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Abstract 

Background: The modifiable areal unit problem (MAUP) arises when the support size of a spatial variable affects the 
relationship between prevalence and environmental risk factors. Its effect on schistosomiasis modelling studies could 
lead to unreliable parameter estimates. The present research aims to quantify MAUP effects on environmental drivers 
of Schistosoma japonicum infection by (i) bringing all covariates to the same spatial support, (ii) estimating individual-
level regression parameters at 30 m, 90 m, 250 m, 500 m and 1 km spatial supports, and (iii) quantifying the differ-
ences between parameter estimates using five models.

Methods: We modelled the prevalence of Schistosoma japonicum using sub-provinces health outcome data and 
pixel-level environmental data. We estimated and compared regression coefficients from convolution models using 
Bayesian statistics.

Results: Increasing the spatial support to 500 m gradually increased the parameter estimates and their associated 
uncertainties. Abrupt changes in the parameter estimates occur at 1 km spatial support, resulting in loss of signifi-
cance of almost all the covariates. No significant differences were found between the predicted values and their 
uncertainties from the five models. We provide suggestions to define an appropriate spatial data structure for model-
ling that gives more reliable parameter estimates and a clear relationship between risk factors and the disease.

Conclusions: Inclusion of quantified MAUP effects was important in this study on schistosomiasis. This will support 
helminth control programmes by providing reliable parameter estimates at the same spatial support and suggesting 
the use of an adequate spatial data structure, to generate reliable maps that could guide efficient mass drug adminis-
tration campaigns.
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Background
Schistosomiasis (SCH) is a water-borne neglected tropi-
cal disease of public health significance [1] associated 
with important morbidity outcomes in school-aged chil-
dren such as malnutrition, anaemia and stunted growth 

in school-aged children [2, 3]. Infection is caused by 
skin penetration of the cercariae, the larval infective 
stage of the parasite, also known as schistosome. Three 
schistosome species cause the infection: Schistosoma 
japonicum, S. mansoni and S. haematobium. Due to its 
zoonotic life-cycle [4], S. japonicum is the hardest to 
control; its infection life-cycle includes the amphibious 
snail Oncomelania hupensis as the intermediate host, and 
humans and other mammalians as definite hosts [5, 6]. 
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SCH affects more than 252 million people worldwide [7] 
especially populations living in poor conditions, where 
access to clean water and sanitation is limited.

Traditionally, SCH is controlled by the use of anthel-
minthic drugs in at-risk populations [8]. Mass drug 
administration campaigns identify at-risk populations by 
using SCH risk mapping. SCH mapping uses geographi-
cal information systems (GIS), global positioning systems 
and remotely sensed environmental data [9, 10]. Model-
ling those infections using various statistical methods 
have enabled the study of the distribution of populations 
at-risk [9, 10], and the role of the environmental variation 
on the geographical heterogeneity of infection burden 
(i.e. prevalence or intensity of infection) [11]. Statisti-
cal modelling of SCH quantifies empirical relationships 
between indirect morbidity indicators of public health 
significance and environmental risk factors. Those could 
be extracted from Earth Observation (EO) data such as 
monitor sites or satellite imagery. In addition, EO data 
help to interpolate the level of infection towards unsam-
pled locations [12–14].

The robustness of SCH geographical modelling efforts 
is affected by uncertainties propagated from the use of 
EO data at various spatial and temporal scales of analy-
sis [15]. EO data are generally constrained by their spa-
tial and temporal scale of sampling [16]. In this study, we 
focus on spatial scale. Scale is a major concern in spatial 
epidemiology [17, 18] since it determines the significance 
of the various environmental risk factors on the disease 
distribution [19]. Spatial scale encompasses the spatial 
support and the spatial extent of analysis [20]. The spa-
tial support refers to the area that each individual obser-
vation occupies in space. In the case of a raster grid, the 
spatial support is the spatial resolution (e.g. a 30 × 30 
m-resolution Landsat pixel). The spatial extent is the spa-
tial coverage of a set of observations (e.g. administrative 
units) and is gathered following a sampling scheme [20]. 
For a given extent, the support size and shape of spatial 
units may affect the patterns identified in the survey and 
environmental data [21, 22] and the relationship between 
the disease morbidity indicators and the environmental 
risk factors. This is known as the modifiable areal unit 
problem (MAUP) [23, 24]. The MAUP arises because 
spatial units of analysis are often created using different 
ad hoc shapes and sizes. Statistical analyses of data per-
formed according to these varying spatial units may lead 
to different results (e.g. correlation and regression coef-
ficients) [24].

Various studies investigated the consequences of ignor-
ing MAUP effects in spatial epidemiological modelling. 
For instance, Hellsten et  al. [25] studied the influence 
of using aggregated covariate data to model ammonia 
emissions at the farm level. They showed that the size 

and shape of spatial aggregation areas strongly affect the 
location of the emissions estimated by the model, e.g. too 
small areas resulting in false emission “hot spots”. Schur 
et  al. [21] and Schur et  al. [22] aggregated SCH preva-
lence maps to estimate endemicity for various admin-
istrative units [26]. Such aggregation showed different 
patterns of endemicity and intervention approaches. As a 
consequence, localized areas of high endemicity may not 
be addressed properly. In a recent study [27], we quan-
tified the effect of pure specification bias, that originates 
when using group-level (i.e. aggregated) survey data at an 
administrative level for individual-level inferences. Equa-
tion 1 shows the common method used to model schis-
tosomiasis. Data on the human S. japonicum infection 
variable y are commonly aggregated at barangay k level, 
yk has a binomial distribution with parameters Nk and pk 
corresponding to the number of sampled individuals and 
the probability of infection, respectively. Parameters for 
this distribution are obtained from the mean of various 
environmental risk factors within barangay k as predic-
tors, denoted as x̄k , where γ are the barangay-level coef-
ficients, γ0 being the intercept and γ(1...n) the regression 
coefficients for n environmental covariates (Eq. 1).

