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Abstract: Owing to the utilization of transformation optics, many significant research and
development achievements have expanded the applications of illusion devices into thermal fields.
However, most of the current studies on relevant thermal illusions used to reshape the thermal
fields are dependent of certain pre-designed geometric profiles with complicated conductivity
configurations. In this paper, we propose a methodology for designing a new class of thermal
source illusion devices for achieving directed thermal diffusions with natural homogeneous media.
The employments of the space rotations in the linear transformation processes allow the directed
thermal diffusions to be independent of the geometric profiles, and the utilization of natural
homogeneous media improve the feasibility. Four schemes, with fewer types of homogeneous
media filling the functional regions, are demonstrated in transient states. The expected performances
are observed in each scheme. The related performance are analyzed by comparing the thermal
distribution characteristics and the illusion effectiveness on the measured lines. The findings obtained
in this paper see applications in the development of directed diffusions with minimal thermal loss,
used in novel “multi-beam” thermal generation, thermal lenses, solar receivers, and waveguide.
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1. Introduction

The theories of transformation optics (TO) [1] and conformal mapping [2] provide a wide
platform for manipulating waves/fluxes under pre-designed methods in various fields, such as
electromagnetics [3], optics [4], mechanics [5], acoustics [6], and thermodynamics [7]. Many significant
achievements in the above fields, such as the novel invisible cloaks, efficient concentrators,
lenses, illusions, etc., have been promoted by employing topological structures which contain
form invariances of the governing functions following coordinate transformations. In this case,
the tailored topological structures were achieved with near-zero parameters (such as near-zero relative
permittivity, relative permeability, and relative thermal conductivity) to reveal the novel manipulative
behaviors [8]. Using the pre-designed spatial transformations and the well-established effective
medium approximation (EMA) [9], the electromagnetic and optic waves can be precisely controlled
and directed through the tailored configurations of relevant material properties. In order to realize the
parallel beam shifter and the beam splitter, a modified class of optical transformation was proposed,
which employs finite, embedded coordinate transformations to steer the electromagnetic wave [10].
Further studies in embedded optical transformations were carried out, and conversion from the
cylindrical waves to plane waves was achieved over a short range, using layered metamaterials [11].
To enhance the feasibility of realizing the tailored material properties, the discrete elements with
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tailored configurations of relevant material properties were proposed in the fabrication of high-gain
lens antennas [12]. Furthermore, directed diffusion, resulting from multi-beam generation [13,14],
was both theoretically and experimentally demonstrated. Moreover, camouflaging of the characteristics
of the sources by changing the distribution of the electromagnetic fields was also demonstrated.
Some attempts of combining the transformation optics and modal analysis have been made, which have
motivated the investigation of electromagnetic surface wave devices [15].

Recently, a similar method has been begun to see application in the acoustic field. An acoustic
magnifying lens for far-field high-resolution imaging [16] and a source illusion device for flexural
Lamb waves [17] were shown to regulate the distribution characteristics of the acoustic field. For the
thermal field, some relevant devices have been designed through a generally similar method.
A class of thermal metamaterial camouflages [18–20], which used to puzzle outside observers, were
investigated, which were manufactured by thermally transparent shells attached to customized
functional regions. Another type of camouflage [21,22] for creating thermodynamic illusions, i.e.,
changing arbitrary objects into others, is achieved by reshaping the distributions of heat flux with
tailored material configurations. Both of the above kinds of thermal camouflage were utilized to hide
the owner characteristics, which should be significant in the existing thermal fields without the tailored
material configurations.

The exploration of source illusions was also opened up recently. The heat flux generated by the
central sources was converted from non-parallel patterns into parallel patterns [23]. Furthermore,
both 2D and 3D illusion thermal devices [24,25] were investigated to create location camouflages, i.e.,
transferring the original location characteristics to another area. However, further investigations of
such techniques are needed due to the following two concentrations. First, the changing configuration
of tailored conductivities was difficult to realize; second, the dependency of the pre-designed profiles
restricted the directions of regulating thermal flux diffusions. The classical functions with anisotropic
metamaterials [23] are difficult to obtain in practical applications, as the transformed conductivities
varied with the positions (including the radii and azimuths). That is, the employed mediums would be
changed with the positions. In addition, the classical functions could be efficient once the device profiles
were determined, as the entire transformed processes [24,25] were based on the excited characteristic
lines. Considering the inconvenience of the classical transformations and the potential applications of
directed thermal diffusions, the appropriate transformed methodology that simultaneously avoids
singularities and excited characteristic lines, and optimizes the entire process of the linear maps, is of
particular importance in achieving highly-efficient arbitrary illusive devices.

In this paper, a class of thermal source illusions is proposed, by considering the space rotations in
the linear mapping processes, in order to achieve directed thermal diffusions in arbitrary domains,
which are independent of the geometric profiles. In order to adjust the heat flux deflections [26–28]
with feasible conductivities, homogenous natural media are employed in fabricating the reshaped
regions, without limit parameters based on the effective medium theory, which has been widely
used in the design of thermal cloaks [29–31], concentrators [32], and tunable cells [33,34]. A detailed
analysis of the approximate media with relevant fractions, is carried out to select fewer kinds of
materials composited in the functional domains. Four schemes with different geometric profiles of
isothermal lines, i.e., triangle, square, pentagon, and hexagon, are demonstrated in transient states
to validate the proposed derivations of the source illusions. Moreover, the performances are studied
by contrasting, based on of the thermal distributions on the measured lines. In addition, the illusion
effectiveness of the proposed schemes is investigated as a function of the standard deviations of the
temperature deformations. The findings of this work propose a practical method for creating source
illusions, through regulating the deflections of heat flux and reshaping distributions of thermal fields.
This may greatly benefit the development efforts in thermal energy technologies, such as the thermal
lens and directed diffusions with little loss. In addition, the proposed linear mapping methodology
with local rotatory positions would also provide a class of novel manipulative functions on plasmonic
sensors [35] and design the roadmap of graphene [36].
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2. Theoretical Derivations of Conductivities Tensors and Geometrical Models

