2X7 knockout and Nlrp3 inflammasome activation,

respectively. Graphs show means plus SD for (A–E) triplicate or (F–I) duplicate technical replicates and are representative of at least three independent experiments.

(F,G) Values are normalized to isotype control. LPS, LPS-primed but uninfected. Significant differences are indicated by asterisks as follows: ***P < 0.001; ****P <

0.0001. Values that are not significantly different are indicated (ns).

P2X7−/− BMDMs reacted normally to the K+ ionophore
Nigericin (Figure 1C), demonstrating that these cells respond
to stimuli not sensed by the P2X7 receptor. In addition, B6
and P2X7−/− macrophages released similar levels of IL-1α upon
wt and nga(G330D) GAS infection (Figure 1E), suggesting that
P2X7-deficiency does not affect the priming of BMDMs.

In macrophages, P2X7 receptors continuously traffic between
different cellular compartments and may exhibit surface
upregulation upon e.g., infection (24). We hypothesized
that streptococcal NADase might affect these trafficking
pathways and thus inhibit P2X7-dependent IL-1β release
by decreasing the presence of the receptor at the cell
surface. While P2X7 was upregulated by LPS priming and
further increased after bacterial infection (Figure 1F) wt- and
nga(G330D)-infected macrophages increased surface expression
of P2X7 to a similar extent (Figures 1F,G). Thus, P2X7
trafficking to the cell surface was similarly affected by wt and
nga(G330D) GAS.

The P2X7 receptor has also been ascribed scavenger
properties mediating uptake of bacteria, a function that is
disrupted in the P2X7−/− mice used in this study (25).
To investigate whether B6 and P2X7−/− BMDMs differ
in ability to internalize GAS, we infected BMDMs with
bacteria labeled with a fluorescent ester (Alexa Fluor 660)
and subsequently stained the cells using a FITC-conjugated
anti-streptococcus antibody. Using flow cytometry, we could
identify cells harboring intracellular (single positive for Alexa
Fluor) and/or cell-associated (double positive for Alexa Fluor
and FITC) bacteria. However, we found no alterations in
bacterial uptake or the numbers of surface associated bacteria
between B6 and P2X7−/− BMDMs, nor between wt- and
nga(G330D)-infected cells (Figures 1H,I). Thus, the P2X7-
dependent differences we observe in IL-1β release are unlikely
to be explained by the scavenging properties of this receptor.
Taken together, this data suggest that GAS induce SLO-mediated
inflammasome-dependent IL-1β release independently of the
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P2X7 receptor, but that bacteria expressing an enzymatically dead
NADase trigger an additional and P2X7-dependent pathway
leading to increased secretion of IL-1β. Moreover, the role
of P2X7 in driving this additional release does not relate to
differences in surface expression of the receptor or its ability to
internalize bacteria.

P2X7-Dependent IL-1β Release Occurs
Independently of Extracellular ATP or
β-NAD+ Cleavage Products
It has been reported that ATP may be released from
macrophages through open pores generated after activation of
P2X7 (26), creating an autocrine ATP-P2X7-activation loop.
We hypothesized that our two bacterial strains might induce
differential, P2X7-dependent or -independent, release of ATP,
which could lead to differences in secretion of IL-1β. However,
we observed similar and very low levels of extracellular ATP
during infection with either bacterial strain, even though total
ATP levels were easily detectable in infected cells (Figure 2A).
Untreated cells contained yet higher levels of ATP, agreeing with
previous studies showing decreased intracellular ATP levels in
response to infection (27, 28). Also in line with previous data
(11), we observed a significant difference in total ATP levels in
wt compared to nga(G330D) infected cells (Figure 2A). However,
this difference between the two bacterial strains remained in
P2X7−/− cells (Supplementary Figure S1A) also disqualifying
altered internal ATP levels as an explanation for differential IL-
1β release. In addition, the use of the ATP-hydrolyzing enzyme
Apyrase had no effect on IL-1β levels during GAS infection,
although the enzyme readily hydrolyzed ATP (Figure 2B and
Supplementary Figure S1B).