We calculated individual-level regression parameters 
by modifying Equation  1 into a convolution model. We 
observed differences ranging from − 0.19 to 0.28 between 
individual (i.e. γ coefficients) and group level parameter 
estimates and their uncertainties. High differences were 
observed for NDWI (0.28), LSTN (− 0.19) and LSTD 
(0.16). Although some covariates exhibited a less signifi-
cant effect on schistosomiasis, uncertainties in their indi-
vidual level coefficients were lower than the group-level 
regression coefficients (e.g. LSTD and elevation). We 
concluded that the choice of spatial support affects the 
model parameter estimates and their associated uncer-
tainties by changing the within-covariates variability in 
exposure areas. The selection of spatial support should 
be further investigated as it might represent a significant 
source of uncertainty in SCH modelling [15].

Up to date, the majority of SCH studies have put little 
attention to the size of spatial support. They use EO data 
at various spatial supports with misaligned grids ignoring 
the possible consequences on the observed patterns of 
the data [21, 22]. Moreover, MAUP effects on the vari-
ous environmental risk factors used as drivers for SCH 
infection have not been quantified. This is important as 
the relevance of the environmental risk factors on SCH 
depends on the scale of analysis [7, 19]. Ignoring MAUP 

yk |x̄k , γ ∼ Binomial
(

Nk , p̂k
)

(1)
logit(p̂k) = γ0 + γ1 · x̄2k + γ2 · x̄2k + . . .+ γn · x̄nk
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effects might produce unreliable predictions of at-risk 
populations, and consequently, wrong decisions based 
upon inefficient mass drug administration campaigns.

The purpose of this research is to quantify MAUP 
effects on environmental drivers of S. japonicum infec-
tion. To achieve this objective we aim to: (i) aggregate 
and disaggregate EO data in order to bring all covari-
ates to a the same spatial support of analysis; (ii) estimate 
individual-level covariate regression parameters at 30 m, 
90 m, 250 m, 500 m and 1 km spatial supports, by using a 
convolutional model that accounts for pure specification 
bias; and (iii) quantify the differences between parameter 
estimates using five different models.

Methods
Study area and data on human Schistosoma japonicum 
infection
We use S. japonicum infection data collected as part of 
the 2008 Nationwide Schistosomiasis Survey in the Phil-
ippines. Here, S. japonicum is endemic in 28 of its 81 
provinces [28], with approximately 1.8 million estimated 
infected people [29]. The disease affects children, adoles-
cents, and individuals with high-risk occupations, such as 
farmers and fishermen [29, 30]. The area of study is the 
region of Mindanao in the Philippines (Fig. 1). This area 
was selected due to the high response rate of 70.9% of the 

individuals to the 2008 survey [31, 32] and the good spa-
tial coverage of the sampling.

A two-stage systematic cluster sampling was used 
where stratification was done using high, medium and 
low prevalence levels, obtained from the 1994 World 
Bank-assisted Philippine Health Development Pro-
gramme. Provinces and sub-municipalities called baran-
gays were the primary and secondary sampling units, 
respectively. A barangay is the smallest administrative 
division in the Philippines, numbering from 58 to 1158 
within a single province. In total, 11 provinces with high 
(≥ 2%) and medium (0.091–1.99%) prevalence rates were 
included, while 9 low-prevalence (0.04–0.09%) provinces 
were randomly selected. Within the selected provinces, 
barangays with high prevalence rates were surveyed. 
In total, between 2 and 10 barangays were surveyed per 
province, resulting in 108 out of 10,021 barangays that 
were surveyed in Mindanao.

For S. japonicum diagnosis, a Kato-Katz thick smear 
examination [32] was used based on a two-sample stool 
collection. However, due to inconsistencies in the sec-
ond stool sample submission, only the results of the first 
sample were available [8]. Samples were taken from peo-
ple aged two years and above and were analysed using a 
microscope. Active infection was indicated by the pres-
ence of S. japonicum eggs.

Fig. 1 Study area: the Mindanao region in the Philippines. Blue dots are the aggregated survey data at barangay-level
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Data such as age and gender were recorded for 19,763 
individuals. Barangay and province information for each 
individual was recorded but not georeferenced. For this 
reason, individual-level survey data were aggregated 
and geolocated to the centroids of the 108 barangays. 
We used a probability of infection in barangay k as our 
disease outcome variable. We obtained an up-to-date 
barangay centroids shape file from DIVA geographical 
information system [33]. More details about the sampling 
design and surveyed information can be found in Leon-
ardo et al. [31, 34].

Environmental risk factors
We included in our analysis six relevant environmental 
risk factors for SCH transmission [35, 36]. These are the 
nearest distance to water bodies (NDWB), the normal-
ized difference vegetation index (NDVI), the normalized 
difference water index (NDWI), land surface temperature 
at day (LSTD) and at night (LSTN), and elevation (E). 
NDWB shows the accessibility of people to water bodies 
that represent potential infection foci as they may con-
tain contaminated snail hosts that release the infective 
larval stages of the parasite [8]. NDVI is and indicator 
of flooded vegetation [8], particularly rice-paddy fields, 
and environmental moisture [37, 38]. Both are an impor-
tant risk factor for Asian SCH [39]. NDWI was used as a 
proxy indicator of flooding [37, 40] showing potentially 
hidden water bodies. LSTD and LSTN are determinant 
for the survival of snail larval stages [41, 42] and are used 
as proxies for water temperature given that the thermal 
condition of shallow waters usually reflects the ambient 
temperature of the air [8]. Elevation is relevant for SCH 
transmission as the local topography of the area deter-
mines the presence of snails [43, 44]. For instance, at 
lower altitudes the risk of finding snails increases.

NDWB values range from 0.17 to 26.2  km and were 
calculated using the closest facility network analysis tool 
from ArcGIS [45]. We used the river and road network, 

and the cities and hamlets locations as input for the net-
work. Rivers and roads were extracted from the Open 
Street Map Project in the Philippines [46]. Cities and 
hamlet locations were obtained from the National Map-
ping and Resource Information Authority from The 
Philippines [47] data base from 2010. We calculated the 
nearest distance from each city and hamlet to a water 
body following a road and interpolated those values 
within all surveyed barangays towards a spatial support 
of 30 m.