2.1. Theoretical Derivation of Conductivities Tensor

For realizing the proposed thermal source illusions, which are able to restore the outside thermal
flux (temperature distributions) generated by the sources to make thermal illusions with varying
characteristics of the existing sources as shown in Figure 1a,b, the schematic of the transformation
process is shown in Figure 1c,d.
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Figure 1. Schematic of the illusive performance and the design of the source illusion device. The blue
lines in (a,b) denote the general heat flux. (a) Original thermal fields; (b) illusive thermal fields;
(c) transformation process for the proposed source illusion device; and (d) enlarged view of the
functional elements labelled by Types I and II.

For simplicity and generality, the entire system is restricted to 2D case, and one vertex of the
inscribed polygon of the outer circle is fixed on the line of x = 0, i.e., the y direction, of the original and
transformational domains. Obviously, the proposed source illusions are achieved with topological
structures by mapping the inner circles onto the inscribed polygons of the outer circles. To demonstrate
the transformation process, the entire system is divided into 2N parts through attaching each vertex
and midpoint of the inscribed polygons with the origin O (0, 0). Furthermore, the separated parts are
classified into two types, i.e., the parts with two vertices of (sin((2n− 2)π/N), cos((2n− 2)π/N)),
and ((sin((2n− 1)π/N), cos((2n− 1)π/N))) are denoted as Type I, in which n ∈ [0, N], and the rests
are Type II. Note that we adopt the rotation angles between the configurations and y directions in this
paper. To keep the description of the transformation process simple, the transformations of regions in
Type I are taken as an example. It is clear that the linear mapping function [13,14,23] can be employed
to respectively map the lines of OAn and OCn into OAn

′ and OCn
′. The linear mapping can be carried

out by validating the relations of the original and transformational domains along the directions of the
principle axes. That is, the relevant expansive/compressive coefficients should be solved through the
following expressions: 

x′ = aix + biy + ci
y′ = dix + eiy + fi

z′ = z
. (1)
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For the map of arc AnCn to segment An
′Cn
′, it can be directly realized in a simplified way by

approximating the length of arc AnCn to segment AnCn. However, such a simplification would
introduce major errors into the transformations, once the inscribed polygon with fewer edge numbers
(N), i.e., the length of arc AnCn is not small enough compared with the radius of the inner regions
(r) [14]. Hence, we further refine the configurations inside the part An An

′Cn
′ Cn of Type I into m

parts through the bisecting angle of An
′OCn

′, in order to reduce the errors due to the simplifications.
Each refined configuration is assigned a serial number p(A~D), ranging from 1 to m. That is, the general
vertices of an arbitrary element inside Type I can be obtained considering the positions of azimuths:

An,pA

(
r sin

(
(2n − 2)π

N +
(pA − 1)π

mN

)
, r cos

(
(2n − 2)π

N +
(pA − 1)π

mN

))
;

Cn,pC

(
r sin

(
(2n − 2)π

N +
pCπ
mN

)
, r cos

(
(2n − 2)π

N +
pCπ
mN

))
;

A′n,pA

(
r1 sin

(
(2n − 2)π

N +
(pA − 1)π

mN

)
, r1 cos

(
(2n − 2)π

N +
(pA − 1)π

mN

))
;

C′n,pC

(
r1 cos π

N sin
(
(2n − 2)π

N +
pCπ
mN

)
, r1 cos π

N cos
(
(2n − 2)π

N +
pCπ
mN

))
;

(2)

where r and r1 are the radii of the inner and outer circles. n denotes the serial number of each
adjacent element inside Type I considering the positions of azimuth, ranging from 0 to N − 1. m are
the multiples of equal dividing for the central angle and, pA and pC are the serial number of each
characteristic component with equal central angle which is counting from the side of OA. According to
the linear mapping function, the approximate inner triangle OAn,pA

Cn,pC
can be mapped into the outer

OA′n,pA
C′n,pC

with the following transformation processes upon the linearly expansive processes.


x′O = aI,nxO + bI,nyOAn,p

A
+ cI,n

x′A′n,p
A

= aI,nxAn,p
A
+ bI,nyAn,p

A
Cn,p

C
+ cI,n

x′C′n,p
C

= aI,nxCn,p
C
+ bI,nyCn,p

C
O + cI,n

,


y′OA′n,p

A

= dI,nxO + eI,nyOAn,p
A
+ fI,n

y′A′n,p
A

C′n,p
C

= dI,nxAn,p + eI,nyAn,p
A

Cn,p
C
+ fI,n

y′C′n,p
C

O = dI,nxCn,p
C
+ eI,nyCn,p

C
O + fI,n

(3)

Based on the previous studies [16,17], the coefficients of aI,n, bI,n, dI,n, and eI,n are the elements of
∂x′/∂x, ∂x′/∂y, ∂y′/∂x, and ∂y′/∂y in the related Jacobi matrix used for combining such transformation
processes. Owing to the 2D domain, the elements of ∂z′/∂x and ∂z′/∂y are zero, i.e., cI,n,p, and f I,n,p are
independent of the changes in the z direction. Hence, the related transformed Jacobi matrix can be
derived upon solving the coefficients of aI,n, bI,n, dI,n, and eI,n. The above equations can be transformed
into matrix forms through using the correspondences on the both sides of the simultaneous equations
in Equation (3).