When streptococcal NADase hydrolyses β-NAD+, it generates
nicotinamide (NAM) and ADP-ribose (ADPR), both substances
with documented effects on eukaryotic cells (29, 30). If a NADase
cleavage product mediates inhibition of P2X7-dependent IL-
1β release, then the addition of them during nga(G330D)
infection (where they should not be generated by the bacteria)
should lead to a decrease in IL-1β. However, we did not
observe such a decrease upon addition of either substance
on its own, or in combination of the two (Figure 2C). High
concentrations of NAM did inhibit IL-1β release upon infection
with both wt and nga(G330D) bacteria. However, as it also
affected the secretion of non-inflammasome cytokines like IL-6
(Supplementary Figure S1C), we believe that this inhibition is
the result of amore general effect and should not be interpreted as
NAM acting as an inhibitor of P2X7. Relatedly, we hypothesized
that β-NAD+, which is not hydrolyzed during infection with
nga(G330D) bacteria, might drive the P2X7-dependent increase
in IL-1β release. We expected that, if true, the addition of this
compound during nga(G330D) infections would increase IL-1β
secretion even further. However, supplementing infections with
β-NAD+ had no significant effect on IL-1β release (Figure 2D).
Taken together, our data suggest that during infection with
NADase-deficient GAS, P2X7 activation is not mediated by ATP
but by a yet to be determined ligand for this receptor.

P2X7-Dependent IL-1β Release Does Not
Require P2X4 or the ADP-Ribosylating
Protein CD38
P2X7-dependent cytokine release can be potentiated by P2X4,
another member of the P2X family (31). To investigate
whether P2X4 was involved in the P2X7-dependent NADase-
mediated effect on IL-1β release, BMDMs deficient for P2X4
were infected. IL-1β levels were significantly increased in
infected P2X4−/− compared to B6 BMDMs, but the absence
of P2X4 did not reduce the amount of IL-1β released during
nga(G330D) infections (Figure 3A), suggesting that the NADase-
dependent changes to IL-1β secretion are independent of
this receptor.

P2X7 function can also be altered by ADP-ribosylation of
the receptor (32) and we found that the ADP-ribosyltransferase
CD38 (33) was significantly upregulated during priming of B6
macrophages (Figure 3B). We thus hypothesized that CD38 may
modulate P2X7 during nga(G330D) but not wt infection, as only
wt bacteria would consume the substrate β-NAD+. However,
we observed no difference in IL-1β release from infected CD38-
deficient compared to B6 macrophages (Figure 3C).

P2X7-Dependent IL-1β Secretion During
NADase-Deficient Group A Streptococcus

Infection Cannot be Explained by Altered
Protein Degradation or Vesicular Release
Patterns
A possible explanation for the observed differences in IL-1β
release is a selective or increased intracellular degradation of
IL-1β during wt compared to nga(G330D) infection. The main
degradative processes in cells are mediated by the proteasome
or by autophagy, and previous studies have shown that IL-1β
can be targeted for either pathway (34, 35). Thus, we added the
proteasome inhibitor MG-132 or the broad autophagy inhibitor
3-MA to our infections and measured the effect on IL-1β
release. To avoid interference with the priming step (36), the
inhibitors were added to primed cells 30min before infection
with GAS. Interestingly, inhibition of proteasome activity (MG-
132) resulted in a decrease in IL-1β release induced by both
streptococcal strains, as well as by ATP, and at increased levels
of inhibitor (50µM), the difference in IL-1β release from
wt and nga(G330D) infected cells was eradicated (Figure 4A).
Together, our data suggest that IL-1β release in response to these
stimuli, including release induced specifically by the NADase-
deficient strain, may be dependent on degradation of one or
several yet unknown proteins. In contrast, 3-MA significantly
increased levels of released IL-1β upon infection with either
strain (Figure 4B), suggesting, in line with previous studies,
that IL-1β or one of the inflammasome components may be
targeted for autophagosomal degradation during infection (35,
37). As levels of secreted IL-1β increased significantly from both
wt- and nga(G330D)-infected BMDMs in the presence of 3-
MA, we conclude that NADase-dependent inhibition of IL-1β
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FIGURE 2 | P2X7-dependent IL-1β release occurs independently of extracellular ATP or β-NAD+ cleavage products. (A) B6 BMDMs were LPS-primed and infected

with wt or nga(G330D) GAS, or left untreated (medium), and ATP content analyzed by a luminescence-based assay. (B–D) LPS-primed B6 BMDMs were infected with

wt or nga(G330D) GAS in the presence of (B) apyrase, (C) nicotinamide (NAM), ADP-ribose (ADPR), NAM+ADPR or (D) β-NAD+. (C,D) Values are normalized to

wt-infected BMDMs. Supernatants were analyzed for IL-1β by ELISA. Graphs show means plus SD for triplicate technical replicates and are representative of at least

three independent experiments. Significant differences are indicated as follows: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Values that are not significantly

different are indicated (ns). Values that were below detection limit are indicated (nd).