NDVI values range from 0 to 0.84 and were obtained 
from two sources of information, i.e. a series of Land-
sat 5 images from 2008 with a spatial support of 30 m 
and the MODIS MOD13Q1 product with a spatial sup-
port of 250  m. NDWI values range from 0.06 to 0.61 
and were also obtained from two sources of informa-
tion, i.e. a Landsat 5 imagery product from 2008 with a 
spatial support of 30 m and the annual composite from 
Landsat 7 from 2008 derived from Google Earth Engine 
with a spatial support of 500 m. LSTD values range from 
297.77 to 309.52  °K and LSTN ranges from 289.73 to 
297.29  °K. LSTD and LSTN values were derived from 
MODIS MOD11A2_LST product with a spatial support 
of 1 km. Finally, elevation values range from 0 to 969.57 
m was obtained from ASTER GDEM version 2 from 
USGS [48] with a spatial support of 30 m. All covariates 
were set to a common coordinate system UTM zone 51N 
and were standardized to have mean = 0 and standard 
deviation = 1 before being used. Table  1 summarizes all 
sources of information.

Modifying the areal units of analysis
From now onwards, we will refer to an area unit as the 
spatial support of analysis (SSA). We used five SSAs, with 
a spatial support equal to 30 m, 90 m, 250 m, 500 m and 
1 km, respectively. These spatial supports increase when 
going from low to high data aggregation. These values 
were selected based upon the commonly used spatial 

Table 1 Environmental variables description

Abbreviations: NDVI, normalized difference vegetation index; NDWI, normalized difference water index; LST, land surface temperature day and night; NDWB, nearest 
distance to water bodies. USGS, United States Geological Survey; na, not applicable

Environmental 
variable

Spatial resolution Temporal 
resolution

Data type Original coordinate 
system

Data source

Elevation 30 m na Raster EPSG:4326 ASTER GDEM V2 from USGS

NDVI 250 m 2008 Raster EPSG:4326 MOD13Q1

30 m 2008 Raster EPSG:4326 Landsat 5

NDWI 500 m 2008 Raster EPSG:32651 Landsat 7, 1-year composite

30 m 2008 Raster EPSG:4326 Landsat 5

LST 1 km 2008 Raster EPSG:4326 MOD11A2

NDWB 250 m 2010 Raster EPSG:32651 Derived from closest facility network using 
roads, urban areas, river network and water 
bodies
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supports at which the environmental information is orig-
inally provided.

For NDVI, SSA = 30 m, we obtained NDVI values from 
Landsat 5 images. Many of these images presented gaps 
due to the presence of clouds. These gaps were covered 
using disaggregated NDVI MODIS images at the Land-
sat resolution. Disaggregation was performed using a 
linear model that predicted NDVI Landsat values based 
on NDVI MODIS values. NDVI values were obtained by 
merging the original and predicted Landsat NDVI values. 
For SSA = 90  m, we aggregated the previously merged 
NDVI values using their mean. For SSA = 250 m, we used 
the NDVI MODIS product directly. Finally, for SSA = 0.5 
and 1  km, we aggregated the NDVI mean values from 
MODIS.

NDWI values were obtained from the Landsat 5 
images. Gaps in some of these images were covered using 
disaggregated NDWI composite images at the Landsat 
resolution. Disaggregation towards SSA = 30 m was done 
by interpolating NDWI values using ordinary kriging. 
For SSA = 90 m and 250 m, we aggregated the combined 
30 m NDWI using its mean. For SSA = 500 m, we directly 
used the Landsat 7 composite. Finally, for SSA = 1 km, we 
aggregated the mean of the original Landsat 7 composite.

To obtain LSTD and LSTN values for SSA = 30 m, we 
disaggregated the original MODIS values by using ordi-
nary kriging interpolation. For SSA = 90  m, 250  m and 
500 m, we aggregated the previously interpolated values 
using their mean. For SSA = 1 km, we used directly LSTD 
and LSTN from MODIS.

The interpolated NDWB values for SSA = 30  m were 
used to obtain NDWB for SSA = 90 m, 250 m, 500 m and 
1 km by aggregating the mean values. For elevation, we 
directly used the original 30  m SSA Aster images. For 
SSA = 90 m, 250 m, 500 m and 1 km, we aggregated the 
mean values of the original Aster images.

Modelling Schistosoma japonicum infection 
under the MAUP
Convolution model
We modelled human S. japonicum infection at the five 
increasing SSAs using a convolution model that accounts 
for pure specification bias [27]. Pure specification is a 
source of uncertainty [11, 49] that produces loss of infor-
mation on the real relationship between the disease and 
the environmental covariate data, when using aggregated 
survey data in a non-linear model, for example, for individ-
ual-level inferences [50]. It is called ‘pure’ because it specif-
ically addresses model specification bias [51], and it biases 

the estimates because any direct link between exposure 
and health outcomes is imperfectly measured [52]. This is 
because the regression function does not approximate the 
real relationship between the affected population and their 
exposure [27]. Pure specification bias can be reduced as 
the within area exposure is more homogenous [50]. This 
could be done by having a finer partition of space at which 
environmental risk factors are available [50, 53].

In this study, we propose to minimize and quantify 
pure specification bias by extracting covariate informa-
tion from cities within barangays (Fig.  2) and by mod-
elling the disease using a convolution model [53]. The 
city level is the finest available extent of analysis. Cities 
thus serve as a proxy for individual-level exposure loca-
tions. We identified all cities within the surveyed baran-
gays using Google Earth Images. Available cities were 
extracted from the 2010 build-up data base from the 
National Mapping and Resource Information Authority 
of the Philippines [54]. We completed unavailable cities 
using Google Earth Images.