x′O

x′A′n,p
A

x′C′n,p
C

 =


xO yOAn,p

A
1

xAn,p
A

yAn,p
A

Cn,p
C

1

xCn,p
C

yCn,p
C

O 1

·
 aI,n

bI,n

cI,n

,


y′OA′n,p

A

y′A′n,p
A

C′n,p
C

y′C′n,p
C

O

 =


xO yOAn,p

A
1

xAn,p
A

yAn,p
A

Cn,p
C

1

xCn,p
C

yCn,p
C

O 1

·
 dI,n

eI,n

fI,n

 (4)

Obviously, the coefficients of aI,n, bI,n, dI,n, and eI,n can be obtained through multiplying the
inverse matrices of the corresponding parameters in the original region at the both sides of Equation (4).
Considering the positions of characteristic points, the general expansive components in the refined
elements of Type I can be achieved as follows.

 aI,n

bI,n

cI,n

 =


xO yOAn,p

A
1

xAn,p
A

yAn,p
A

Cn,p
C

1

xCn,p
C

yCn,p
C

O 1


−1

·


0

r1 sin
(
(2n − 2)π

N +
(pA − 1)π

mN

)
r1 cos π

N sin
(
(2n − 2)π

N +
pCπ
mN

)
. (5)
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 dI,n

eI,n

fI,n

 =


xO yOAn,p

A
1

xAn,p
A

yAn,p
A

Cn,p
C

1

xCn,p
C

yCn,p
C

O 1


−1

·


0

r1 cos
(
(2n − 2)π

N +
(pA − 1)π

mN

)
r1 cos π

N cos
(
(2n − 2)π

N +
pCπ
mN

)
. (6)

For the elements in the parts of Type II, the conductivities can be obtained using the similar
mapping function. The general positions of the vertices inside the elements of Type II are presented
as follows:

Bn,pB

(
r sin

(
2nπ

N −
(pB − 1)π

mN

)
, r cos

(
2nπ

N −
(pB − 1)π

mN

))
;

Dn,pD

(
r sin

(
2nπ

N −
pDπ
mN

)
, r cos

(
2nπ

N −
pDπ
mN

))
;

B′n,pB

(
r1 sin

(
2nπ

N −
(pB − 1)π

mN

)
, r1 cos

(
2nπ

N −
(pB − 1)π

mN

))
;

D′n,pD

(
r1 cos π

N sin
(

2nπ
N −

pDπ
mN

)
, r1 cos π

N cos
(

2nπ
N −

pDπ
mN

))
;

(7)

In Equation (7), pB and pD are the corresponding serial number of each characteristic component
counting from the side of OB. Considering the mapping relations and the characteristic points,
the expansive coefficients of the elements inside Type II can be derived by taking Equation (7) into
Equation (1). Hence, the general expansive coefficients of Type II can be obtained.


aII,n

bII,n

cII,n

 =


xO yOBn,pB

1

xBn,pB
yBn,pDn,pD

1

xBn,pB
yDn,pDO 1


−1

·


0

r1 sin
(

2nπ
N −

(pB − 1)π
mN

)
r1 cos π

N sin
(

2nπ
N −

pDπ
mN

)
. (8)


dII,n

eII,n

fII,n

 =


xO yOBn,pB

1

xBn,pB
yBn,pDn,pD

1

xBn,pB
yDn,pDO 1


−1

·


0

r1 cos
(

2nπ
N −

(pB − 1)π
mN

)
r1 cos π

N cos
(

2nπ
N −

pDπ
mN

)
. (9)

Taking Equations (5), (6), (8), and (9) together, the Jacobi matrix for realizing such 2D expansive
actions are expressed as:

J =
∂(x′, y′)
∂(x, y)

=

 ∂x′
∂x

∂x′
∂y

∂y′
∂x

∂y′
∂y

 =

(
ai,n bi,n

di,n ei,n

)
· (10)

where i denotes the types of the functional regions, i.e., Type I or II. Using the above Jacobi matrix,
the conductivity components of each element, for achieving the proposed source illusions in the
expansive regions, are obtained through solving the expressions as: κ′ = J·κ·J′

det(J) with det (J) = ai,n·ei,n −
bi,n·fi,n, in which κ denotes the original conductivity between the inner and outer circles. Hence,
the conductivity components can be expressed as follows:

κ′xx =

(
a2

i,n + b2
i,n

)
det(J)

κ. (11)

κ′xy = κ′yx =
(ai ,ndi,n + bi,nei,n)

det(J)
κ. (12)

κ′yy =

(
d2

i,n + e2
i,n

)
det(J)

κ. (13)

The components of the conductivities of Types I and II for the source illusions can be derived
through Equations (11)–(13), by separately considering the transformations in Equations (5), (6), (8),
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and (9). Note that the values det (J) both in Types I and II are r2
1

r2 cos
(

π
N
)
, owing to the linear mapping

functions along the principle axes of the relevant curves. Hence, the components of conductivities of the
proposed source illusions are independent of the range of the transformed regions. That is, the thermal
illusions would theoretically be observed outside the outer circles, once the conductivity components
in the characteristic direction are in accordance with the values calculated by Equations (11)–(13),
without considering the sizes of the inner and outer circles.

For the sake of comparisons with those methods “isotropic cloaking formalism” and “anisotropic
cloaking formalism” [37,38] employed in manipulating surface waves, the proposed method
with local rotational and radial components can be used to achieve varied thermal behaviors by
employing different geometric components. Owing to the linear maps between characteristic
lines, the rotationally-symmetric profiles are not required, and the limit parameters can be
significantly reduced.

2.2. Selections of Materials and Geometric Profiles of Thermal Source Illusions

The theoretically general components of the relevant thermal conductivity tensors of the elements
inside Types I and II of the proposed source illusions are presented above. The next work is proposing
the method for establishing such devices. As [26] pointed out, the relative conductivities for such
composited systems, considering the deflections of heat flux [26–28], i.e., rotations of the local
coordinate systems, could be obtained through alternative configurations of layered materials. Hence,
the relative conductivities along the principle axes for functional regions of the source illusions can be
deduced based on the effective medium theory.