FIGURE 3 | P2X7-dependent IL-1β release does not require P2X4 or the ADP-ribosylating protein CD38. (A) BMDMs of the indicated genotypes were LPS-primed

and infected with wt or nga(G330D) GAS or treated with ATP or Nigericin. (B) CD38 expression on BMDMs after LPS-priming was analyzed by FACS. (C) BMDMs of

the indicated genotypes were LPS-primed and infected with wt or nga(G330D) GAS or treated with ATP or Nigericin. Supernatants were analyzed for IL-1β by ELISA.

ATP and Nigericin were used as controls for Nlrp3 inflammasome activation. Graphs show means ±SD for triplicate technical replicates and are representative of at

least three independent experiments. medium: untreated cells. Significant differences are indicated by asterisks as follows: **P < 0.01; ***P < 0.001; ****P < 0.0001.

Values that are not significantly different are indicated (ns).

release cannot be explained by selective autophagy-mediated
degradation of IL-1β.

Many studies have suggested that P2X7 may be involved in
regulating vesicle-mediated release of IL-1β (19) and a recent
study propose that vesicular P2X7-dependent release pathways
may involve calpains, a family of Ca2+-dependent proteases
(38). However, in the presence of the selective calpain inhibitor
PD150606 IL-1β release remained unchanged (Figure 4C),
suggesting that secretion occurs independently of calpains.

To broadly investigate whether IL-1β may be released in
vesicles during GAS infection, we subjected the supernatants of
infected BMDMs to a series of centrifugation steps to collect

vesicles by size (Figure 4D), lysed vesicle membranes using
Triton-X and measured IL-1β. While our results indicate that a
small portion of IL-1β can be found in dead cells (2000 g pellet),
microvesicles (10,000 g pellet) and exosomes (100,000 g pellet)
after infection (39), the vesicular release patterns induced by the
two strains and the low total levels present in vesicles excludes
differential release of IL-1β by vesicular transport (Figure 4E).

Together, these results suggest that the nga(G330D) strain
does not inhibit protein degradation or induce a vesicle-
mediated release pathway downstream of P2X7 that could
explain the discrepancy between IL-1β levels induced by wt and
nga(G330D) streptococci.
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FIGURE 4 | P2X7-dependent IL-1β secretion during NADase-deficient Group A Streptococcus infection cannot be explained by altered protein degradation or

vesicular release patterns. B6 BMDMs were LPS-primed and infected with wt or nga(G330D) GAS, or left untreated (medium), in the presence of (A) MG-132, (B)

3-MA, or (C) PD150606. (D) Centrifugation setup schematic: supernatants were subjected to sequential centrifugation steps: 300 g, 5min (pre-cfg); 2000 g, 10min;

10 000g, 30min and 100 000g, 1 h. Pellets were harvested after the 2000 g, 10 000 g and 100 000g steps. (E) Supernatants and pellets from LPS-primed, infected

or untreated (medium) B6 BMDMs were isolated as in (D). IL-1β levels were measured by ELISA. ATP and Nigericin were used as controls for Nlrp3 inflammasome

activation. Graphs show means plus SD for (E) duplicate or (A–C) triplicate technical replicates and are representative of at least three independent experiments.

Significant differences are indicated by asterisks as follows: ****P < 0.0001.