For the convolution model, we used the aggregate data 
method proposed by Prentice and Sheppard [55]. For 
each SSA, we obtained covariate information x for image 
pixel i belonging to a city j within a specific barangay k 
(Fig. 2). Let n = 6 be the number of covariates xijk meas-
ured at locations sijk i = 1, . . . ,mk where mk denotes the 
number of city pixels within barangay k . Note that with 
an increasing resolution, the possibility increases that 
there are no pixel points falling in cities of the within-
pixel sizes. Data on the human S. japonicum infection 
are available at individual-level recorded within a baran-
gay k . Because the exact response locations of the indi-
vidual-level data are unknown, we aggregated them to 
their corresponding barangay centroid, denoted by yk . To 
estimate the average probability of infection of the indi-
viduals in barangay k and the individual level coefficients 
β , we obtained the mean risk function ˆ̂pk over the total 
number of city pixels or exposure locations (Eq.  2). We 
accounted for the spatial variability at barangay-level by 
adding a spatial structure random effects term sk . Pure 
specification bias results as γ  = β and is then minimized 
by using the individual-level regression coefficients β 
instead of the group-level coefficients γ . The accompany-
ing uncertainties are quantified by the difference between 
the group an individual-level credible intervals [27] for 
each SSA. The convolution model used is of the form:

yk |xijk ,β ∼ Binomial
(

Nk ,
ˆ̂pk

)

(2)ˆ̂pk =
1

mk
·

mk
∑

i=1

1

1+ exp
(

−
(

β0 + β1 · x1ijk + β2 · x2ijk + . . .+ βn · xnijk + sk

)) .
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Model implementation
Five models were implemented, all including an intercept 
( β0 ), pixel-level environmental variables ( xijk = NDVI, 
NDWI, LSTD, LSTN, E, NDWB) and their correspond-
ing individual-level coefficients β . Collinearity between 
covariates was assessed with the Pearsonʼs correlation 
coefficient. All covariates were standardized to have 
mean = 0 and standard deviation = 1.

The intercept β0 was given a diffuse uniform prior dis-
tribution with wide bounds β0 ∼ U [−100, 100] . The other 
β parameters were given a diffuse normal distribution 
β ∼ N

[

0, 1
σ 2

]

 , with σ uniformly distributed on a wide 
range of σ ∼ U [0, 100] . These distributions avoid overes-
timating the parameters [56] and allow a good sequences 
mixing used for Markov Chain Monte Carlo (MCMC) 
simulations, contributing to a fast convergence [57].

Prior information for the spatially structured ran-
dom effects was based upon a geostatistical model that 
can be used as a sampling distribution for continu-
ous spatial data [58]. The vector of random variables s 
associated with point locations ( xk , yk ), k = 1, . . . ,K , 
was modelled with a multivariate normal distribution 
s ∼ MVNK [µ,Σab] with a mean µ = 0 and a covariance 
matrix Σab = σ 2 · exp

[

−(φ · dab)
κ
]

 defined by a powered 
exponential spatial decaying correlation function.

The covariance matrix Σab is specified as a function 
of the distances dab between barangay centroids aand b , 
with the rate of decline of spatial correlation per unit of 
distance φ , the scalar parameter representing the overall 
variance σ 2 and the scalar parameter κ controlling the 
amount of spatial smoothing. Because extreme values 

of κ (0 and 2) could lead to undesirable smoothing, we 
used κ = 1. Prior information for φ was set to be uni-
form:φ ∼ U

[

2E10−7, 3E10−3
]

 . These values give a diffuse 
but plausible prior range of correlations between 0.1–
0.99 at the minimum distance between points (575  m) 
and between 0–0.3 at the maximum distance between 
points (< 552 km), assisting identifiability [59]. For σ 2 , a 
half-normal distribution was selected: σ 2 ∼ HN [0, 1] to 
restrict the prior σ 2 to positive values and avoid problems 
with convergence [56, 60].

To run the model, we used three sequences or chains 
with 50,000 iterations. This number of iterations ensured 
that the simulations were representative of target distri-
butions and a stable convergence [57]. In order to dimin-
ish the influence of starting values, we discarded the first 
half of each sequence [57] using a ‛burn-in’ of 25,000 
iterations. Convergence was monitored visually and 
statistically by inspecting the trace plots, and by check-
ing the R̂statistic [61, 62] also called the potential scale 
reduction factor. This potential scale reduction factor 
assesses sequences mixing by comparing the between and 
within variation. An R̂ value < 1.1 indicates evidence that 
sequences have converged [61], while higher values sug-
gest that an increase in the number of simulations may 
improve the inferences [57].

Survey and environmental data were structured in a 
rectangular format where columns are headed by the 
array name. Survey data and the codes in BUGS for the 
various SSA are provided in Additional file  1: Table  S1 
and Additional file 2: Text S1, respectively.

Model validation
The five models were validated using two methods. The 
first method compared the data generated from the sim-
ulations of the predictive distribution to the observed 
data using a test statistic. A test statistic is a value derived 
from the sampled data and is used to perform hypoth-
esis testing. This test statistic is the posterior predictive 
P-value (ppP-value) generated by calculating the propor-
tion of the predicted values which are more extreme than 
the observed maximum, minimum and mean prevalence 
observed value. We calculated (i) the proportion of simu-
lations of the data from the model for which the maxi-
mum prevalence across simulated barangays is greater 
than or equal to the maximum observed value, (ii) the 
proportion of simulations of the data from the model for 
which the minimum prevalence across simulated baran-
gays is greater than or equal to the minimum observed 
value, and (iii) the proportion of simulations of the data 
from the model for which the mean prevalence across 
simulated barangays is greater than or equal to the mean 
observed value. If the model fits the data, the simulated 
values distribute closely around the observed values, 

Fig. 2 Environmental risk factors extraction at pixel-level from cities 
within barangays
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thus, we expect a ppP-value of around 0.5. Otherwise, 
for a biased model, the ppP-value will be close to 0 or 1. 
Our aim was to test whether the model predicts a simi-
lar number of barangays with maximum and minimum 
prevalence values compared with the observed data. 
We generated ppP-values for maximum, minimum and 
mean prevalence values for the models at five increas-
ing SSA using 75,000 simulations. The second method 
used the area under the curve (AUC) of the receiving 
operating characteristics (ROC). We applied a threshold 
of 0.5% (prevalence mean in Mindanao region) since we 
are interested in knowing the ability of the models to dis-
criminate the mean prevalence level in the study area. We 
also examined the ability of the model to discriminate the 
number of positive cases, thus, we used a threshold of 1, 
which indicates the presence of at least one positive case. 
We used an AUC value of 70% to indicate acceptable pre-
dictive performance [8, 63].

Software
Model implementation was done in the software Open-
BUGS 3.2.3 [64, 65] (Medical Research Council, Cam-
bridge, UK and Imperial College London, UK). It was 
downloaded for free at [66]. We called OpenBUGS from 
R using the package R2OpenBUGS [67]. The spatial 
models were coded using the GeoBUGS [59] function as 
an add-on module to OpenBUGS. GeoBUGS provides 
an interface to work with conditional autoregressive and 
geo-statistical models. Data pre-processing and Ordinary 
Kriging was performed in R [68].