(
κ′x 0

0 κ′y

)
= R(θ)·


r2(a2

i,n + b2
i,n)

r2
1 cos( π

N )
κ

r2(ai ,ndi,n + bi,nei,n)
r2

1 cos( π
N )

κ

r2(ai ,ndi,n + bi,nei,n)
r2

1 cos( π
N )

κ
r2(d2

i,n + e2
i,n)

r2
1 cos( π

N )
κ

·R(θ)′ (14)

In Equation (14), θ denotes relative rotation angle between the local configurations of the layered
materials and corresponding principle axes (y axes). R(θ) and R(θ)′ are the unimodular rotation
matrices. Furthermore, the relative conductivities along the principle axes can be obtained based

on effective medium theory with the fact of θ = π
2 −

1
2 arctan

(
2(ai,ndi,n + bi,nei,n)

a2
i,n + b2

i,n − d2
i,n − e2

i,n

)
. Considering the

findings from studies in bending heat flux with layered material configurations, the requirements
of the relative conductivity components along the principle axes could be achieved by alternative
configurations of negative and positive layers, with certain area fractions [29,32,34].

κ′x =
κP·κN

γP,l·κN + γN,l·κP
(15)

κ′y = γP,l·κP + γN,l·κN (16)

where, κP and κN are the relative conductivities for the positive and negative layers. γP,l and γN,l
denote the composited fractions of the two layers in certain regions and the sum of γP,l and γN,l is 1.

In order to validate the derivations and demonstrate the source illusions, four schemes with
varying profiles of the inscribed polygons, including triangle (N = 3), square (N = 4), pentagon (N = 5),
and hexagon (N = 6), are proposed. As the illusion performances are independent of the physical
dimensions, i.e., the radii of the inner circular spaces (r) where the thermal source located, and the
function regions between the inner and outer circles (r1), the radii of the outer (inscribed polygons)
and inner circles are set as 0.1 m and 0.02 m, i.e., r1 = 0.1 m and r = 0.02 m. The entire systems are
placed at the center of the square plates with dimensions of 400 mm × 400 mm, filled with nickel
steel (50% Ni) with a thermal conductivity of κ = 19.6 W·m−1·K−1. In addition, the inner circles
are used for diffusing the thermal flux generated by the sources. Hence, the nickel steel (50% Ni) is
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also employed to fabricate the inner circular regions as it has small effect on the restoring function.
For the parts between the outer circle and corresponding inscribed polygons, nickel steel is also
employed, as the related spaces are unchanged during the transformation process. Considering the
characteristics of the designed distribution of thermal fields under related polygonal profiles, each
area inside Types I and II of all the schemes is divided into two parts: 10% portions of the area at
the positions of the geometric deformations are considered as one part, while the remaining 90% are
another. The 10% separations are beneficial to restrict the regions with extreme conductivities in
relatively small areas. In addition, this also helps by reducing the limit parameters at the geometric
deformations, resulting in better approximate mapping. The following considerations are to select
the appropriate positive and negative layers for creating the 10% and 90% parts of the functional
regions. For the 10% part in each type, pA(B) and pC(D) should be 1, and the values of m should be
22.4, 15, 12.8, and 11.8 for the triangle, square, pentagon, and hexagon schemes, respectively. In the
10% part of Type I, the relative conductivities for the triangle and square schemes are far larger
than natural positive mediums, and the relative conductivities for the pentagon and hexagon are
291.52 and 199.75 W·m−1·K−1 with nearly 100% fractions. In order to satisfy the requirements of the
conductivities for the 10% parts in Type I, the pure copper with a conductivity of 398 W·m−1·K−1 is
selected for the triangle, square, and pentagon schemes. Aluminum alloy (6063) with a conductivity
of 201 W·m−1·K−1 is employed in the hexagon scheme. Furthermore, the adjacent 10% parts of the
Types II are all filled with polydimethylsiloxane (PDMS) to create essential anisotropies coupled with
those former 10% parts at the geometric deformations (near the vertices).

For the 90% part in each type, pA(B) is 2, and the values of m and pC(D) should also be 22.4, 15,
12.8 and 11.8 for the triangle, square, pentagon, and hexagon schemes, respectively. Taking the above
newly defined points into Equations (5), (6) and (8), (9), the corresponding conductivity components
and related fractions of the positive and negative layers can be achieved by Equations (14)–(16). Here,
the negative and positive layers are respectively defined as layers A and B. Owing to the symmetries
of the distribution of the functional regions, the configurations of the conductivities in the positive and
negative layers are uniform. The desired conductivities of positive layers B and related fractions for
the 90% part of Types I and II are determined as a function of the conductivities of the negative layers
A, as shown in Figure 2.
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It can be seen that the conductivities of layers B increased with those of the negative layers.
Meanwhile, the composited fractions of layers B simultaneously reduced in order to satisfy the
demands calculated by Equations (15) and (16) based on the effective medium theory [26]. In order to
obtain the appropriate conductivities in the negative and positive layers for realizing such source
illusions, the polydimethylsiloxane (PDMS) with a conductivity of 0.15 W·m−1·K−1 is employed to
completely fill in the layers A, owing to its low conductivity and preference of industry. For the
conductivities of layers B, the values for the proposed triangle, square, pentagon, and hexagon



Materials 2018, 11, 629 8 of 19

schemes should be 44.015, 32.172, 28.233, and 26.232 W·m−1·K−1, respectively. Considering the
previous studies [29,32,34], the conductivities inside layers B could be achieved by alternately arranging
negative and positive mediums, owing to the approximate values calculated by Equation (16) and
κP,l = αP, mκP,m + αN,mκN,m (where αP,m and αN,m denote the area fractions of the positive and negative
media composited in layers B, and κP,m and κN,m are the corresponding conductivities for the positive
and negative media). In order to design the schemes with fewer kinds of media, the negative media
composited in layers B are also PDMS. Hence, the total fractions of employed mediums inside this
part (90% part) can be obtained.