P2X7-Mediated Release of IL-1β in
Response to Group A Streptococcus Is
Dependent on Permeabilization of the
Plasma Membrane
IL-1β has been suggested to be released through membrane pores
or channels, or upon cell lysis (18). Polyethylene glycols (PEGs)
can prevent cell lysis and death, if their diameter is larger than
the that of pores in the cell membrane (40). In addition, PEGs
may physically block passage of substances through membrane
channels by steric obstruction (41). To investigate whether the
nga(G330D) strain triggers a second release pathway in addition
to the known SLO-dependent pathway that is activated by both
strains, we employed a series of PEGs of increasing molecular
weight, hypothesizing that these two pores should be blocked
by PEGs of different size. In our experimental setup, BMDMs
were infected with GAS for 90min after which the bacterial
suspension was removed and replaced with fresh media. Culture
supernatants were then harvested and analyzed after 3 hrs.
The presence of PEGs during either of the two phases of the
experiment (90-min infection or 3 h post-infection incubation)
had no effect on IL-1β release from cells infected with wt bacteria.
In contrast, nga(G330D)-mediated release of IL-1β presented
with a pronounced decrease correlating with increased PEG size,
until IL-1β levels reached those of wt-infected cells (Figure 5A).
This implies that the nga(G330D) strain induces the opening of
an additional pore of smaller size than the SLO pore, and that
this second passage is required for the release of the additional
IL-1β. Of note, the effect of PEGs was similar regardless of
whether they were present during the 90-min infection phase or
the 3 h post-infection period (Supplementary Figure S2A). As
only the P2X7-mediated, but not the SLO-mediated, IL-1β release
seemed to be affected by PEGs, we expected IL-1β secretion

from infected P2X7−/− BMDMs to remain unchanged by PEGs
during either phase of the experiment, which was indeed the case
(Supplementary Figure S2A). When PEGs were present during
the 90-min infection step, it had no effect on cellular integrity as
measured by LDH release, while the addition of PEGs during the
post-infection 3 h period clearly prevented leakage of cytosolic
contents (Supplementary Figure S2B), suggesting that most cell
death occurs during the later phase of the experiment and
subsequent to IL-1β release. Consistent with this, the addition
of the cytoprotectant glycine (42) efficiently blocked plasma
membrane permeabilization during GAS infection but had no
effect on the secretion of IL-1β (Supplementary Figure S2C).
Thus, IL-1β release and cell death proceed with different kinetics
and seem to be regulated by different pathways during GAS
infection. To summarize, these data suggest that IL-1β secretion
occurs through two different mechanisms during infection with
nga(G330D) bacteria, one dependent of and one independent of
P2X7, and that IL-1β and LDH are released through separate
pathways during GAS infection.

Recent studies have highlighted the importance of the pore-
forming protein Gasdermin D (GsdmD) in caspase-1-dependent
IL-1β release and cell death (18). Interestingly, IL-1β release
induced by streptococci was independent of GsdmD (Figure 5B).
Cell death as measured by release of LDH was also largely
independent on GsdmD (Supplementary Figure S2D), which is
in agreement with previous studies suggesting that cell death
during GAS infection occurs mainly through non-pyroptotic
pathways (3, 5). Several other pore-forming proteins and
transporters have been implicated in P2X7-dependentmembrane
permeabilization and/or IL-1β release (43, 44). Thus, we applied
a number of inhibitors targeting membrane permeabilizers
(Table 1) during GAS infection of macrophages and analyzed
their effect on IL-1β release. Glyburide, an anti-diabetic drug
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FIGURE 5 | P2X7-mediated release of IL-1β in response to Group A Streptococcus is dependent on permeabilization of the plasma membrane. (A) LPS-primed B6

BMDMs were infected with wt or nga(G330D) GAS in the presence of poly-ethylene glycols (PEGs) of different molecular weight. (B) BMDMs of the indicated

genotypes were LPS-primed and infected with wt or nga(G330D) GAS or treated with Nigericin. medium: untreated cells. (C–G) BMDMs were LPS-primed and

infected with wt or nga(G330D) GAS (left panels) or stimulated with ATP (right panels) in the presence of (C) glyburide, (D) DIDS, (E) BLT-4, (F) Probucol, (G)

Vanadate. ATP was used as a control for Nlrp3 inflammasome activation. medium: untreated cells. (C–G), right panels Values are normalized to ATP-treated BMDMs.