Results
Modelling Schistosoma japonicum infection 
under the MAUP
Convolution model
Our findings show that NDVI has a non-significant effect 
on the prevalence of SCH infection for all SSA, except for 
SSA = 1  km (Additional file  3: Table  S1, Fig.  3a). NDVI 
estimates vary gradually from 0.19 to 0.26 when increas-
ing SSA until 500 m. For SSA = 1 km, the estimate rapidly 
increases to 0.59. Uncertainties are similar throughout all 
SSA (Fig.  4a, Table  2), slightly increasing when increas-
ing SSA. The highest credible interval value is 0.60 for 
SSA = 250 m and the lowest is 0.52 for SSA = 30 m.

NDWI has a significant negative effect on the preva-
lence of SCH infection throughout all SSAs (Additional 
file  3: Table  S1, Fig.  3b). When SSA increases, param-
eter estimates increase from − 1.06 to − 0.76, coming 
somewhat closer to zero. We found similar estimates 
for SSA = 30  m, 90  m and 250  m (i.e. from − 1.06 to 
− 1.02), and for SSA = 500  m and 1  km (i.e. from − 0.8 
to − 0.76) (Fig. 4b). Uncertainty values are similar for all 

SSAs and show a slight decrease when increasing SSA 
(Fig.  4b, Table  2). The highest uncertainty value equals 
0.54 for SSA = 30 m, and the lowest value equals 0.44 for 
SSA = 500 m.

LSTD has a significant negative effect on the preva-
lence of SCH infection for almost all SSA, except for 
SSA = 1  km (Additional file  3: Table  S1, Fig.  3c). Simi-
lar parameter estimates equal to − 0.71 are obtained 
for SSA = 30  m, 90  m and 250  m, while the parameter 
estimate increases slightly to − 0.65 for SSA = 500 m. 
For SSA = 1  km, there is a noticeable increase in the 
parameter estimate to − 0.01 (Figs.  3c, 4c). Uncertainty 
increases from 0.59 to 0.64 when increasing SSA from 
30 m to 500 m, but for SSA = 1 km there is a considerable 
increase in uncertainty to 1.49 (Fig. 4c).

LSTN has a significant negative effect on the preva-
lence of SCH infection for almost all SSA, except for 
SSA = 1 km (Additional file 3: Table S1, Fig. 3d). Param-
eter estimates increase from − 0.78 to − 0.86 while 
increasing SSA from 30 m to 500 m. For SSA = 1 km, the 
parameter estimate rapidly goes up to 0.1 (Figs. 3d, 4d). 
Uncertainty increases slightly from 0.56 to 0.58 when 
increasing SSA from 30 m to 500 m, but it increases con-
siderably to 1.14 for SSA = 1 km (Table 2, Fig. 4d).

Elevation has a significant negative effect on the preva-
lence of SCH infection for all SSA, except for SSA = 1 km 
(Additional file  3: Table  S1, Fig.  3e). When increasing 
SSA from 30  m to 500  m, parameter estimates slightly 
decrease from − 0.95 to − 1.03. For SSA = 1  km, the 
parameter estimate considerably increases to − 0.04 
(Figs.  3e, 4e). Uncertainty values vary from 0.59 to 
0.64 when increasing SSA from 30  m to 500  m. For 
SSA = 1  km, uncertainty considerably decreases to 0.35 
(Table 2, Fig. 4). The lowest uncertainty value is 0.35 for 
SSA = 1 km and the highest is 0.66 for SSA = 250 m.

Finally, NDWB has a significant negative effect on the 
prevalence of SCH infection for all SSA (Additional file 3: 
Table S1, Fig. 3f ). We found similar parameter estimates 
of − 0.28, − 0.29 and − 0.31 for SSA = 30  m, 90  m and 
250 m, respectively, and estimates of − 0.38 and − 0.4 for 
SSA = 500 m and 1 km, respectively (Fig. 3f ). Uncertain-
ties constantly increase from 0.32 to 0.39 (Table 2, Fig. 4f ) 
when increasing SSA.

Intercept values range from − 6.02 to − 6.17 for almost 
all SSAs, except for SSA = 1  km, where it is equal to 
− 5.49. The rate of decay of spatial autocorrelation ( ϕ ) 
ranges from 1.65 × 10−5 to 2.81 × 10−4 for SSAs = 1  km 
and 500 m, respectively.

Our findings show high and moderate correlation and 
determination ( R2 ) coefficient values between the SSAs 
and all environmental covariates estimates (Table  3) 
with correlation coefficients ranging from − 0.94 to 0.94 
and R2 values from 0.6 to 0.86, respectively. Correlation 
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coefficients between the SSAs and uncertainties are high 
for LSTD, LSTN and NDWB with the values of 0.91, 
0.9 and 0.91, respectively. Determination coefficients 
R2 between the SSAs and uncertainties in the covariate 

estimates are moderate for LSTD, LSTN and NDWB with 
the values of 0.76, 0.75 and 0.76, respectively (Table  3). 
Uncertainties in NDVI and NDWI estimates do not show 
any correlation with SSAs (Table 3).

Fig. 3 Posterior estimates and their credible intervals. a Normalized difference vegetation index. b Normalized difference water index. c Land 
surface temperature day. d Land surface temperature night. e Elevation. f Nearest distance to water bodies. Abbreviation: SSA, spatial support of 
analysis
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Fig. 4 Density plots for the risk factors regression coefficients. a Normalized difference vegetation index. b Normalized difference water index. c 
Land surface temperature day. d Land surface temperature night. e Elevation. f Nearest distance to water bodies
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Influence on predictions
Differences between observed and predicted preva-
lence values are similar for the five SSA models (Fig. 5). 
Variation in these differences is highest between the 30 
m and 1 km models ( R2 = 0.94 ) and lowest between 
the 30 m and 90 m models ( R2 = 0.99) . Figure 5 shows 
that the maximum and minimum differences are 1.11% 
and 0.01%, respectively, corresponding to the 1 km SSA 
model. For fitted prevalence values higher than 2%, all 
models underestimate the prevalence of infection, while 
for fitted prevalence values lower than 2%, overestimation 
and underestimation occur for the five models (Fig. 5). A 
plot of the residuals against prevalence from Fig. 5 serve 
as a visual inspection of the fit, where we realize that it is 
based on positive predictive predictions.