βP,T = αP,m·γP,l, (17)

βN,T = γN,l + αN,m·γP,l. (18)

In Equations (17) and (18), αP,m and αN,m are the fractions of the positive and PDMS composited
in the each positive layer. βP,T and βN,T denote the total fractions of the positive and negative media
(PDMS) employed in each 90% part of all types, respectively. Furthermore, the more balanced
configurations of the positive media and PDMS, the optimal expected performances would occur,
owing to the higher anisotropies inside the functional regions.

Considering the 90% part of the separated structures discussed above, the appropriate positive
media, whose total composited fractions approach 40% in Types I and 50% in Types II, should be
adopted for all the proposed schemes. Hence, die-casting aluminum A380 with a conductivity of
96.2 W·m−1·K−1, ductile iron with a conductivity of 75 W·m−1·K−1, and steel SAE 1010 with a
conductivity of 59 W·m−1·K−1 are selected as the potential candidates for the proposed schemes.
The total contents of the candidates in each scheme are illustrated in Figure 3. In order to employ fewer
kinds of media in each scheme, only one positive medium, which approximately and simultaneously
satisfied the fractional demands in Types I and II. Hence, die-casting aluminum A380 is selected for
the triangle scheme with total fractions of 40.54% and 45.05% for Types I and II. Ductile iron is used for
Types I and II of the square scheme with corresponding total fractions of 41.78% and 49.42%. Moreover,
steel SAE is employed both in the pentagon and hexagon schemes, due to its most approximate
fractions to the demands, i.e., 42.70% and 50.83% for Types I and II of the pentagon scheme, and 39.71%
and 44.12% for Types I and II of the hexagon scheme.
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Considering the thermal expanding effects of the functional regions (Types I and II), the wedge cell
structures are employed for fabricating the positive and negative medium layers. Taking into account
the selected media and related fractions, both in the 10% and 90% parts of Types I, one pure positive
wedge layer (copper/aluminum alloy) is ordinarily employed in the 10% part for the proposed schemes.
Five PDMS wedge layers and four positive medium (die-casting aluminum A380, ductile iron, and steel
SAE 1010) wedge cells are embedded into the 90% part, as part of the total fractions. In analogy to
Types II, one pure PDMS layer is embedded in the 10% part. Five positive medium layers and four
PDMS wedge layers are employed in the rest regions with homologous fractions. The geometrical
models for the proposed source illusion schemes are illustrated in Figure 4. Different from the previous
contributions on electromagnetic meta-devices [39,40], the proposed linear maps methodology has
been expanded into thermal fields with the considerations of local radial and angular components.
Considering the general electromagnetic applications [41,42], it is believed that the designed illusive
schemes based on the proposed methodology could open up an avenue to utilize the excited heat
source efficiently in practical applications of the thermal field.Materials 2018, 11, x FOR PEER REVIEW  10 of 20 
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scheme (see the section in the Appendix for the summary for the employed mediums and related
fractions).

In order to validate and demonstrate the proposed schemes, numerical simulations based on
the finite volume method are employed with ANSYS Fluent to solve the energy differential equation
by adopting the second-order difference scheme. The boundaries of the calculated domains are
thermally insulated, and the point sources are located at the center of the entire systems with constant
temperatures Ts = 373 K. Furthermore, a scheme of pure nickel steel (50% Ni) plate with dimensions of
400 mm × 400 mm is established to make fair contrasts with the proposed schemes.
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3. Demonstration of the Proposed Schemes and Discussions

Based on the transformation derivations and relevant thermal expanding effects, the temperature
distributions of the contrasting pure nickel steel plate and the proposed source illusion schemes are
obtained at t = 1000 s. Figure 5 illustrates the temperature distributions of the pure nickel steel plate.
This indicates that the thermal energy generated by the point source diffused uniformly and forced
the isothermal lines in the calculated domains, approaching circles as shown in Figure 5a, owing to
the isotropies in the contrast scheme. In order to describe the characteristics of the temperature
distributions and to make striking contrasts for between the following source illusion schemes,
two characteristic lines, including the isothermal line of T = 302 K and the measured line of r = 0.1 m,
are selected and illustrated in polar coordinates. As shown in Figure 5b, the r direction was defined as
the radii of the locations of T = 302 K. It can be seen that the isothermal line formed in the circle profile,
as the radii on the isothermal line of T = 302 K were 0.091 m, which were in accordance with that
shown in Figure 5a. The temperature distributions on the line of r = 0.1 m were shown in Figure 5c.
Obviously, the temperatures on the line of r = 0.1 m were all 300.6 K. That is, the thermal energy
diffused uniformly along all the directions inside the system.Materials 2018, 11, x FOR PEER REVIEW  11 of 20 
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3.1. Temperature Distributions of the Proposed Thermal Source Illusions

The temperature distributions of the proposed thermal source illusions at t = 1000 s are shown
in Figure 6. The temperature distributions outside the inscribed polygonal regions were shaped
according to the pre-designed polygonal profiles. That is, the outer thermal fields were reshaped into
designed polygons, and all the illusive performances were significant.

For the triangle scheme, the thermal energy diffused uniformly inside the inner circle region, i.e.,
the distributions of isothermal lines were shaped in circular profiles, owing to the inside isotropic
material configurations and the point sources. Moreover, the distributions of the thermal energy
were adjusted in the functional region, where the Types I and II were located, owing to the thermal
expanding effects inside the functional regions. The isothermal lines were manipulated by the function
elements of Types I and II, which forced non-uniform diffusions of the thermal energy, due to the
alternating configurations of the positive and negative media.