Supernatants were analyzed for IL-1β by ELISA. Graphs show means plus SD from three independent experiments (C–G), right panels, or means plus SD for triplicate

technical replicates representative of at least three independent experiments. Significant differences are indicated by asterisks as follows: *P < 0.05; **P < 0.01; ***P

< 0.001; ****P < 0.0001. Values that are not significantly different are indicated (ns).

used as an inhibitor of the ion and metabolite permeable channel
pannexin-1 and the cholesterol efflux pump ABCA1—both
membrane proteins that have been implicated in P2X7-mediated
IL-1β release (43, 44)—dose-dependently reduced levels of IL-
1β released from nga(G330D)-infected B6 macrophages, while it
had no effect on IL-1β released from wt-infected B6macrophages
(Figure 5C). Similarly, the chloride transport inhibitor DIDS
(Figure 5D), the lipid transport inhibitor BLT-4 (Figure 5E) and
the ATPase inhibitor vanadate (Figure 5F), selectively affected
release induced by the nga(G330D) strain (44–46). All four of
these inhibitors have been shown to interfere with the ABCA1
channel, however, the antioxidant probucol—an inhibitor of
ABCA1-mediated cholesterol efflux (47)—had no effect on IL-
1β release in response to GAS (Figure 5G). Of note, when these
inhibitors were applied to LPS-primed macrophages in which
the inflammasome had been activated by ATP (Figures 5C–G,
right panels), their effect was not always the same as on
infected cells. Indeed, while all inhibitors apart from probucol
dose-dependently decreased IL-1β release upon nga(G330D)
infection, secretion upon ATP-driven inflammasome activation
was reduced by glyburide, DIDS and probucol (Figures 5C,D,G;
right panels), unaffected by BLT-4 (Figure 5E, right panel)

and increased in the presence of vanadate (Figure 5F, right
panel). These divergent effect patterns suggest that nga(G330D)
infection drive IL-1β release through a different pathway as
compared to ATP, which is also in line with our other findings
presented here. Thus, while it is clear that nga(G330D) infection
induces P2X7-mediated membrane permeabilization and that
ABCA-1 is implicated by most of the used inhibitors, the identity
of the membrane passage remains to be determined.

DISCUSSION

The proinflammatory cytokine IL-1β is an important factor in
mounting effective immune responses against many pathogens
including GAS, illustrated e.g., by increased susceptibility to
necrotizing GAS infections among patients receiving the IL-1R
antagonist Anakinra (20) and of aggravated disease in GAS-
infected IL-1 receptor (IL-1R)-deficient mice (21). However,
the role of this cytokine in GAS infection is complex; in
a forward genetics screen using a panel of intercrossed
mice (C57BL/6xDBA/2J), increased susceptibility to GAS and
enhanced bacterial growth correlated with increased IL-1β levels
during infection (52). Moreover, type I interferon-deficient
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TABLE 1 | Inhibitors used and their reported targets.

Inhibitor Targets References

Glyburide Pannexin-1, ABCA1, P-gp, SR-BI, ATP-sensitive K+ channel, inflammasome activation (43, 45, 48–50)

DIDS Cl− channels, ABCA1, inflammasome activation (44, 48, 49)

BLT-4 SR-BI, ABCA1 (45)

Vanadate ATPase activity (P-gp, ABCA1, ABCC1, ABCC2) (46)

Probucol ABCA1-mediated lipid efflux (51)

mice are unable to properly control IL-1β levels and thus
rapidly succumb to GAS infection because of IL-1β-mediated
pathology, even in the absence of bacterial expansion (21).
Thus, to properly control infection and prevent detrimental
tissue damage, it seems crucial that IL-1β is maintained at
appropriate levels. The generation of bioactive IL-1β upon
Nlrp3 inflammasome activation in response to GAS largely
occurs due to the membrane-damaging toxin SLO (4, 5)
We recently uncovered a role for the streptococcal β-NAD+-
glycohydrolase NADase in limiting SLO-mediated IL-1β release
(5), and propose that this represents a bacterial strategy to
evade innate immune responses, which may at least in part
explain the observation that increased expression of SLO and
NADase correlates with increased bacterial virulence (51). Here
we further explore the mechanistic basis for NADase-mediated
modulation of IL-1β release and find that the expression of
functional NADase allows the bacteria to avoid activation of
the P2X7 receptor during infection. Indeed, a streptococcal
strain expressing an enzymatically inactive version of NADase
triggers P2X7-dependent membrane permeabilization leading to
increased levels of IL-1β being released. Our results also align
with a previous study suggesting caspase-1 activation induced by
wt GAS is independent of the P2X7 receptor (4).