Uncertainties on the predictions are similar for the 
five models (Additional file  4: Figure S1). Higher differ-
ences in uncertainty were found between the 500 m and 
1 km models ( R2 = 0.96 ), and lower differences were 
found between the 90 m and 250 m models ( R2 = 0.99 ). 
The highest uncertainty value is 9.23% for all the models, 
except the 1-km model with 8.9% and the lowest uncer-
tainty value is 0.006% for the 1-km model.

Model validation
The maximum and minimum observed prevalence val-
ues are 8.5% and 0.33%, respectively. The first validation 
method shows ppP-values for all SSA ranging from 0.64 
to 0.67 for the first test statistic (Table  4). This means 
that simulated data slightly deviate from around 0.14 
to 0.17 from the maximum observed prevalence value 
(Fig.  6). For all SSA it is likely to see a similar number 
of predicted maximum prevalence values compared to 
the observed data. For the second test statistic, ppP-val-
ues ranged from 0.87 to 0.93 (Table 4). This means that 
simulated data are biased around 0.36 to 0.43 from the 
minimum observed prevalence data (Fig.  7). For almost 
all SSA, simulated data predict a higher number of mini-
mum prevalence values compared to the observed data. 
For the last test statistics, ppP-values ranged from 0.59 to 
0.67 (Table 4), showing that simulated data deviate from 
around 0.09 to 0.17 from the mean observed prevalence 
value (Fig. 8).

Results from the second validation method show 
that all models have a high ability to predict prevalence 
values, with AUC values of 0.91 for SSA = 30 m, 90 m, 
250  m and 500  m, and 0.93 for SSA = 1  km. All mod-
els have a good ability to predict the positive number of 

Table 2 Credible interval widths (uncertainty) at five increasing spatial supports of analysis

Note: High uncertainty values are present in bold

Abbreviations: NDVI, normalized difference vegetation index; NDWI, normalized difference water index; LSTD, land surface temperature day; LSTN, land surface 
temperature night; NDWB, nearest distance to water bodies

Spatial supports of analysis Credible intervals width (uncertainty)

NDVI NDWI LSTD LSTN E NDWB

30 m 0.52 0.50 0.59 0.56 0.59 0.32

90 m 0.57 0.50 0.62 0.56 0.59 0.33

250 m 0.60 0.48 0.64 0.59 0.66 0.36

500 m 0.54 0.44 0.64 0.58 0.64 0.38

1 km 0.58 0.46 1.49 1.14 0.34 0.39

Table 3 Correlation and determination coefficients between the spatial supports of analysis (SSAs) and environmental covariates 
estimates and uncertainties

Covariates Estimates Uncertainties

Correlation 
coefficient

Determination 
coefficient (R2)

P-value Correlation 
coefficient

Determination 
coefficient (R2)

P-value

NDVI 0.94 0.85 0.02 0.32 − 0.2 0.6

NDWI 0.93 0.81 0.02 − 0.3 − 0.2 0.6

LSTD 0.92 0.8 0.03 0.91 0.76 0.03

LSTN 0.86 0.6 0.06 0.9 0.75 0.04

E 0.86 0.65 0.06 − 0.78 0.48 0.12

NDWB − 0.94 0.86 0.02 0.91 0.76 0.03

Variance 0.64 0.21 0.25 − 0.54 0.06 0.35
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SCH cases. Models with SSA = 30 m, 90 m, 250 m and 
500 m models have AUC values of 0.83, while the 1 km 
SSA model presents a lower AUC value of 0.79, show-
ing a decrease in the ability to predict the positive num-
ber of SCH cases.

Discussion
Schistosomiasis modelling studies have commonly used 
environmental risk factors as drivers for disease expo-
sure and transmission [69, 70]. The studies so far have 
used spatially misaligned environmental variables at 
different spatial supports of analysis, ignoring MAUP 
effects on the parameter estimates, predictions, and 
the relationship between disease morbidity indicators 
and risk factors. This study is the first effort to quan-
tify the effects of modifying the areal unit (i.e. spatial 
support) of NDVI, NDWI, LSTD, LSTN, E and NDWB, 

on model parameter estimates and their uncertain-
ties. Uncertainty may be quantified using measures of 
accuracy or imprecision [15]. We evaluated uncertainty 
using measures of imprecision based on the nature of 
the disease and the survey data available and quanti-
fied it using credible intervals in a Bayesian setting. We 
applied it to S. japonicum infection modelling in the 
Mindanao region, the Philippines.

Our findings show that the environmental risk fac-
tors NDVI, NDWI, LSTD, LSTN and E behave similarly 
when increasing the SSA from 30  m to 1  km (Table  3). 
An increase in SSA from 30 m to 500 m does not repre-
sent any significant changes in parameter estimates. Con-
versely, for SSA = 1 km, all show a considerable increase 
in their estimates. The reasons are explained below.

NDVI has a positive effect on SCH, meaning that 
higher NDVI values increase the prevalence of infec-
tion. This is explained by the positive relationship 
between vegetation, moisture and snail density [37]. 
NDVI effects are not significant for SSA < 1 km, because 
NDVI is an indicator of greenness that is mainly effec-
tive for arid areas and Mindanao is not arid. However, 
the NDVI effect becomes significant on the prevalence 
of SCH infection for SSA = 1 km. This could be because 
NDVI effects on SCH prevalence are greater at global 
scales [8] than at local scales. This might be explained 
by the fact that prevalence values al local scales can vary 
significantly at nearby locations, as it depends not only 
on the nature of the parasite life-cycle, which requires 
optimal habitat conditions (i.e. environmental condi-
tions), but also on sanitation conditions on the area 

Fig. 5 Residual plot for the five increasing spatial supports of analysis. The x-axis represents the fitted prevalence values for the five spatial supports 
of analysis. The y-axis represents the residuals calculated by the difference between the observed and predicted prevalence values

Table 4 Resulting ppP-values for the test statistics: maximum 
(8.5%), minimum (0.33%) and mean (0.5%) prevalence values at 
five increasing SSA

Abbreviation: ppP-value: posterior predictive P-value

Spatial supports of 
analysis

ppP-value 
(maximum)

ppP-value 
(minimum)

ppP-
value 
(mean)

30 m 0.66 0.87 0.66

90 m 0.67 0.86 0.66

250 m 0.66 0.88 0.63

500 m 0.66 0.87 0.67

1 km 0.64 0.93 0.59
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[71]. The increase in uncertainty values with increasing 
SSA is due to the coarse areal pixels ≥ 250 m resolution 
that does not reliably represent rice paddy fields. Those 
are substantially smaller than 25 ha, i.e. are covered by 
at most four pixels [72].