With the outwards expansive diffusion, the thermal energies, which were located at the central
regions corresponding to the outer boundaries, diffused into the outer domains of the triangle
functional region faster than those located at the geometric deformations (near the vertices). That is,
the outward diffusions of thermal energies were enhanced, given the reduced distances from the points
on the boundaries to the origin O (0, 0). Furthermore, the refined configurations of the 10% fractional
part at the geometric deformations promoted the thermal diffusions in the wedge elements approaching
the vertices, owing to the high conductivities of the selected media. Hence, the profiles of the isothermal
lines varied violently near the vertices of the outer triangle, which optimized distributions of the
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thermal fields outside the functional regions (outer circle) and reshaped profiles of the isothermal lines
into triangular distributions. Thus, thermal source illusions occurred in the outer domains, which hid
the original characteristics of the sources inside the central circle regions, and changed those into the
pre-designed thermal distribution characteristics. Similar to the other inscribed polygon schemes,
the distributions of the thermal fields were reshaped, by virtue of the functional wedge elements
inside the inscribed polygons. Moreover, the profiles of the isothermal lines, which approached to
the polygon boundaries, would better approximate the shapes of the inscribed polygons with the
increasing side numbers of the polygons. That is, the more similar temperatures outside the outer
circles were observed along the corresponding profiles of the inscribed polygons, owing to the reduced
areas of the domains between the outer circles and the inscribed polygons.

Materials 2018, 11, x FOR PEER REVIEW  11 of 20 

 

 
Figure 5. Distribution characteristics of the thermal fields for the contrast bare plate scheme.  
(a) Temperature distributions of the entire bare plate scheme; (b) distribution characteristics on the 
isothermal line of T = 302 K; and (c) temperature distributions on the measured line of r = 0.1 m. 

3.1. Temperature Distributions of the Proposed Thermal Source Illusions 

The temperature distributions of the proposed thermal source illusions at t = 1000 s are shown 
in Figure 6. The temperature distributions outside the inscribed polygonal regions were shaped 
according to the pre-designed polygonal profiles. That is, the outer thermal fields were reshaped into 
designed polygons, and all the illusive performances were significant. 

 
Figure 6. Temperature distributions for proposed schemes at t = 1000 s. (a) The triangle scheme;  
(b) the square scheme; (c) the pentagon scheme; and (d) the hexagon scheme. 

For the triangle scheme, the thermal energy diffused uniformly inside the inner circle region, 
i.e., the distributions of isothermal lines were shaped in circular profiles, owing to the inside isotropic 
material configurations and the point sources. Moreover, the distributions of the thermal energy were 
adjusted in the functional region, where the Types I and II were located, owing to the thermal 
expanding effects inside the functional regions. The isothermal lines were manipulated by the 
function elements of Types I and II, which forced non-uniform diffusions of the thermal energy, due 
to the alternating configurations of the positive and negative media. 

With the outwards expansive diffusion, the thermal energies, which were located at the central 
regions corresponding to the outer boundaries, diffused into the outer domains of the triangle 
functional region faster than those located at the geometric deformations (near the vertices). That is, 
the outward diffusions of thermal energies were enhanced, given the reduced distances from the 

Figure 6. Temperature distributions for proposed schemes at t = 1000 s. (a) The triangle scheme; (b) the
square scheme; (c) the pentagon scheme; and (d) the hexagon scheme.

3.2. Characteristics of Temperature Distribution

In order to further investigate the characteristics of the temperature distributions of the proposed
schemes, the isothermal lines of T = 302 K and the measured line of r = 0.1 m were also selected.
The characteristics of the temperature distributions of the isothermal lines of T = 302 K for the
proposed schemes are illustrated in Figure 7. Obviously, the distribution characteristics of the thermal
fields changed violently compared with that of the bare plate scheme shown in Figure 4b. As illustrated
in Figure 6a, the radii of the locations of T = 302 K drastically fluctuated in the ranges of θ = 0◦–120◦,
120◦–240◦, and 240◦–360◦, and centered on θ = 60◦, 180◦, and 300◦, i.e., the ranges of the changing
directions corresponded to the boundaries of the inscribed triangle. The radii of the locations rapidly
decreased in the range of 0◦–60◦ and then increased in the range of 60◦–120◦, due to the thermal
flux manipulations of the functional elements inside the inscribed polygons. This indicates that the
distributions of thermal fields were regulated following the profile of the pre-designed triangle, as the
radii of the locations of T = 302 K varied gradually following the trends of the geometrical structure
corresponding to the azimuths. In addition, the maximums of the locational radii appeared at the
azimuths of θ = 0◦, 120◦, and 240◦, while the minimums were observed at θ = 60◦, 180◦, and 300◦.
Thus, the profiles of the isothermal line of T = 302 K were approximately shaped in the triangle profile
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upon the above findings. However, the changing trends of the radii approached the azimuths of θ = 0◦,
120◦, and 240◦ were larger than those of the boundaries of the inscribed triangle, which followed the
function of rl = (r1 cos π

N )/ sin
(
θ + π

2N
)
, where rl denotes the radius on the boundary of the inscribed

triangle. That is, the nature of thermal diffusions led to the local expansion of energy distributions with
pure nickel steel inside the domains between the inscribed triangle and the outer circle. Similar to the
other schemes, the maximums occurred, where the azimuths approached the vertices of the inscribed
polygons, and the minimums were observed at the azimuths where the symmetry axes were located,
i.e., θ = 45◦+nπ/4, 36◦ + nπ/5, and 30◦ + nπ/6 for the square, pentagon, and hexagon schemes
(n ranges from 0 to N − 1). Furthermore, the inner regions inside the isothermal lines were enlarged
with the increasing side counts of the inscribed polygons, which forced boundaries to approach the
outer circles caused by the decreasing central angles. Meanwhile, the above phenomena also meant
that the thermal energy distributions were expanded by the functional elements compared with the
contrast scheme shown in Figure 5b, i.e., the minimum radii of the isothermal lines of T = 302 K were
larger than those in Figure 5b.Materials 2018, 11, x FOR PEER REVIEW  13 of 20 
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Figure 7. Distribution characteristics on the isothermal lines of T = 302 K for proposed schemes.
(a) The triangle scheme; (b) the square scheme; (c) the pentagon scheme; and (d) the hexagon scheme.