It is well-known from previous studies that ATP mediates
P2X7-dependent activation of the inflammasome, but also has
several other unrelated functions including the regulation of
leaderless protein release (19). Interestingly, we observe P2X7-
dependent increase of IL-1β levels but cannot detect any
inflammasome activation per se downstream of P2X7, suggesting
these processes may be mechanistically disconnected. The long
cytoplasmic C-terminus of P2X7 harbors predicted binding
sites for several interacting cytosolic components, also implying
that this receptor is able to recruit distinct pathways upon
activation, although it is unclear how these discrete downstream
responses might be differentially triggered. It has been suggested
that P2X7 when activated physically interacts with Nlrp3
leading to inflammasome complex assembly (53). Thus, the
absence of P2X7-mediated inflammasome activation upon GAS
infection could possibly be explained by SLO-mediated activation
decreasing the amount of free Nlrp3 available for direct
interaction with P2X7, i.e., substrate restriction may be one way
the responses of this receptor can be regulated.

The unconventional protein secretion mediated by P2X7
has previously been coupled to several distinct mechanisms,
with one release concept relating to the permeabilization of
and subsequent transport across the plasma membrane (54).
How this P2X7-mediated membrane permeabilization occur is

debated (26); one hypothesis states that the P2X7 receptor itself
forms a large pore permeable to molecules up to 900 Da (55),
and the other that macropore formation is mediated by the
recruitment of one or several accessory proteins (26). Direct
release of IL-1β through the P2X7 receptor complex is unlikely
as the diameter of the mature cytokine is significantly larger
than the estimated P2X7 pore size [4.5 vs. 1.4 nm (56, 57)],
suggesting the involvement of accessory proteins. Two lines of
data in our study suggest that IL-1β release during NADase-
deficient GAS infection in fact occur through more than one
mechanism: (1) absence of P2X7 does not completely abrogate
IL-1β release during nga(G330D) infection, but instead decreases
levels to those observed during wt infection, and (2) the excess IL-
1β that is released during nga(G330D) infection can be blocked
by PEGs while the wt-induced release cannot. The study of IL-1β
release has revealed multiple pathways seemingly dependent on
e.g., cell type and inducing stimulus and it has been suggested
that this versatility may represent biological diversity and/or
possibly reflect cell health (54). Our data also highlight another
level of complexity as they indicate that multiple mechanisms at
once may govern IL-1β release from a single cell, which seems
a likely representation of what might occur during infection
in vivo considering the intricacy of host-pathogen interactions
and the promiscuity of IL-1β release pathways. Our studies also
emphasize the importance of complementing the use of more
reductionist systems with infection models for our appreciation
of how eukaryotic cells sense, integrate and decode the multitude
of signals occurring simultaneously during infection.

The P2X7-dependent IL-1β release observed during
nga(G330D) infection is sensitive to several of the ion and
ABC channel inhibitors tested. Although our data does not
allow us to identify the components involved, or propose
whether inhibition relates to the actual release of IL-1β or an
upstream regulatory process, it clearly indicates a role for an
accessory protein during IL-1β release in response to GAS.
Of note, some of these inhibitors have also been reported to
directly target inflammasome activation (48). However, as we
observe an exclusive effect on nga(G330D)-induced release
(wt-induced release remains unchanged), and as we cannot
detect any differences in inflammasome activation between wt
and nga(G330D) infection, we conclude that the inhibitors in
our infections rather cause a disturbance of the secretion process.

Until recently, cytokine secretion and pyroptotic cell
death were generally considered linked and default processes
downstream of inflammasome activation. It has also been
suggested that IL-1β release is a mere consequence of cell lysis
(58). In line with more recent studies challenging these views, we
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observed differential PEG-induced inhibition patterns for IL-1β
secretion and cell death (as measured by LDH release). Indeed,
while IL-1β secretion is equally affected regardless of whether
PEGs are present during or after the infection, cell death is
only inhibited when PEGs are present during the post-infection
phase. Moreover, IL-1β secretion upon nga(G330D) or wt
infection is differentially affected by PEGs, whereas the pattern
of cell death inhibition seems independent of infecting strain.
These observations let us conclude that IL-1β release, but not
cell death, is regulated by streptococcal NADase and P2X7; and
that IL-1β secretion and cell death are kinetically separate events
during GAS infection of macrophages. Further, they allow us
to hypothesize that PEGs may block IL-1β secretion by steric
hindrance, as inhibition occur also when PEGs are present only
during infection and removed for the post-infection phase, but
that this does not seem to be the case for cell death.