For SSA = 30 m, 90 m, 250 m and 500 m, LSTD, LSTN 
and E have a significant negative effect on SCH preva-
lence. Conversely for SSA = 1  km, their parameter esti-
mates are close to zero. This means that when the areal 
unit reaches 1  km, the effect of these covariates on the 
prevalence of SCH infection becomes non-significant. 
This is also observed from the credible intervals of these 
covariates for the 1-km SSA model. The reason is that 

the homogeneity of the covariate values increases when 
increasing the SSA. LST is a proxy of the ambient tem-
perature of the air, which reflects the thermal conditions 
of shallow waters [27]. Its negative relationship with the 
prevalence of infection could be explained by the fact that 
temperatures above 19–20 °C do not influence the release 
of cercariae from the infected host to the infection foci 
[73], as well as temperatures below approximately 15  °C 
arrest the development of S. japonicum in the snail host 
[74]. The minimum LST value at night is around 21  °C, 
while the maximum LST value during the day is 31  °C. 
LSTD and LSTN uncertainty values for SSA = 1  km 
are remarkably high as compared to other SSA. This is 

Fig. 6 Proportion of simulated prevalence data that fit the observed maximum prevalence value. a SSA = 30 m. b SSA = 90 m. c SSA = 250 m. d 
SSA = 500 m. e SSA = 1 km. Abbreviation: SSA, spatial support of analysis



Page 13 of 18Araujo Navas et al. Parasites Vectors          (2020) 13:112  

explained by the coarse LSTD and LSTN areal pixels of 
1  km2 that cannot reliably represent low and high tem-
perature zones in city areas that range from 0.02 to 3 km2 
[27]. Elevation has a negative effect on SCH. This was 
expected as in areas with high elevation values (> 2300 m) 
the risk of infection is low [75]. Conversely, the risk of 
infection is high for elevation areas below 900 m. Eleva-
tion uncertainty values are similar for all SSA, except for 
SSA = 1  km, where its value considerably decreases to 
0.34. Here we see the effect of the gradual changes of ele-
vation in Mindanao region are gradual and without steep 
slopes [27]. Using data directly at the 1-km SSA could 
give reliable elevation values, but with a non-significant 
effect on the disease prevalence.

For NDWB and NDWI, an increase in SSA from 30 m 
to 250 m represents non-significant changes in parameter 
estimates, which range from − 1.06 to − 1.02 for NDWI, 
and from − 0.31 to − 0.28 for NDWB. Conversely, when 
increasing the SSA to 500 m, parameter estimates change 
to − 0.8 and − 0.38 for NDWI and NDWB, respectively. 
For SSA = 500  m and 1  km, NDWI estimates increase, 
having a less significant effect on SCH prevalence, again 
due to the increase in the homogeneity of the covariate 
values when increasing SSA. Higher NDWI values show 
the presence of potential hidden infection foci. Nev-
ertheless, results show that NDWI presents a negative 
effect on SCH (Additional file  3: Table  S1). This could 
be because NDWI cannot efficiently suppress the signal 

Fig. 7 Proportion of simulated prevalence data that fit the observed minimum prevalence value. a SSA = 30 m. b SSA = 90 m. c SSA = 250 m. d 
SSA = 500 m. e SSA = 1 km. Abbreviation: SSA, spatial support of analysis
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from build-up land mixing enhanced water features with 
build-up land noise. Thus, build-up noise could also 
have high NDWI values [40]. According to Gu et al. [76] 
NDWI values lower than 0.3 indicate the presence of 
drought areas. In our study area, we found that around 
77% of Mindanao present drought conditions, explain-
ing the negative effect on the disease. NDWB estimates 
decrease when increasing SSAs (Table  3), specially for 
SSA = 500  m and 1  km, but their significance on SCH 
prevalence increases. A possible explanation is that peo-
ple that move larger distances to water bodies are most 
likely to get infected. This could be because at spatial 

supports < 1 km, NDWB values seem to be more homog-
enous than at smaller spatial supports, showing a weaker 
relationship with the disease (Additional file 3: Table S1). 
For spatial supports > 1 km, neighbouring pixels present 
more heterogeneous values, which could be because of 
the aggregation process, but also because of the use of 
some kind of transportation media that allows appar-
ent reduction of travel distances in a relatively large area 
(1 km2). Clearly, transportation (type of road and media 
of transportation) plays an important role [77].

Uncertainty values for NDWI decrease when increas-
ing the SSA, with a minimum of 0.44 for SSA = 500  m. 

Fig. 8 Proportion of simulated prevalence data that fit the observed mean prevalence value. a SSA = 30 m. b SSA = 90 m. c SSA = 250 m. d 
SSA = 500 m. e SSA = 1 km. Abbreviation: SSA, spatial support of analysis
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Clearly, NDWI data originally available at SSA = 250  m 
are more reliable than values modified to larger SSAs. 
Using ordinary kriging for interpolation increases the 
variance in the estimates in a somewhat unrealistic way 
since it uses a constant mean [58], while in reality, means 
are different. Uncertainty values of NDWB, for instance, 
increase with increasing SSA due to the coarse areal pixel 
units ≥ 0.25  km2. Such a size is insufficient to reliable 
define nearest distances to water bodies in city areas of 
0.02 to 3 km2.

Our aim was not to compare the performance of the 
models as we used the same model structure, number 
and type of covariates in the five models. Thus the model 
itself is practically the same for all SSA. Although our 
aim was not focused on model comparison, the result-
ing DIC values from Additional file  3: Table  S1 suggest 
the use of spatial support sizes below or equal to 250 m 
in SCH modelling. This is shown by the low DIC values 
from 86.67 to 140.5 for SSA ≤ 250 m and high DIC val-
ues of 143.7 and 147.5 for the 500 m and 1 km models, 
respectively (Additional file 3: Table S1).