Figure 8 provides the temperature distributions of the measured lines of r = 0.1 m (the outer circles)
for the proposed schemes. It can be seen that the highest temperatures were observed at the positions
of the geometric deformations of the inscribed polygons for all the proposed schemes, i.e., the vertices
of the inscribed polygons located at the azimuths of θ = 2nπ/N. The lowest temperatures appeared
at the azimuths of θ = (n + 1)·π/N in the proposed schemes. In addition, the lowest temperatures
on the measured lines increased with the increasing side numbers. That is, the distributions of
thermal energies were expanded outwards, which were in accordance with those illustrated in Figure 7.
Furthermore, the temperatures first rapidly decreased and then increased at the azimuths ranging from
2nπ/N to 2(n + 1)·π/N, and centered on the azimuths of θ = (n + 1)·π/N, where the lowest temperatures
were observed. Moreover, the changing trends of the temperatures increased with the increasing side
counts, owing to the decreasing central angles of the inscribed polygons. In general, the temperatures
near the vertices were significantly higher and the associated isothermal lines were forced to run
parallel to the boundaries of the inscribed polygons, benefiting from the optimal conductivities in the
10% parts of the functional domains and the directed diffusions processes inside the 90% parts. Hence,
the profiles of the isothermal lines outside the outer circle domains were approximately shaped in
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pre-designed profiles, and performed illusions for the actual sources through regulating the outside
distributions of the thermal fields.Materials 2018, 11, x FOR PEER REVIEW  14 of 20 
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To further examine the illusion effectiveness of the proposed schemes, another seven measured
lines of r = 0.04, 0.06, 0.08, 0.12, 0.14, 0.16, and 0.18 m were selected to calculate the temperature
deformations [30] between the proposed schemes and the contrast bare plate, i.e., TD = |Tsc − Tpl|,
where Tsc and Tpl are the temperatures on the measured lines of the proposed schemes and bare plate,
respectively. The standard deviations of the temperature deformations on the measured lines, used to
express the effectiveness, can be written as:

σ =

√√√√ 1
Nm

Nm

∑
i=1

(
TD − TD

)2 (19)

In Equation (19), Nm is the numbers of the measured points on related measured lines.
The standard deviations of the temperature deformations on the measured lines are shown in
Figure 9. Note that the larger standard deviations indicate higher discreteness of the temperature
deformations between observed values and their averages. Consequently, larger deformations would
appear on corresponding azimuths of the proposed schemes, owing to the symmetries illustrated in
Figure 5. Hence, more significant performances of illusions would be observed. As Figure 9 illustrates,
the standard deviation on each measured line was 0 for the contrast bare plate, which contributed to
shape the profiles of the temperature distributions as circles. For the proposed schemes, the standard
deviations on each measured line increased with decreasing side numbers, which meant that the
more significant illusions were achieved in the schemes with fewer diffusion elements inside the
functional regions. For the independent schemes, the trends of the standard deviations as a function
of the radii of the measured lines were similar, i.e., first increased in the functional regions and then
decreased in the outer regions. In addition, the more approximate deformations would be observed
in the schemes with more diffusion elements, i.e., more side counts. Hence, the more approximate
temperature distributions were observed on the related azimuths with fewer side counts, due to the
reduced central angles, which were in accordance with those shown in Figure 5 and validated in the
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electromagnetic field [14]. For the thermal diffusions in the outer spaces, the standard deviations
decreased as the radii increased, due to the natural characteristics of the diffusions inside the isotropic
medium of the outer spaces with thermal losses. Furthermore, the thermal fluxes were able to transfer
efficiently, which could be orthogonal to the pre-designed boundaries of the inscribed polygons in the
outer domains, once the media inside the outer spaces were compiled following certain conditions.Materials 2018, 11, x FOR PEER REVIEW  15 of 20 
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4. Conclusions

In general, a methodology for generally achieving directed thermal diffusions with thermal
source illusions is proposed by setting several functional elements with the linear mapping function.
The employment of space rotations can promote the fabrications of arbitrary thermal illusions in
global transformation domains considering the geometric deformations on any azimuth. Note that
such a methodology could perform the best results, once the length of arc of is small enough
compared with the radius in the original domain, due to the geometric approximations in the design
process. The details of the appropriate natural material selections with relevant fractions in varied
illusion schemes have been investigated based on the effective medium theory. Fewer kinds of
natural homogenous media for each proposed scheme, including the triangular, square, pentagonal,
and hexagonal, have been employed to avoid the extreme parameters and improve the feasibility.
The expected illusive performances and noticeably reshaped profiles of the isothermal lines have
been observed in transient states. That is, the directed thermal diffusions through homogenous
medium devices were validated, owing to the thermal-expansive effects inside the functional types.
Furthermore, the performances and effectiveness of the source illusions have been demonstrated by
characteristics of the measured lines and the standard deviations of the temperature deformations.
The contrasts indicated that more approximate profiles to inscribed polygons of the isothermal lines,
i.e., the better directed thermal diffusions, would be observed with more polygonal boundaries. As a
theoretical and analytical work, the details of the novel design methodology have been provided and
demonstrated by numerical models, some further worthy experimental works considering the practical
conditions and environments in applications can be implemented to improve the efficiency of the heat
transfer and thermal source utilizations in excited thermal techniques. The findings obtained in this
paper can be used to design novel potential TO devices, including lens, source illusion, and diffusion
in thermal field. Furthermore, the linear mapping function considering the changes of azimuths
employed in this paper can be used to force the fluxes in the Laplace fields to efficiently transfer along
certain directions in order to realize the high-gain “N-beam” diffusions [14].
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Appendix A

In this part, the details of the employed numerical models presented in the section of “Selections
of Materials and Geometric Profiles of Thermal Source Illusions” are further summarized and shown
in Table A1.