In summary, our results indicate that macrophages can release
IL-1β through several pathways in response to GAS, and that
one of these pathways is P2X7-dependent and inhibited in the
presence of a functional NADase enzyme. This pathway involves
membrane permeabilization induced by the P2X7 receptor but
seems to be disconnected from inflammasome activation per se.
Intriguingly, our data suggest that GAS has evolved strategies
to specifically evade activation of the P2X7 receptor, making it
of general interest to further investigate the role of the P2X7
receptor in GAS pathogenesis.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
GAS strain 854 is an M1 strain isolated from a patient with a
retroperitoneal abscess (59). The isogenic mutant strains used in
this study have been described previously (7), and was a generous
gift fromMichael RWessels. The1slo strain harbors a deletion of
the slo gene and nga(G330D) expresses an enzymatically inactive
variant of the NADase toxin. GAS strains were grown in Todd-
Hewitt broth supplemented with 0.5% yeast extract (THY) at
37◦C, 5% CO2. For infection, overnight THY cultures were re-
inoculated in fresh THY and grown to late exponential phase
(OD600 = 1.1–1.3), collected by centrifugation and washed with
phosphate-buffered saline (PBS) before diluting to the desired
multiplicity of infection (MOI).

Mice
All genetically modified mouse strains [P2X7−/− (60), P2X4−/−

(61), GsdmD−/− (62), and CD38−/− (63)] were on a C57BL/6
(B6) background. B6 mice were purchased from the animal
facility of the Biomedical Center, Lund University. Genetically
modified mice or bone marrow from modified mice were kindly
provided by Frances E Lund (CD38−/−), GlaxoSmithKline
(P2X4−/−), and Russell E. Vance (GsdmD−/−). P2X7−/−

mice were purchased from Jackson Labs (originally made by
Pfizer). All experiments were conducted in accordance to the
Malmö/Lund animal ethics committee.

Generation and Infection of Bone
Marrow-Derived Macrophages
Bone marrow was isolated from murine femurs and tibiae and
progenitor cells were differentiated into bone marrow-derived
macrophages (BMDMs) for 7 days in RPMI 1640 (Gibco)
supplemented with 10% FBS (Sigma), 2.5mM L-glutamine
(Gibco) andmacrophage colony-stimulating factor at 37◦C in 5%
CO2. For infection experiments, BMDMs of indicated genotypes
were primed with 0.1µg/ml LPS (Sigma) for 15 h and infected
at MOI 1:30 before centrifugation at 300 g for 5min and 1.5 h
incubation at 37◦C in 5% CO2. At this point the bacterial
suspension was replaced with fresh media containing 300µg/ml
gentamicin (Sigma) to kill extracellular bacteria and the
BMDMs were incubated for another 3 h. As positive controls of
inflammasome activation, LPS-primed uninfected macrophages
were treated with ATP or Nigericin (Sigma) the last 30min
before experimental end point. Supernatants were harvested
after centrifugation at 300 g for 5min to clear debris. Where
indicated, BMDMs were infected in the presence of various
compounds. A-740003 (Tocris), Glyburide (Sigma), 4,4−/−-
diisothiocyanatostilbene-2,2−/−-disulfonic acid disodium salt
hydrate (DIDS) (Sigma), Sodium metavanadate (Sigma), BLT-4
(Sigma), Probucol (Sigma) and PD-150606 (Tocris) were added
30min before infection and were also present during the 90min
infection. Nicotinamide (NAM) (Sigma), ADP-ribose (ADPR)
(Sigma), NAD+ (Sigma), 3-MA (Sigma), Glycine (Sigma) and
MG-132 (Merck) were present during the 90min infection. PEGs
(Sigma, ICN Biomedicals, Merck) were present during the 90min
infection or the 3 h incubation. Apyrase (Sigma) was present
during the whole infection (90 min+3 h).