When modelling prevalence of S. japonicum infection 
in Mindanao, the effect of increasing SSA, or modifying 
the areal unit of analysis, from 30 m to 500 m, produces 
a gradual and continuous increase on the parameter esti-
mates and their associated uncertainties. For SSA = 1 km, 
sudden changes occur in the relationship between the 
risk factors and the prevalence of the disease. This is 
shown by the non-significant effect of almost all explana-
tory variables on S. japonicum prevalence. Results sug-
gest that the use of environmental data extracted at 
SSA = 1  km is not appropriate for the modelling of S. 
japonicum prevalence.

A Bayesian statistical method was used to model the 
disease along with a convolution regression model, which 
corrected for pure specification bias on our estimates. 
This is a relevant contribution to the analysis of uncer-
tainties in this type of spatial epidemiological study. For 
future studies, new trends in geospatial artificial intelli-
gence (geoAI), that could resolve limitations regarding 
the MAUP for exposure modelling studies, are emerging 
to model schistosomiasis [78] as well as other diseases 
[79]. We particularly identified (i) the use of high-perfor-
mance computing to handle spatiotemporal big data, and 
(ii) machine and deep learning algorithms implementa-
tion to big data infrastructures to extract relevant disease 
or environmental information [79, 80]. One example is 
a data-driven method used to predict particulate mat-
ter air pollution  (PM2.5) in Los Angeles, CA, USA. Here, 
machine learning was used on spatial big data, i.e. land 
use and roads, derived from OpenStreeMap, to predict 
 PM2.5 concentrations. When generating relative impor-
tance measures for the different risk factors, MAUP 

effects reduced when applying a random forest model 
that was trained with the distances between the features 
and the monitoring  PM2.5 stations, [81]. The rapid devel-
opment of geoAI methods, their advantage to deal with 
big data, and their rapid computational time, makes them 
an attractive and advantageous tool to tackle limitations 
with modelling schistosomiasis and other diseases. There 
is still little work done in this field, but we think it is valu-
able to further explore geoAI solutions to deal with the 
MAUP, and perhaps other inherent uncertainties pro-
duced in disease modelling and mapping.

Finding MAUP effects on the various environmental 
risk factors used for modelling S. japonicum prevalence, 
is a step forward to the uncertainty analysis in the schis-
tosomiasis, and possibly other diseases. The present 
research deals with limitations such as the use of aggre-
gated disease data, due to the lack of geolocated individ-
ual-level surveys. It also provides a robust method for the 
selection of an appropriate spatial data structure, which 
at the same time, enables the acquisition of more relia-
ble parameter estimates, and defines a clear relationship 
between the risk factors and the disease. From the pub-
lic health perspective, this research can support helminth 
control programmes by providing less uncertain models 
and maps. Epidemiologists and health scientists could 
use these maps to identify risk areas for the control and 
prevention of the disease [12, 82], which in the case of 
schistosomiasis, is generally based on mass drug adminis-
tration campaigns addressed to the identified at-risk pop-
ulations. The provision of reliable information is relevant 
to guide mass drug administration campaigns by enhanc-
ing the assessment of the infection risk, understanding its 
potential impacts on human health [15, 83] and avoiding 
erroneous conclusions and decisions about the spatial 
distribution of schistosomiasis [15, 27]. This research is 
also relevant to evaluate the effectiveness of mass drug 
administration campaigns, as it could guide the identifi-
cation of persistent hot spots, or places where prevalence 
of infection remains despite mass drug administration 
efforts [71]. It is known that despite the implementation 
of mass drug administration campaigns, some places do 
not show a decrease in local SCH transmission. This is 
because these campaigns do not only depend on the 
nature of the parasite life-cycle and the poor sanitation 
conditions, but also on the local environmental factors, 
drivers for SCH transmission. Finding relevant environ-
mental factors at local level would allow more intensive 
efforts at persistent hot spots.

Conclusions
The present study shows a clear MAUP effect on S. 
japonicum modelling. An increase in parameter esti-
mates and their associated uncertainties occurs when 
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increasing the spatial support of analysis (SSA). It also 
showed that using environmental data extracted at 
SSA = 1 km is not relevant for S. japonicum prevalence of 
infection at this specific extent of analysis, as this leads to 
wrong conclusions about the distribution of the disease 
and its relationship with the potential risk factors. Thus, 
the use of maps based upon this information is to be 
avoided as these may guide health scientists in the con-
trol or prevention of the disease astray. The results from 
this study could guide other disease modelling studies 
as they suggest a spatial support sizes at which environ-
mental information has no longer a significant effect on 
the disease, and which data structure is recommended 
for the modelling. Epidemiologists, decision makers 
and health scientists could thus benefit from those, e.g. 
to better understand and quantify MAUP effects on the 
relationship between the disease and its risk factors, and 
to provide reliable maps that are useful for disease con-
trol and prevention.
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Additional file 1: Table S1. Survey data aggregated at the barangay level. 
These data show the number of positive cases (y) and the total number of 
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Additional file 2: Text S1. Code for the convolution model used in Open-
BUGS. It includes the prior distributions used for the covariate and spatial 
parameters and the model itself. The model uses two indexes, k for the 
barangay and j for the number of city pixels within barangays. The betas 
are the individual-level regression coefficients, m is the number of city 
pixels in a barangay. Covariates are ndvi: normalized difference vegetation 
index, ndwi: normalized difference water index, lstd: land surface tempera-
ture day, lstn: land surface temperature night, e: elevation, ndwb: nearest 
distance to water bodies. The spatial parameter is represented as s.

Additional file 3: Table S2. Regression coefficient estimates, variance 
of spatial random effect, correlation decay coefficient and deviance 
information criteria for each risk factor at five descending spatial supports 
of analysis.

Additional file 4: Figure S1. Residual plot for the five increasing spatial 
supports of analysis. a SSA = 30 m. b SSA = 90 m. c SSA = 250 m. d 
SSA = 500 m. e SSA = 1 km. The x-axis represents the fitted prevalence 
values for the five spatial supports of analysis. The y-axis represents the 
residuals calculated by the difference between the observed and pre-
dicted prevalence values.
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