Table A1. Summary of the detailed information of the numerical models for all the proposed schemes.

Structural Parameters (m)

Scheme Triangle Square Pentagon Hexagon Bare plate

Outer radii 0.1 0.1 0.1 0.1 /
Inner radii 0.02 0.02 0.02 0.02 /

Background 0.4 0.4 0.4 0.4 0.4

Employed mediums for each proposed scheme

Type I II Center and
background

Triangle 10% copper, 40.54% die-casting aluminum
A380, 49.46% PDMS

45.05% die-casting aluminum A380,
54.95% PDMS

Nickel Steel
(50% Ni)

Square 10% copper, 41.78% ductile iron,
48.22% PDMS 49.42% ductile iron, 50.58% PDMS Nickel Steel

(50% Ni)

Pentagon 10% copper, 42.70% steel SAE, 47.30% PDMS 50.83% steel SAE, 49.17% PDMS Nickel Steel
(50% Ni)

Hexagon 10% aluminum alloy (6063), 39.71% steel SAE,
50.29% PDMS 44.12% steel SAE, 55.88% PDMS Nickel Steel

(50% Ni)
Bare plate Nickel Steel (50% Ni)

Material parameters

Material Copper Aluminum
alloy (6063) PDMS Nickel steel

(50% Ni)
Aluminum

A380
Ductile

iron
Steel
SAE

Conductivity
(W·m−1·K−1) 398 201 0.15 19.6 96.2 75 59

Density (kg·m−3) 8930 2690 1000 8260 2710 7100 7830
Specific heat
(J·kg−1·K−1) 386 900 1450 460 963 450 460

Boundary conditions for all the schemes

Left wall Right wall Top wall Bottom wall Ambient Central point source

Thermal isolation Thermal
isolation

Thermal
isolation Thermal isolation 293 K 373 K

Appendix B

Appendix B.1 Comparison between the Proposed Methodology and Well-Established Methods

In this part, we would like to make a comparison among calculated values of effective medium
approximation (EMA) [9,23,43], the classically alternative layer configurations [19] without the
reserved 10% area portions, and the proposed methodology, to further validate and support results.
The isothermal lines of T = 302 K outside the devices of the above contrasts are selected to demonstrate
the radial distribution characteristics of the related points with 302 K. The distributions of the
isothermal lines of T = 302 K in each contrast are shown in Figure A1.
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Figure A1. Comparison of the outside isothermal profile distributions among the ideal values of
the assumed EMA in the functional regions, simulated values of the classically alternative layer
configuration schemes without the reserved 10% area portions and the observed values of the proposed
schemes. (a) The triangle scheme; (b) the square scheme; (c) the pentagon scheme; and (d) the
hexagon scheme.

As can be seen from Figure A1, the radii of the points on the isotherms observed from the
proposed schemes were quite approximate to the ideal values calculated by assuming EMA inside
the functional regions. Furthermore, the peak values (near geometric deformations of the functional
regions) of the ideal schemes and proposed schemes were close, owing to the enhanced heat transfer
processes by the reserved 10% area portions. However, the valley values (near the centers of the
corresponding boundaries of the functional regions) of the proposed schemes were higher than
those ideal ones, due to the practical heat diffusions inside alternative medium layers. Moreover,
the related values of the contrast schemes without the reserved enhancing area portions, i.e., employing
the classical medium configurations [26–34], were also presented above. As it indicates, the classical
medium configuration scheme would also perform the approximate characteristics to the ideal schemes.
However, such approximations were weaker than the proposed schemes, as the peak values could
not approach the ideal ones, and the valley values were higher than those of the proposed schemes.
That is, the thermal energy inside the central medium cells diffused faster than that in the cells near
the geometric deformations, due to the smaller heat transfer distances of the central cells. Hence,
the profiles of the isotherms T = 302 K of the proposed schemes would be more approximate to the
ideal EMA ones, compared with the classical medium configuration schemes without the reserved
thermal enhancing area portions.

Appendix B.2 Independence Analysis of the Presented Schemes

The independence analysis of the presented schemes based on the proposed methodology is
operated in this part. In order to complete the independency analysis, four measured points, i.e.,
A (0.15, 0), B (−0.05, 0), C (0, 0.1), and D (0, −0.1), are selected in all the schemes. Furthermore,
five types of meshes with different grid numbers were selected for each mentioned scheme and are
shown in Table A2.
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Table A2. Different meshes for each original scheme.

Illusive Schemes (Figure 6)
Grid Number

1 2 3 4 5

Triangle 39,214 48,961 59,865 69,023 78,165
Square 46,650 57,732 67,836 76,962 86,142

Pentagon 54,685 65,985 74,986 86,316 97,645
Hexagon 62,947 73,546 82,643 91,687 102,567

The values of the five measured points in each scheme with different meshes are illustrated in
Figure A2. It can be seen that the temperatures of each measured point had little fluctuations with
the increasing grid numbers. That is, the observed results for the schemes were independent of the
meshes, i.e., the results are accurate to support the novelties.
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