Differentiation and Infection of THP-1 Cells
THP-1 cells were cultured in RPMI 1640 supplemented with
10% FBS, 2mM L-glutamine, 1mM sodium pyruvate, 5mM
HEPES, 4.5 mg/ml D-glucose and 0.05mM 2-mercaptoethanol at
37◦C in 5% CO2. Differentiation into macrophages was acquired
by stimulation with 5 ng/ml phorbol 12-myristate 13-acetate
(PMA) for 48 h. GAS infection of THP-1 cells was performed
as described above following 24 h priming with 5 ng/ml LPS.
For inhibition of the P2X7 receptor, A-740003 (Tocris) was
added 30min before infection and was present throughout
the experiment.

Cytokine Analysis
Supernatants from infected BMDMs or THP-1 cells were
analyzed for IL-1β or IL-1α using ELISA kits (BD Biosciences
and R&D Systems) or cytometric bead array (BD Biosciences),
respectively, according to the manufacturer’s instructions. Of
note, we commonly detect fluctuations in absolute IL-1β levels
between experiments, likely due to features of the ELISA kits.
Importantly, the ratio of IL-1β induced by different treatments
remains stable throughout all experiments performed.

Caspase-1 Activity Assay
Cleared supernatants were analyzed using Caspase-
Glo Inflammasome Assay (Promega), according to the
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manufacturer’s instructions. Luminescence was measured
on a Varioskan LUX plate reader.

Flow Cytometry
For surface staining, cells were infected or treated as indicated
and washed with PBS, incubated in blocking buffer (10% rabbit
IgG or FBS in PBS) and stained with relevant antibodies.
For analysis of intracellular and cell-associated bacteria, GAS
cultures were washed, and the bacteria labeled with an
Alexa Fluor 660 NHS Ester (Life technologies). The following
antibodies and isotype controls were used: anti-mouse CD38-
FITC (BD Biosciences, cat #558813, clone 90), rat IgG2a isotype
control-FITC (eBioscience, cat #11-4321-82, clone eBR2a), anti-
Streptococcus A-FITC (LSBio, cat #LS-C86701), anti-P2X7
receptor (extracellular) (Alomone, cat #APR-008), purified rabbit
IgG isotype control (Life technologies, cat #026102). A Zenon
kit (Life technologies) was used to label the P2X7 antibody and
the purified rabbit IgG with the fluorescent conjugate Alexa
Fluor 647. Stained cells were washed and fixated with 4%
paraformaldehyde (PFA), acquired on a BD LSR II or Accuri C6
flow cytometer and analyzed using FlowJo.

Cytotoxicity Assay
Release of the cytosolic protein lactate dehydrogenase (LDH)
was used as a mean to assess cell death. Cleared supernatants
were analyzed using the CytoTox 96 assay (Promega) according
to the manufacturer’s instructions. Untreated cells were used to
determine background LDH levels, and lysed, untreated cells
were used as a reference for maximal LDH release.

ATP Measurement
Cleared supernatants or whole well contents from infected
BMDMs were analyzed using CellTiter-Glo Luminescent Cell
Viability Assay (Promega), according to the manufacturer’s
instructions. Luminescence was measured on a Varioskan LUX
plate reader.

Isolation of Microvesicles and Exosomes
BMDMs were seeded at 1 × 106 cells/well in 6-well plates and
infected as above. After infection, supernatants were subjected
to the following centrifugation steps to clear supernatant of
debris and isolate secreted vesicles: 300 g, 5min at RT; 2,000 g,
10min at 4◦C; 10 000 g, 30min at 4◦C and 100 000 g,
70min at 4◦C. The ultracentrifugation was performed with a
swinging bucket rotor in an L-80 Ultracentrifuge (Beckman
Coulter). Pellets collected from the last three centrifugation
steps were resuspended in PBS. Supernatants and pellets were
treated with 1% Triton-X (Sigma) for 30min on ice prior to
cytokine analysis.

Data Processing and Statistical Analysis
Statistical calculations were performed using one or two-
way ANOVA. P-values are indicated by asterisks: ∗p ≤ 0.05;
∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001; ∗∗∗∗p ≤ 0.0001.
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